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Abstract: This study aims to improve the efficiency of mineral exploration by introducing a
novel application of Deep Convolutional Generative Adversarial Networks (DCGANs) to
augment geological evidence layers. By training a DCGAN model with existing geological,
geochemical, and remote sensing data, we have synthesized new, plausible layers of
evidence that reveal unrecognized patterns and correlations. This approach deepens
the understanding of the controlling factors in the formation of mineral deposits. The
implications of this research are significant and could improve the efficiency and success
rate of mineral exploration projects by providing more reliable and comprehensive data for
decision-making. The predictive map created using the proposed feature augmentation
technique covered all known deposits in only 18% of the study area.

Keywords: deep convolutional generative adversarial network; evidence layer; feature
augmentation; decision-making

1. Introduction
In recent years, mineral prospectivity mapping (MPM) has employed various explo-

ration methods to find promising areas for certain types of mineralization [1–7]. Among
these, machine learning (ML) and deep learning (DL) algorithms have become very impor-
tant [8–14]. Researchers have continuously explored and proposed innovative approaches
to find mineralization and reduce uncertainties [15–19]. Efforts have also focused on the op-
timization of hyperparameters to develop efficient predictive models and combine multiple
algorithms to improve prediction accuracy [20–24].

Despite the progress, one of the major challenges in DL algorithms remains the scarcity
of feature datasets. The efficiency of a neural network is directly proportional to the amount
and variety of its input data. A well-trained network enriched with extensive data is better
able to make realistic and reliable predictions, ensuring greater confidence in its predictive
capabilities [25–27]. Therefore, it is essential to develop strategies to expand the pool of
input datasets through reliable methods. Feature augmentation techniques can generate
new and useful features from existing data, improving the model’s ability to detect hidden
patterns without introducing bias.

This study proposes to gain new insights from existing mineral exploration data
by creating evidence layers from different geoscience domains, including lithological,
geochemical, structural, and remote sensing data. These layers capture the underlying
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geologic patterns and characteristics, even though they require a significant amount of
preparation. Our novel approach augments the features by generating synthetic features.
These synthetic features, referred to as “evidence layers”, capture additional information
beyond the primary features. By using these layers, we aim to improve the model’s ability
to learn from different examples. These layers provide additional clues such as geological
features, geochemical anomalies, and structural patterns and improve the model’s ability
to distinguish between prospective and non-prospective areas.

In this study, aiming at generating more informative evidence layers and extracting
additional information from complex geologic patterns, we have chosen the Deep Convolu-
tional Generative Adversarial Network (DCGAN) architecture. This architecture utilizes
Convolutional Neural Network (CNN), which are effective for image processing and capa-
ble of extracting complex and important features from images. These convolutional layers
in DCGAN help produce high-quality images and enable the generation of realistic images
from random noise. DCGANs have been successfully applied in various domains [28–33].
This paper focuses on the implementation of feature augmentation using DCGAN and the
subsequent prediction of high-potential Mississippi Valley-type (MVT) Pb-Zn mineraliza-
tion areas in western Semnan, Iran. A Random Forest (RF) model is employed to illustrate
the proposed method and demonstrate its performance in MPM.

2. Geological Framework of the Study Area and Conceptual Modeling
The study area is located in western Semnan, Iran, and includes a 1:100,000 scale

geologic map of the Semnan region. This area includes parts of both the Alborz and Central
Iran zones, which are separated by the Semnan Fault within the district. The northern part
of the study area belongs to the Alborz zone, which consists of shale, green sandstone and
tuff (Kahar Formation), volcanic rocks, shale, and carbonaceous sandstones (Shemshak For-
mation). The southern part, on the other hand, belongs to the Central Iran Zone and consists
of continental or shallow marine sediments, shale and sandstone limestones, sandstone
and swamp sediments, marls, and conglomerates (Neogene units) [34–36]. The Semnan
Quadrangle hosts a variety of minerals, some of which are mined locally on a modest
scale. Fluorine deposits occur in several places in the Alborz Mountains, especially in the
uppermost limestone layers of the Elika Formation. In the Upper Cretaceous limestone,
galena veins can be found in the mountains of Oran and Sefid Kouh, and barite veins
can be found in the southern limestones of Shahmirzad. In addition, several occurrences
of Pb-Zn mineralization, especially those classified as MVT, have been documented [37].
Figure 1b shows the geographical distribution of 16 recognized MVT Pb-Zn deposits within
the study area.

MVT Pb–Zn deposits are a diverse group of epigenetic deposits that form from con-
centrated basinal fluids at temperatures between 75 ◦C and 200 ◦C and are typically found
in carbonate platforms without a direct volcanic context [37–40]. These deposits are mainly
found in passive tectonic margins within carbonate sequences. They are found along basin
margins, in overthrust belts of foreland basins, and occasionally within carbonate platforms
in extensional zones. These deposits are thought to have formed from ore-forming fluids
that migrated through foreland basins and precipitated metal sulfides from nearby orogenic
belts due to gravitational forces. These deposits are typically hosted in dolomite and lime-
stone formations and exhibit textures such as displacement, cavity filling, and unconformity.
The most important minerals include sphalerite, galena, pyrite, marcasite, dolomite, and
calcite. Dolomitization is a major alteration in the MVT Pb-Zn mineralization [37,40–45].
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3. Feature Analysis
In the context of MPM, several geospatial variables control the corresponding ore

mineralization. These variables may be tectonic forces, fluid composition, fracture systems,
and/or compositional locations. Concerning MVT Pb-Zn mineralization, we have used
geochemical, structural, lithological, and remote sensing information to create appropriate
and informative features that capture the underlying patterns and geological characteristics.

The importance of the investigation of geochemical data for the successful identifica-
tion of promising areas and, thus, for the modeling of mineralization has been confirmed in
several studies [46–48]. Therefore, the geochemical maps of Pb, Zn, and Ba are considered
as geochemical signatures of indicator elements after the necessary preprocessing of the
geochemical data, including the substitution of sensor values and overcoming the closure
effect of the data.
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Faults and fractures play a crucial role in the formation of MVT deposits as they
provide the pathway for basinal brines to move through the Earth’s crust and interact
with the host rocks. Movement along these structures can create cavities and open spaces
where mineralization takes place. Ore-bearing fluids are channeled through fault corridors
and then trapped and circulated further through permeable corridors in suitable host
rocks. These processes enhanced the conduction of ore-forming fluids and subsequent
supergene and oxidative processes [49–52]. Considering the importance of faults for the
transfer of extracted metals through basinal brines to suitable host rocks and subsequent
MVTPb-Zn deposition, we used distance distribution analysis [49,53–55] to identify the
major faults responsible for the movement of fluids. For this purpose, the different faults
in the study area were categorized into four main directions: N-S, E-W, NW-SE, and NE-
SW (Figure 2a). We also created a rose diagram showing the faults in western Semnan
(Figure 2b). Distance maps were created for all four orientations (Figure 3). Spatial
correlations between the MVTPb-Zn deposits and these structural features were then
evaluated using the distance distribution analysis method. Accordingly, NE-SW striking
faults showed significant positive spatial associations with the sought mineralization type
in western Semnan. In addition, NW-SE and also E-W striking faults showed a high
correlation with the mineralization encountered. Therefore, the intersections of faults and
the NE-SW striking faults were identified as the main structural controlling factors in the
deposition of MVT Pb-Zn in the study area. To demonstrate their role in mineralization,
we created a fault density map aligned with the distance map of NE-SW trending faults as
structural information layers.
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The presence of a suitable host rock is a fundamental prerequisite for the enriched
fluid to concentrate and for mineralization to take place. In the western Semnan region,
MVTPb-Zn mineralization occurs in Permian–Cretaceous dolomite and limestone [37,40,41].
In addition, various studies emphasize that dolomite and limestone provide favorable
conditions for focusing fluids due to their high porosity and permeability. They are suitable
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chemical and physical traps [37,41,49,56–60]. Therefore, we separated the lithological units
of the Permian–Cretaceous dolomite and limestone from the digitized geological map of
Semnan at a scale of 1:100,000. Then, a map with continuous distances was created and
considered as one of the information layers.

The application of remote-sensing-based processing techniques to detect hydrothermal
alteration in mineral exploration is undeniable [61–70]. Enriched fluids containing ions
such as Mg2+, when trapped in suitable host rocks, lead to an exchange of dolomite with the
original calcite in the rock, changing its composition and causing dolomitization alteration
to occur. Dolomitization often occurs on a large scale and results in distinct dolomite
mineral grains that are larger than the original calcite crystals in the limestone. Due to the
importance of detecting dolomite alterations in identifying MVT Pb-Zn mineralization, a
map of dolomite zones was created by applying image processing techniques such as a
band ratio, principal component analysis, spectral angle mapper, and band math methods
to the ASTER dataset. Subsequently, the results were combined using the fuzzy gamma
algorithm. All features were rasterized with a size of 150 × 150 cells. In addition, the
gridded features were transformed into the range [0, 1] using a logistic function [71–78].

4. Methods
4.1. General Workflow

In this study, we have prepared seven layers of information derived from various
geological sciences, including lithology, remote sensing, structural analysis, and geochem-
istry. These original evidence layers (OELs) collectively represent the intricate geological
features of the district. Our goal is to augment the number of these features and thereby
improve our understanding of the underlying patterns and geological information. By
revealing more of the complexity of the geological patterns, we get closer to identifying
truly prospective areas. Therefore, we aim to generate a synthetic layer for each layer of
evidence. Consequently, we will have seven Generated Evidence Layers (GELs), which will
increase the diversity and richness of our dataset. Figure 4 shows a schematic workflow of
the method used in this study.
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4.2. Deep Convolutional Generative Adversarial Network (DCGAN)

DCGAN is a generative model that combines Deep Convolutional Neural Networks
(CNNs) with adversarial training. Generative Adversarial Networks (GANs) [28,79,80]
consist of two neural networks: Generator and Discriminator. The first generates new
data (e.g., images), and the second discriminates the generated data from real data. The
generator and the discriminator are trained simultaneously in an adversarial manner. The
generator gets better at creating realistic data, while the discriminator gets better at dis-
tinguishing real from fake data. Training continues until the discriminator can no longer
distinguish between real and generated data. GANs gradually improve their performance
through this dynamic interaction and generate synthetic data that closely resemble real-
world examples [80,81]. DCGANs specifically use CNNs in both the generator and the
discriminator. They are commonly used for image generation, style transfer, and unsu-
pervised representation learning. The incorporation of deep CNNs into GANs makes
DCGANs more robust and effective for image generation as they can extract complex,
important features from images [33].

4.3. Random Forest (RF)

The RF algorithm is a robust and versatile ML technique used for both classification
and regression tasks [82,83]. It works by creating a large number of decision trees during
the training phase and outputting the class that corresponds to the mode of the classes
(classification) or the mean prediction (regression) of each tree. The algorithm begins by
creating multiple subsets of the original dataset through a process called bootstrapping.
Each subset is created by randomly selecting data points with substitutions, ensuring that
some data points can appear multiple times in a subset while others cannot appear at all.
A decision tree is created for each subset. During the construction of each tree, a random
subset of features is selected at each node to determine the best split. This randomness
helps to create diverse trees that are less likely to overfill the training data. Once all trees are
created, the algorithm summarizes their predictions. For classification tasks, each tree votes
for a class, and the class with the most votes is selected as the final prediction. For regression
tasks, the predictions of all trees are averaged to obtain the final output. By averaging
multiple trees, the RF algorithm reduces the risk of overfitting that often occurs with single
decision trees. RF can effectively handle missing values by using the median of the observed
values in the training data. The algorithm provides estimates of feature importance that
can be useful for understanding the underlying data and for feature selection. RF is used in
various domains such as finance, healthcare, marketing, and MPM due to its high accuracy
and ability to handle large datasets with higher dimensionality [40,84–86]. It is particularly
effective in scenarios where the relationship between the features and the target variable
is complex and non-linear. The RF algorithm is a powerful tool for predictive modeling
that offers a balance between bias and variance and provides reliable predictions. Its ability
to handle both classification and regression tasks, as well as its robustness to overfitting,
make it a popular choice among data scientists and researchers.

5. Analysis and Results
5.1. Feature Augmentation by DCGAN

To generate new features by DCGAN, we need to preprocess our existing features.
For this purpose, we have reshaped them to the same dimension. All features had the
size (1480 × 1800). This size is very large for image processing and requires a lot of time
and powerful processing equipment; therefore, we need to reshape all layers into smaller
dimensions to avoid complex and time-consuming processing. Therefore, we converted
all existing features into dimensions (64 × 64) and then normalized the pixel values
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to a common range (0, 1) to facilitate training. After proper preparation, we designed
the architecture for both the generator and discriminator networks. When designing
the DCGAN generator, we used convolutional layers to convert the noise into realistic-
looking data and leaky ReLU activation functions, which are commonly used to prevent the
gradients from disappearing during training. For the design of the discriminator DCGAN,
we also used convolutional layers to process the input data and, again, the leaky ReLU
activation function. In the training process, the generator aims to fool the discriminator
by generating realistic data; on the other hand, the discriminator learns to distinguish real
from synthetic data. We used a binary cross-entropy loss function to drive the training
process. Experimenting with hyperparameters such as the learning rate, batch size, and
network architecture, as well as monitoring the training progress using metrics such as the
loss and visual inspection of the generated samples, resulting in an ideal model training.
Effective model training yields generated samples that serve as synthetic evidence layers
for feature augmentation.

5.2. Augmented Dataset

After successfully implementing the DCGAN model, we created seven new features.
For the evaluation of the GELs, we visually compared them with the OELs and validated
their usefulness in our mineral exploration research. These generated features show a
satisfactory fit to their originals. Additionally, to assess the quality of the data generated
by the DCGAN model, Probability Density Function (PDF) plots for both the original and
generated data were created and compared [87]. The results demonstrate a significant overlap
between the original and generated data, indicating that the DCGAN model has successfully
captured and replicated the distribution of the original data (Figure 5a). Figure 5b,c shows the
original features and the features generated with the DCGAN algorithm.

5.3. Data Augmentation Practical Implication
Mineral Prospectivity Mapping (MPM)

To create an MVTPb-Zn mineralization prediction map via the proposed strategy, we
combined OELs and GELs to enhance the identified geological features. The combined
features were used for model training and mineralization prediction. The model was trained
using a dataset with 14 features and two labels: label 1 for the presence of mineralization
and label 0 for samples without mineralization. To prepare the labels of this dataset,
we placed a 1500 m buffer around the location of each of the 16 known deposits and
labeled them with one. We also randomly selected 16 points far from the known deposits,
placed a 1500 m buffer around them, and labeled them 0. Following extracting geospatial
features of mineralization and non-mineralization points, this labeling workflow resulted in
3045 positive samples (labeled 1) and 3181 negative samples (labeled 0). We then collected
3045 samples from each category to avoid imbalance issues between positive and negative
samples. A total of 80% of this dataset was used for training and 20% for testing.

To further demonstrate the superiority of the proposed strategy, we also used the RF
model to predict mineralization using only the real features. For this purpose, the model
was trained with seven features and two labels, following a similar labeling procedure
previously described.
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To evaluate the prediction capability of the models, we utilized the test data and
assessed the R-squared (R2) score [88] and the area under the precision–recall curve
(AUPRC) [89]. The results demonstrated that the proposed model, which leveraged
DCGAN-based feature augmentation, achieved an R2 score of 0.92 and an AUPRC of
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0.99. In contrast, the model trained solely on the existing features obtained an R2 score
of 0.87 and an AUPRC of 0.98. These results underscore the robustness of the RF model
enhanced by the feature augmentation technique. The appropriate RF tuning hyperparam-
eters of the models are listed in Table 1. By training appropriately and using the developed
model, we created a prediction map for MVT Pb-Zn mineralization in western Semnan, as
shown in Figure 6a. Figure 6b shows the prediction map created based on the real features
only. In addition, a graphical explanation of the methodology applied in this study has
been demonstrated in Figure 7.

Table 1. Characteristics of the model used in this study.

Characteristic Value Explanation

Model Random Forest
A machine learning model is used for regression/classification tasks, which builds

multiple decision trees and merges them to get a more accurate
and stable prediction.

Number of Estimators 300 The number of trees in the forest. More trees can improve performance but also
increase computation time.

Random State 42 A seed used by the random number generator to ensure reproducibility
of the results.
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In mineral exploration, the creation of predictive maps to distinguish potential areas
from others requires classification to identify promising zones. There are several methods
for classifying predictive maps. In this study, we used the Natural Break (NB) tool in Ar-
cMap 10.8.1 for both prospectivity maps to determine the weighted classes, the proportion
of the study area, and the proportion of known deposits in each class. Tables 2 and 3
show the distribution of probability classes and the proportion of known mineral occur-
rences in the prospectivity maps created with RF based on real features and DCGAN-based
enhanced features.

Table 2. Distribution of probability classes and proportion of known mineral deposits through
prospectivity map obtained by RF based on real features.

Classes Based on the
Natural Break Tool Number of Cells Proportion of the

Study Area (%)
Known Deposit

Occupied
Proportion of Known

Deposit (%)

0–0.09 52,665 58 0 0
0.09–0.30 12,387 14 0 0
0.30–0.57 5076 6 2 12.5
0.57–0.84 5124 7 5 31.25

0.84–1 8187 9 9 56.25

Table 3. Distribution of probability classes and proportion of known mineral deposits through
prospectivity map obtained by RF based on DCGAN-based feature augmentation approach.

Classes Based
on the Natural

Break Tool
Number of Cells

Proportion of
the Study Area

(%)

Known Deposit
Occupied

Proportion of
Known Deposit

(%)

0–0.05 58,509 64 0 0
0.05–0.20 15,338 17 0 0
0.20–0.50 3102 3 1 6.25
0.50–0.82 6660 7 5 31.25

0.82–1 7695 8 10 62.5

6. Discussion
Although powerful ML and DL methods are widely used in various sciences, including

mineral exploration [10–14,40,86,90,91], they are still in the early stages of development.
This indicates potential for growth, leading to more realistic and authentic results, especially
in the forecasting literature. Many studies have successfully used DL algorithms to identify
areas with high mineralization potential. However, these artificial intelligence methods can
be further improved with innovative ideas.

This study focused on enhancing mineralization prediction through the introduction
of a novel data augmentation method utilizing DCGAN-based feature augmentation. By
generating new evidence layers as informative features aligned with underlying geological
patterns, this approach significantly improved the predictive capability of the model. The
augmented features are consistent with real features and provide efficient information from
complex geological patterns, ultimately increasing the reliability of predictions and facilitat-
ing confident mapping of MVT Pb-Zn mineralization. Additionally, the evaluation metrics
revealed that the proposed model, enhanced by DCGAN-based feature augmentation,
achieved an R2 score of 0.92 and an AUPRC of 0.99. In contrast, the model trained solely
on existing features obtained an R2 score of 0.87 and an AUPRC of 0.98. These findings
underscore the robustness of the proposed model and highlight how the innovative feature
augmentation method contributed to improve predictive capabilities. The RF model trained
with augmented features exhibited higher accuracy in identifying mineralization areas
compared to the model trained solely on real features.
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The final prospectivity map generated with the proposed method demonstrated
broader coverage of known MVT Pb-Zn mineralization deposits, indicating its effectiveness.
Tables 2 and 3 provide a clear overview of the distribution of probability classes based
on the NB classification tool, matched to the proportion of the study area and known
mineral occurrences occupied by each class. These tables illustrate how the study area
is divided into different probability classes and how these classes relate to the known
mineral occurrences. This is crucial for understanding the spatial distribution of mineral
occurrences. Indicating the proportion of the study area and the proportion of known
deposits helps to illustrate the effectiveness of each probability class in identifying mineral
occurrences. The breakdown into specific classes allows a detailed analysis of how different
probability ranges contribute to the identification of mineral occurrences. Table 3 shows
that the prediction map created using the DCGAN-based data augmentation technique
covered all known deposits in only 18% of the study area, while the predictive map based
on real features occupied 22% of the study area and covered all known deposits.

The findings of this study advocate for the use of innovative feature augmentation
techniques, such as DCGAN-based methods, to advance the accuracy and efficiency of
mineral exploration models. By successfully integrating these methodologies, we can
achieve more effective identification of potential mineralization zones, paving the way for
future research and exploration efforts.

7. Conclusions
This research focused on advancing the geological understanding of Mississippi Valley-

type (MVT) Pb-Zn mineralization through the creation of new evidence layers as informative
features. By aligning these features with actual geological data, we were able to extract
valuable insights from complex geological patterns, significantly enhancing the reliability
of predictions and the confidence in mapping mineralization. The results demonstrated
that the mineralization prediction map generated using the proposed Deep Convolutional
Generative Adversarial Network (DCGAN)-based data augmentation method covered a
greater proportion of known deposits within a smaller area compared to the map based solely
on real features. Specifically, the DCGAN approach achieved complete coverage of known
deposits over just 18% of the study area. This detailed analysis underscores the effectiveness
of the proposed method in accurately identifying regions with high mineralization potential.

In conclusion, the innovative application of data augmentation techniques in this
study has proven to be a significant advancement in enhancing the accuracy and reliability
of mineralization predictions. Future research should continue to explore and refine these
methods, incorporating additional geoscience data to further enhance predictive capabilities
in mineral exploration. By doing so, we can improve our understanding of mineralization
processes and contribute to more successful exploration strategies.
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