Nature of Scapolite Color: Ab Initio Calculations, Spectroscopy, and Structural Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analytical Methods
2.3. Computation Methods
3. Results
3.1. Ab Initio Calculations
3.1.1. (CO3)2− and (CO3) Groups
3.1.2. F-Centers
3.1.3. Polysulfide Radical Anions
3.2. Experimental Results
3.2.1. Crystal Structure
3.2.2. Infrared Spectroscopy
3.2.3. Raman Spectroscopy
3.2.4. Electronic Spectroscopy of Scapolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, I.; Buseck, P.R. HRTEM characterization of scapolite solid solutions. Am. Mineral. 1988, 73, 119–134. [Google Scholar]
- Teertstra, D.K.; Sherriff, B.L. Scapolite cell-parameter trends along the solid–solution series. Am. Mineral. 1996, 81, 169–180. [Google Scholar] [CrossRef]
- Seto, Y.; Shimobayashi, N.; Miyake, A.; Kitamura, M. Composition and I4/m-P42/n phase transition in scapolite solid solutions. Am. Mineral. 2004, 89, 257–265. [Google Scholar] [CrossRef]
- Sokolova, E.; Hawthorne, F.C. The crystal chemistry of the scapolite-group minerals. I. Crystal structure and long-range order. Can. Mineral. 2008, 46, 1527–1554. [Google Scholar] [CrossRef]
- Sokolova, E.; Kabalov, Y.; Urusov, V. The crystal chemistry of the scapolite: Investigation of the marialite–meionite solid solution series by means of the Rietveld method. Probl. Crystallogr. 1999, 5, 196–227. (In Russian) [Google Scholar]
- Sherriff, B.L.; Sokolova, E.V.; Kabalov, Y.K.; Jenkins, D.M.; Kunath-Fandrei, G.; Goetz, S.; Jager, C.; Schneider, J. Meionite: Rietveld Structure-Refinement, 29Si Mas and 27Al Satras Nmr Spectroscopy, and Comments on the Marialite Meionite Series. Can. Mineral. 2000, 38, 1201–1213. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I.; Wang, J.; Lee, P.L.; Toby, B.H. State-of-the-Art High-Resolution Powder X-ray Diffraction (Hrpxrd) Illustrated with Rietveld Structure Refinement of Quartz, Sodalite, Tremolite, and Meionite. Can. Mineral. 2008, 46, 1501–1509. [Google Scholar] [CrossRef]
- Yuan, P.; Zhao, Y.; Xu, B.; Shen, J. A Study on the Mineralogy and Volatile Fraction of Scapolite from Mogok, Myanmar. Crystals 2022, 12, 1779. [Google Scholar] [CrossRef]
- Kostov-Kytin, V.; Kadiyski, M.; Nikolova, R. Further on the Choice of Space Group for Scapolite Group Members and Genetic Considerations about the Si-Al Ordering in Their Framework Construction. Minerals 2024, 14, 556. [Google Scholar] [CrossRef]
- Bokiy, G.; Borutsky, B.E. Feldspatoids. Mineraly; Nauka: Moscow, Russian, 2003; Volume 5, pp. 282–384. (In Russian) [Google Scholar]
- Litvinenko, A.; Moiseeva, S.; Odinaev, S.A.; Utenkov, V. Geology of the Chernogorskoe Gem-Quality Scapolite Deposit (Central Pamirs, Tajikistan). Geol. Ore Depos. 2019, 61, 481–493. [Google Scholar] [CrossRef]
- Zolotarev, A. Gem scapolite from Eastern Pamir and some general features of constitution of scapolites. Zap. Vsesoyznogo Mineral. Obs. (Proc. Sov. Mineral. Soc.) 1993, 122, 90–102. (In Russian) [Google Scholar]
- Balmer, W.A.; Hauzenberger, C.A.; Fritz, H.; Sutthirat, C. Marble-hosted ruby deposits of the Morogoro Region, Tanzania. J. Afr. Earth Sci. 2017, 134, 626–643. [Google Scholar] [CrossRef]
- Allen, T.; Renfro, N.; Nelson, D. Tenebrescent irradiated scapolite. Gems Gemol. 2014, 50, 91. [Google Scholar]
- Choudhary, G. Purple scapolite. Gems Gemol. 2015, 51, 203. [Google Scholar]
- Taran, M.; Tarashchan, A.; Platonov, A.; Bagmut, N.; Skrigitil, A. Spectroscopic investigation of gem scapolites of Eastern Pamir. Zap. Vsesoyznogo Mineral. Obs. (Proc. Sov. Mineral. Soc.) 1989, 118, 90–100. (In Russian) [Google Scholar]
- Vanko, D.A.; Bishop, F.C. Occurrence and origin of marialitic scapolite in the Humboldt Lopolith, NW Nevada. Contrib. Mineral. Petrol. 1982, 81, 277–289. [Google Scholar] [CrossRef]
- Shendrik, R.; Kaneva, E.; Pankratova, V.; Pankrushina, E.; Radomskaya, T.; Gavrilenko, V.; Loginova, P.; Pankratov, V. Intrinsic luminescence and radiation defects in scapolite. Chem. Phys. Lett. 2024, 838, 141081. [Google Scholar] [CrossRef]
- Rao, Y.; Guo, Q.; Zhang, S.; Liao, L. Comparative Study on Gemmological Characteristics and Luminescence of Colorless and Yellow Scapolites. Crystals 2023, 13, 462. [Google Scholar] [CrossRef]
- McClure, S.F.; Rossman, G.R.; Shigley, J.E. Tenebrescent scapolite from Afghanistan. Gems Gemol. 2005, 41, 269. [Google Scholar]
- Blumentritt, F.; Fritsch, E. Photochromism and Photochromic Gems: A Review and Some New Data (Part 1). J. Gemmol. 2021, 37, 780. [Google Scholar] [CrossRef]
- Colinet, P.; Byron, H.; Vuori, S.; Lehtiö, J.P.; Laukkanen, P.; Van Goethem, L.; Lastusaari, M.; Le Bahers, T. The structural origin of the efficient photochromism in natural minerals. Proc. Natl. Acad. Sci. USA 2022, 119, e2202487119. [Google Scholar] [CrossRef] [PubMed]
- Sergunenkov, B. Gem scapolite from Turakuloma range (Pamir). Zap. Vsesoyznogo Mineral. Obs. (Proc. Sov. Mineral. Soc.) 1989, 118, 84–90. (In Russian) [Google Scholar]
- Burgner, R.; Scheetz, B.E.; White, W.B. Vibrational structure of the S2− luminescence in scapolite. Phys. Chem. Miner. 1978, 2, 317–324. [Google Scholar] [CrossRef]
- Sidike, A.; Kusachi, I.; Kobayashi, S.; Atobe, K.; Yamashita, N. Photoluminescence spectra of S2− center in natural and heat-treated scapolites. Phys. Chem. Miner. 2008, 35, 137–145. [Google Scholar] [CrossRef]
- Blumentritt, F.; Latouche, C.; Morizet, Y.; Caldes, M.T.; Jobic, S.; Fritsch, E. Unravelling the Origin of the Yellow-Orange Luminescence in Natural and Synthetic Scapolites. J. Phys. Chem. Lett. 2020, 11, 4591–4596. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Shchipalkina, N.V.; Shendrik, R.Y.; Vigasina, M.F.; Tauson, V.L.; Lipko, S.V.; Varlamov, D.A.; Shcherbakov, V.D.; Sapozhnikov, A.N.; Kasatkin, A.V.; et al. Isomorphism and Mutual Transformations of S-Bearing Components in Feldspathoids with Microporous Structures. Minerals 2022, 12, 1456. [Google Scholar] [CrossRef]
- Diffraction, O. CrysAlisPro; Oxford Diffraction Ltd.: Abingdon, UK, 2009. [Google Scholar]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Krist. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Ungaretti, L.; Oberti, R. Site populations in minerals; terminology and presentation of results of crystal-structure refinement. Can. Mineral. 1995, 33, 907–911. [Google Scholar]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- HPC-cluster “Akademik V.M. Matrosov”. Irkutsk Supercomputer Center of SB RAS. Available online: http://hpc.icc.ru (accessed on 10 September 2024).
- Kühne, T.D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V.V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R.Z.; Schütt, O.; Schiffmann, F.; et al. CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Shendrik, R.; Popov, N.; Myasnikova, A. F-Centers in BaBrI Single Crystal. IEEE Trans. Nucl. Sci. 2020, 67, 946–951. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Chivers, T. Ubiquitous trisulphur radical ion . Nature 1974, 252, 32–33. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Vigasina, M.F.; Shendrik, R.Y.; Varlamov, D.A.; Pekov, I.V.; Zubkova, N.V. Nature and Isomorphism of Extra-Framework Components in Cancrinite- and Sodalite-Related Minerals: New Data. Minerals 2022, 12, 729. [Google Scholar] [CrossRef]
- Hamisi, J.; Etschmann, B.; Tomkins, A.; Pitcairn, I.; Pintér, Z.; Wlodek, A.; Morrissey, L.; Micklethwaite, S.; Trcera, N.; Mills, S.; et al. Complex sulfur speciation in scapolite–implications for the role of scapolite as a redox and fluid chemistry buffer in crustal fluids. Gondwana Res. 2023, 121, 418–435. [Google Scholar] [CrossRef]
- Jones, J. Al–O and Si–O tetrahedral distances in aluminosilicate framework structures. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 355–358. [Google Scholar] [CrossRef]
- Evans, B.W.; Shaw, D.M.; Haughton, D.R. Scapolite stoichiometry. Contrib. Mineral. Petrol. 1969, 24, 293–305. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Rastsvetaeva, R.K.; Zubkova, N.V.; Vigasina, M.F.; Pekov, I.V.; Zolotarev, A.A.; Mikhailova, J.A.; Aksenov, S.M. Spectroscopic characterization of extra-framework hydrated proton complexes with the extremely strong hydrogen bonds in microporous silicate minerals. J. Raman Spectrosc. 2024, 55, 581–597. [Google Scholar] [CrossRef]
- Krivovichev, S. Topology of microporous structures. Rev. Mineral. Geochem. 2005, 57, 17–68. [Google Scholar] [CrossRef]
- Aksenov, S.; Chukanov, N.; Rastsvetaeva, R.; Pushcharovsky, D.; Burns, P. Crystal chemistry and topology of two and three dimensional zeolites with the modulus based on tetrahedral nets with the apophyllite-type topology. J. Struct. Chem. 2024. in preparation. [Google Scholar]
- Krivovichev, S.V. Structural Crystallography of Inorganic Oxysalts; OUP Oxford: Oxford, UK, 2009; Volume 22. [Google Scholar]
- Blatov, V.A.; Delgado-Friedrichs, O.; O’Keeffe, M.; Proserpio, D.M. Three-periodic nets and tilings: Natural tilings for nets. Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 63, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Chen, J.; Natarajan, S.; Thomas, J.M.; Jones, R.H.; Hursthouse, M.B. A Novel Open-Framework Cobalt Phosphate Containing a Tetrahedrally Coordinated Cobalt (ii) Center: CoPO4 · 0.5 C2H10N2. Angew. Chem. Int. Ed. Engl. 1994, 33, 639–640. [Google Scholar] [CrossRef]
- Ferraris, G.; Belluso, E.; Gula, A.; Soboleva, S.V.; Khomyakov, A.P. The crystal structure of seidite-(Ce), Na4(Ce, Sr)2{Ti(OH)2(Si8O18)}(O, OH, F)4·5H2O, a modular microporous titanosilicate of the rhodesite group. Can. Mineral. 2003, 41, 1183–1192. [Google Scholar] [CrossRef]
- Antao, S.M. Al-Si Order and Chemical Composition Model across Scapolite Solid Solutions with Evidence from Rietveld Structure Refinements. Minerals 2024, 14, 812. [Google Scholar] [CrossRef]
- Andersson, L. A New Paramagnetic Centre in Scapolite. In Proceedings of the Magnetic Resonance and Related Phenomena: Proceedings of the XXth Congress AMPERE, Tallinn, Estonia, 21–26 August 1978; Springer: Berlin/Heidelberg, Germany, 1979; p. 307. [Google Scholar]
- Kaneva, E.; Shendrik, R. Radiation defects and intrinsic luminescence of cancrinite. J. Lumin. 2022, 243, 118628. [Google Scholar] [CrossRef]
- Colinet, P.; Gheeraert, A.; Curutchet, A.; Le Bahers, T. On the spectroscopic modeling of localized defects in sodalites by TD-DFT. J. Phys. Chem. C 2020, 124, 8949–8957. [Google Scholar] [CrossRef]
- Vassilikou-Dova, A. An EPR study of scapolite. Cryst. Res. Technol. 1991, 26, 135–138. [Google Scholar] [CrossRef]
- Viola, C.; Laia, C.A.; Outis, M.; Ferreira, L.F.; Alves, L.C.; Teixeira, M.; Folgosa, F.; Lima, J.C.; Ruivo, A.; Avó, J. Long-lived NIR emission in sulfur-doped zeolites due to the presence of [S3]2− clusters. Mater. Today Chem. 2023, 30, 101514. [Google Scholar] [CrossRef]
- Blažeková, M.; Huraiová, M.; Hurai, V.; Slobodník, M.; Siegfried, P. Two types of scapolite in Evate carbonatite deposit (Mozambique): Implications for magmatic versus metamorphic origins. Acta Geol. Slovaca 2019, 11, 63–74. [Google Scholar]
- Qian, C.; Liu, Y.; Li, X.; Zhu, Y.; Song, H.; Wu, X. Pressure-induced phase transition of CO32−-bearing scapolite by in situ X-ray diffraction and vibrational spectroscopy. Phys. Chem. Miner. 2023, 50, 4. [Google Scholar] [CrossRef]
- Shendrik, R.; Plechov, P.; Smirnov, S. ArDI—The system of mineral vibrational spectroscopy data processing and analysis. New Data Min. 2024, 58, 26–35. [Google Scholar] [CrossRef]
Sample Number | 3614 | 2386 | 250 | 1366 | 11/446 1 | S-22 2 |
---|---|---|---|---|---|---|
Component | Content (wt.%) | |||||
Na2O | 11.26 | 7.99 | 7.96 | 3.78 | 2.31 | 8.67 |
K2O | 0.90 | 1.53 | 1.33 | 0.75 | 0.12 | 0.95 |
CaO | 2.14 | 6.67 | 7.31 | 15.70 | 19.38 | 7.82 |
Al2O3 | 19.04 | 22.27 | 21.99 | 27.13 | 30.30 | 21.75 |
Fe2O3 | 0.48 | 0.55 | 0.53 | 0.65 | bdl | 0.04 |
SiO2 | 61.83 | 56.41 | 55.93 | 47.22 | 43.80 | 54.91 |
SO3 | bdl | 0.63 | 0.66 | 1.88 | 1.38 | 0.14 |
F | bdl | bdl | 0.23 | 0.51 | bdl | bdl |
Cl | 4.06 | 3.10 | 3.03 | 0.54 | 0.30 | 3.05 |
-O≡Cl,F | −0.92 | −0.71 | −0.78 | −0.34 | −0.08 | −0.69 |
Total | 98.79 | 98.44 | 98.19 | 97.82 | 97.51 | 96.64 |
Formula coefficients calculated on Si + Al + Fe = 12 apfu | ||||||
Na | 3.10 | 2.24 | 2.25 | 1.10 | 0.68 | 2.50 |
K | 0.16 | 0.28 | 0.25 | 0.15 | 0.02 | 0.18 |
Ca | 0.33 | 1.05 | 1.14 | 2.53 | 3.13 | 1.25 |
Al | 3.18 | 3.79 | 3.78 | 4.82 | 5.40 | 3.82 |
Fe | 0.05 | 0.06 | 0.06 | 0.07 | - | - |
Si | 8.77 | 8.15 | 8.16 | 7.11 | 6.60 | 8.17 |
S | - | 0.07 | 0.07 | 0.21 | 0.16 | 0.02 |
F | - | - | 0.11 | 0.24 | - | - |
Cl | 0.98 | 0.76 | 0.75 | 0.14 | 0.08 | 0.77 |
Na4 | 123.2 | 118.7 | 118.1 | 1.31 | 1.30 | 1.30 |
Na3Ca | 118.4 | 120.2 | 121.4 | 1.28 | 1.33 | 1.30 |
Na2Ca2 | 127.2 | 117.5 | 115.2 | 1.33 | 1.29 | 1.28 |
NaCa3 | 126.2 | 117.0 | 116.7 | 1.32 | 1.28 | 1.30 |
Ca4 | 124.9 | 117.7 | 117.4 | 1.31 | 1.30 | 1.29 |
Na | Na3Ca | Na2Ca2 | ||||||
I | I | |||||||
(cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) | |||
671 | 0.000 | 0.3 | 664 | 0.000 | 0.5 | 676 | 0.000 | 0.4 |
736 | 0.000 | 0.3 | 753 | 0.001 | 0.5 | 769 | 0.004 | 1.4 |
874 | 0.004 | 0.0 | 870 | 0.004 | 0.1 | 868 | 0.004 | 0.1 |
1064 | 0.001 | 12.8 | 1081 | 0.006 | 12.5 | 1055 | 0.004 | 9.7 |
1402 | 0.140 | 4.0 | 1402 | 0.171 | 3.5 | 1371 | 0.113 | 1.9 |
1464 | 0.149 | 2.7 | 1496 | 0.140 | 3.1 | 1538 | 0.148 | 1.0 |
NaCa3 | Ca4 | |||||||
(cm−1) | (a.u.) | (cm−1) | (a.u.) | |||||
671 | 0.001 | 0.3 | 669 | 0.001 | 0.4 | |||
779 | 0.002 | 1.9 | 782 | 0.002 | 2.3 | |||
867 | 0.005 | 0.0 | 866 | 0.005 | 0.0 | |||
1086 | 0.002 | 11.7 | 1098 | 0.000 | 12.8 | |||
1409 | 0.137 | 2.1 | 1436 | 0.147 | 0.6 | |||
1526 | 0.172 | 1.9 | 1524 | 0.172 | 3.6 |
Na4 | 117.9 | 120.6 | 121.5 | 1.27 | 1.27 | 1.28 |
Na3Ca | 117.0 | 120.3 | 122.6 | 1.29 | 1.28 | 1.28 |
Na2Ca2 | 122.1 | 119.3 | 118.6 | 1.30 | 1.29 | 1.28 |
NaCa3 | 121.1 | 119.7 | 119.3 | 1.29 | 1.28 | 1.28 |
Ca4 | 123.2 | 118.6 | 118.2 | 1.30 | 1.29 | 1.29 |
E (eV) | |||||
---|---|---|---|---|---|
Na4 | 1.92; 2.01 | 0.02 | 2.0057 | 2.0149 | 2.0159 |
Na3Ca | 2.03; 2.08 | 0.02 | 2.0056 | 2.0120 | 2.0185 |
Na2Ca2 | 1.73; 2.18 | 0.02 | 2.0069 | 2.0122 | 2.0218 |
NaCa3 | 1.75; 2.12 | 0.02 | 2.0070 | 2.0136 | 2.0227 |
Ca4 | 1.71; 1.97 | 0.02 | 2.0072 | 2.0161 | 2.0213 |
Na4 | Na3Ca | Na2Ca2 | NaCa3 | Ca4 | |||||
---|---|---|---|---|---|---|---|---|---|
(cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) |
331 | 27 | 381 | 43 | 342 | 36 | 380 | 32 | 365 | 28 |
461 | 8 | 495 | 15 | 534 | 54 | 456 | 10 | 482 | 29 |
1083 | 71 | 1079 | 69 | 1043 | 46 | 1062 | 81 | 1047 | 96 |
1216 | 246 | 1163 | 166 | 1152 | 230 | 1135 | 235 | 1121 | 271 |
1242 | 277 | 1288 | 356 | 1247 | 292 | 1256 | 313 | 1168 | 408 |
E (eV) | g-Factor | ||
---|---|---|---|
Na4 | 2.28; 2.57; 2.70 | 0.29 | 2.0021 |
Na3Ca | 2.54; 2.77 | 0.34 | 2.0013 |
Na2Ca2 | 2.64; 2.85 | 0.29 | 2.0006 |
NaCa3 | 2.52; 2.86 | 0.30 | 2.0005 |
Ca4 | 2.68; 2.76 | 0.35 | 2.0002 |
Na4 | 110.2 | 34.9 | 34.9 | 3.22 | 1.96 | 1.96 |
Na3Ca | 109.2 | 35.4 | 35.4 | 3.20 | 1.96 | 1.96 |
Na2Ca2 | 106.7 | 36.7 | 36.5 | 3.16 | 1.97 | 1.96 |
NaCa3 | 108.4 | 35.9 | 35.7 | 3.18 | 1.97 | 1.96 |
Ca4 | 109.0 | 35.6 | 35.3 | 3.19 | 1.97 | 1.95 |
E (eV) | |||||
---|---|---|---|---|---|
Na4 | 2.34 | 0.05 | 2.0020 | 2.0378 | 2.0590 |
Na3Ca | 2.41 | 0.05 | 2.0017 | 2.0359 | 2.0550 |
Na2Ca2 | 2.42 | 0.05 | 2.0013 | 2.0398 | 2.0507 |
NaCa3 | 2.37 | 0.05 | 2.0015 | 2.0408 | 2.0497 |
Ca4 | 2.45 | 0.05 | 2.0015 | 2.0389 | 2.0531 |
Na4 | Na3Ca | Na2Ca2 | NaCa3 | Ca4 | |||||
---|---|---|---|---|---|---|---|---|---|
(cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | I (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) |
261 | 5.7 | 270 | 6.5 | 269 | 6.6 | 270 | 7.9 | 267 | 8.8 |
585 | 67.3 | 594 | 55.9 | 593 | 47.9 | 597 | 53.9 | 595 | 38.6 |
634 | 6.6 | 632 | 6.7 | 622 | 8.1 | 632 | 5.9 | 639 | 18.2 |
E (eV) | |||
---|---|---|---|
Na4 | 3.24 | 0.05 | 2.205 |
Na3Ca | 3.37 | 0.06 | 2.190 |
Na2Ca2 | 3.43 | 0.05 | 2.130 |
NaCa3 | 3.42 | 0.05 | 2.095 |
Ca4 | 3.45 | 0.05 | 2.086 |
Na4 | Na3Ca | Na2Ca2 | NaCa3 | Ca4 | |||||
---|---|---|---|---|---|---|---|---|---|
(cm−1) | (a.u.) | (cm−1) | (a.u.) | (cm−1) | I (a.u.) | (cm−1) | (a.u.) | (cm−1) | (a.u.) |
117 | 2.3 | 145 | 2.9 | 154 | 4.1 | 168 | 5.3 | 192 | 5.3 |
623 | 33.1 | 619 | 35.8 | 622 | 35.2 | 618 | 34.0 | 630 | 33.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shendrik, R.; Chukanov, N.V.; Bogdanov, A.; Myasnikova, A.; Pankrushina, E.; Zolotarev, A.A.; Babkina, A.; Popova, E.; Vigasina, M.F.; Aksenov, S.M.; et al. Nature of Scapolite Color: Ab Initio Calculations, Spectroscopy, and Structural Study. Minerals 2024, 14, 937. https://doi.org/10.3390/min14090937
Shendrik R, Chukanov NV, Bogdanov A, Myasnikova A, Pankrushina E, Zolotarev AA, Babkina A, Popova E, Vigasina MF, Aksenov SM, et al. Nature of Scapolite Color: Ab Initio Calculations, Spectroscopy, and Structural Study. Minerals. 2024; 14(9):937. https://doi.org/10.3390/min14090937
Chicago/Turabian StyleShendrik, Roman, Nikita V. Chukanov, Alexander Bogdanov, Alexandra Myasnikova, Elizaveta Pankrushina, Anatoly A. Zolotarev, Anastasiia Babkina, Ekaterina Popova, Marina F. Vigasina, Sergey M. Aksenov, and et al. 2024. "Nature of Scapolite Color: Ab Initio Calculations, Spectroscopy, and Structural Study" Minerals 14, no. 9: 937. https://doi.org/10.3390/min14090937
APA StyleShendrik, R., Chukanov, N. V., Bogdanov, A., Myasnikova, A., Pankrushina, E., Zolotarev, A. A., Babkina, A., Popova, E., Vigasina, M. F., Aksenov, S. M., Ilyin, G., & Pekov, I. V. (2024). Nature of Scapolite Color: Ab Initio Calculations, Spectroscopy, and Structural Study. Minerals, 14(9), 937. https://doi.org/10.3390/min14090937