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Abstract: Feldspars are essential components in the ceramic industry, and the increasing
demand for high-grade fluxes has recently elevated their status as critical raw materials for
the European Union. This survey aims to evaluate, for the first time, Italy’s mining potential
for the production of ceramic fluxes through a methodological approach that considers
lithology, technological value, degree of alteration and potential for mining exploitation.
The most promising resources are identified in the Alps, the Apennines, Sardinia and the
Calabro–Peloritan Arc, based on the chemical composition of rocks without any beneficia-
tion. Key parameters include the equivalent feldspar content and the sum of Fe2O3 + TiO2.
Factors that may influence the feasibility of exploitation are critically discussed for grani-
toids and syenites, acidic volcanics, aplites and pegmatites, albitites, felsic metamorphics,
silica-saturated and silica-undersaturated volcanics, arkosic sandstones and rocks that
have undergone epithermal alteration. All resources are compared with deposits currently
under extraction and assessed against benchmarks or well-recognized raw materials used
as market proxies. This review lays the groundwork for operational mining exploration
by clearly defining Italy’s potential for feldspathic fluxes. The exploratory assessment
approach to feldspathic resources can also be applied in other countries.

Keywords: ceramics; critical raw materials; feldspar; feldspathic rocks; fluxes; mining
potential

1. Introduction
The ceramic industry manufactures a diverse array of products (e.g., floor tiles, sani-

taryware, tableware and related glazes) which rely on feldspathic fluxes as fundamental
ingredients [1–4]. These fluxes are crucial for providing the appropriate amount of liquid
phase during firing, which is necessary for viscous flow sintering [5–7]. It is estimated that
the production of these vitrified ceramics consumes between 300 and 400 million tons of
raw materials annually, with a significant portion consisting of feldspathic fluxes [8].

The global production of feldspathic materials is estimated to be approximately
39 million tons per year [4]. However, this figure is likely underestimated, as the de-
mand from the ceramic industry is undoubtedly much higher [8]. This demand is covered
by various geological sources of feldspathic materials and their substitutes, whose com-
position and properties vary based on the characteristics of the different deposits being
exploited [2,9,10]. They include magmatic rocks (granitoids and syenites) and relative dif-
ferentiates (pegmatite and aplite); volcanic and subvolcanic rocks (e.g., rhyolite, phonolite,
porphyry dykes); sedimentary rocks (arkosic sandstone) and metamorphic/metasomatic
rocks (albitite, orthogneiss, metapegmatite, phyllite, metavolcanics, quartzite, etc.). There
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are also alternative fluxes, where the low-melting point mineral can be a feldspathoid
(nepheline, leucite), mica (sericite), lithian silicates (lepidolite, spodumene), magnesian
and/or calcian silicates (talc, chlorite, diopside, wollastonite) and zeolites [11].

Feldspars, despite being the most abundant minerals in the Earth’s crust, are infre-
quently found as world-class deposits. Instead, they are typically encountered in medium-
to small-sized deposits of quartz–feldspathic rocks, which generally exhibit a low to inter-
mediate feldspar grade, often below 70% [4,11]. Consequently, there exists a significant
disparity between resources, characterized by abundant and widespread feldspathic rocks,
and reserves, which are limited to a few economically viable deposits, particularly in the
case of sodium feldspar. This situation is largely influenced by the demand of the ceramic
industry, which predominantly seeks high-grade feldspar, primarily sodium feldspar and
secondarily potassium feldspar. While the market does accept intermediate and/or low-
grade flux compositions, these are regarded as second options at considerably lower prices.
It is therefore not surprising that feldspar has recently been included in the list of critical
raw materials by the European Union [12].

In addition, high-grade feldspars are challenging to replace, as they act in ceramic
bodies as enablers (i.e., permitting the use of low-grade quartz–feldspathic materials, which
otherwise could not be the only flux in the batch). In fact, high-grade feldspathic feedstocks
(e.g., albitite, nepheline syenite) can compensate for the poor technological properties of
low-grade fluxes, particularly fusibility. In addition, high-grade feldspars are difficult to
substitute because they function as enablers in ceramic bodies. They allow for the use of
low-grade quartz–feldspathic materials, which could not serve as the sole flux in the batch
otherwise. In fact, high-grade feldspathic feedstocks, such as albitite and nepheline syenite,
can offset the inferior technological properties of low-grade fluxes, particularly in terms of
fusibility [13].

It is essential to identify which resources of feldspathic materials can be economically
exploited under current market conditions and with the mineralurgical technologies avail-
able today [14–16]. A prime case study is Italy, not only because it was historically the
world’s leading producer of feldspar [9] but also because it remains the largest consumer
of ceramic fluxes globally [4,13]. Over several decades, the Italian ceramic industry has uti-
lized an impressive variety of feldspathic sources and has amassed a significant amount of
technological knowledge [17,18]. Unfortunately, much of this information is unpublished,
is restricted-access, or is difficult to obtain, and it is primarily in Italian.

The present work aims to critically review the information regarding the geological
resources of feldspathic raw materials to provide a comprehensive overview of Italy’s
mining potential for the industrial production of ceramic fluxes. This review will guide op-
erational mining exploration toward the most promising areas and resources. Additionally,
the study outlines a method for the exploratory assessment of feldspathic resources that
can be applied in other countries.

2. Methodological Approach
The present survey considered all known types of feldspathic resources in Italy, includ-

ing those already explored as ceramic raw materials and others that have not previously
been regarded as fluxes. A comprehensive database was created, containing information
on the geographical location, geology of the deposits, mining activities, composition (as
found in nature, prior to any beneficiation treatment) and bibliographic sources. A total of
3492 metadata entries were collected (Table S1, Supplementary Material), of which 1702
were sourced from published papers (accessible online through publishers or libraries); 451
were obtained from books or papers that are not readily accessible (due to their unavail-
ability online and their publication in now-discontinued journals); and 1339 were derived
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from unpublished reports or those with restricted access. Currently, 51% of the metadata in
this survey are unavailable through bibliographic search engines and is specifically related
to feldspar exploration. Overall, this data can be considered highly representative of the
compositional characteristics of the surveyed resources, although they are not exhaustive
(i.e., not all possible publications reporting chemical analyses of Italian feldspathic rocks
have been examined).

Chemical composition is the most important concern for ceramic fluxes and was
collected for all metadata. This is because the technological properties of feldspathic raw
materials, especially fusibility, are highly correlated with chemical composition [11,19]. The
mineralogical composition is not always available in bibliographic sources; moreover, the
available mineralogical data are not uniform, as they are obtained on a case-by-case basis
by microscopic investigation (thin section), norm calculation (e.g., CIPW) or qualitative
and quantitative mineral identification by X-ray diffraction (XRD). Alternatively, a good
part of the relevant mineralogical information (e.g., amount of feldspars) can be estimated
based on chemical composition, as has long been the case in the industrial practice of the
ceramic sector (e.g., rational analysis).

The methodological approach to assessing the prospects of feldspathic raw materials
consists of four interpretative schemes, which provide information, at a glance, about the
lithology of resources; technological value of fluxes; degree of alteration; and potential for
mining exploitation (Figure 1).
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Figure 1. Potential of feldspathic raw materials: (a) lithological classification (intrusive/extrusive
rocks) using the Total Alkali-Silica diagram [20,21]; (b) technological classification of fluxes using the
alkali ratio versus equivalent feldspar amount diagram (codes, e.g., NNK, define classes of given
composition and technological value; see Figure S1 for details) [11,22]; (c) degree of alteration by
the Chemical Index of Alteration [23,24]; (d) prospect for exploitation by the equivalent feldspar
amount versus chromophores diagram (highlighting fields of raw resources that may be successfully
beneficiated to obtain different feldspathic fluxes).
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The lithological nomenclature is based on the Total Alkali-Silica (TAS) diagram for
extrusive igneous rocks [20] integrated with the corresponding intrusive lithotypes, as
proposed by Middlemost [21]. The TAS diagram was used also with igneous-derived
metamorphics (and feldspathic sedimentary rocks) just for comparative purposes and not
for classification (Figure 1a).

The commodity nomenclature of ceramic fluxes is based on the alkali ratio versus
equivalent feldspar amount diagram [11]. It distinguishes thirteen classes by a code and
name, which represent commercial types with different technological value and geological
sources (Figure S1). This classification relies on the chemical composition only, since any
mineral providing alkali and/or alkali-earths is intended to serve as flux in vitrified silicate
ceramics (Figure 1b). In other words, it is the contributions of Na2O, K2O, CaO and SiO2

that are important, irrespective of the mineral that supplied these elements. The alkali
ratio (AR) is expressed as the fraction of the equivalent amount of K-feldspar with respect
to the sum of Orthoclase + Albite in equivalent amounts: AR = Oreq/(Oreq + Abeq). The
equivalent feldspar amount (Fdeq) is the percentage of feldspars corresponding to the Na,
K and Ca oxides, expressed as: Fdeq = (Oreq + Abeq + Aneq). The equivalent amounts
of K-feldspar (Oreq), Na-feldspar (Abeq) and Ca-feldspar (Aneq) were calculated from
the weight percent of K2O, Na2O and CaO, respectively, in the chemical composition
of a given flux [11,25]. In detail, Oreq = %K2O × 5.91 (i.e., 100/16.92%wt. K2O in the
nominal Orthoclase, KAlSi3O8); Abeq = %Na2O × 8.46 (i.e., 100/11.82%wt. Na2O in the
nominal Albite, NaAlSi3O8); Aneq = %CaO × 4.96 (i.e., 100/20.16%wt. CaO in the nominal
Anorthite, CaAl2Si2O8).

The degree of weathering was assessed by the Chemical Index of Alteration,
CIA [23,24], calculated as CIA (mol%) = Al2O3/(Al2O3 + CaO + Na2O + K2O) × 100.
The CIA value of unaltered albite, anorthite and orthoclase is 50; for weathering or trans-
formation products, the CIA is 75 (sericite), 75–85 (illite, smectite) or 100 (kaolinite, pyro-
phyllite) [24]. Expected paths of feldspar (or granite) kaolinization and sericitization are
shown in Figure 1c. Alteration is defined with reference to depletion of equivalent feldspar
content: very strong (over 40% of feldspar lost), strong (20%–40%), moderate (5%–20%)
and incipient (up to 5%).

The potential for mining exploitation was assessed based on two parameters for each
raw resource: the equivalent feldspar amount (Fdeq, as previously defined) and the total
concentration of chromophores (Fe2O3 + TiO2). The underlying principle of this assessment
is that any beneficiation process is technically feasible and economically viable as long
as the chromophore fraction remains relatively low compared to the feldspar content. By
analyzing these parameters for deposits currently being exploited (serving as references for
low-grade and high-grade feldspar, as well as nepheline syenite), we were able to establish
critical values for Fe2O3 + TiO2 at any given Fdeq percentage. It is important to note that
compositional fields of raw materials that can be successfully beneficiated were identified
and considered indicative of high mining potential (Figure 1d).

3. Results
The survey conducted in the present study includes 3496 samples: 789 granitoids (65%

granite, then granodiorite, tonalite and diorite); 715 acidic differentiates, in some cases meta-
somatized (70% pegmatite, then aplite and albitite); 702 metamorphics (64% orthogneiss
and paragneiss, then various schists, metavolcanics, quartzite and epithermal alterations);
564 silica-saturated and silica-undersaturated volcanics (phonolite, trachyte, tephrite, etc.);
547 acidic volcanics and porphyries (rhyolite predominant over rhyodacite and dacite); and
179 sands and sandstones (mostly arkose). The term epithermal alteration refers to peculiar
rock types utilized as ceramic flux, which are originated by low-temperature hydrothermal
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alteration, usually at the expense of acidic volcanics or subvolcanic bodies. Such processes
can lead to extensive sericitization and/or chloritization, as in the rocks named pottery
stone, eurite, pinite and agalmatolite [25,26]. These feldspar resources are distributed in
four major areas (the Alps, the Apennines, the Calabro–Peloritan Arc and Sardinia) that
will be considered separately.

3.1. Feldspar Resources in the Italian Alps

Resources of feldspathic materials are present, with different frequency and relevance,
in the Austridic, Pennidic and Helvetic domains of the Italian Alps. These potential deposits
occur in a range of geological units, from Paleozoic to Pliocene, with the majority pertaining
to Variscan terrains [17,27]. A general picture of the extension of these domains in the Alps
and the location of the main geological units considered in the present survey is shown in
Figure 2.
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Figure 2. Map of the main feldspar resources in the Italian Alps and units considered in the
present survey (redrawn from [28]). Helvetic Domain: (a) Argentera–Malinvern massif. Penni-
dic Domain: (b) Ligurian Alps, (c) Dora–Maira massif, (d) Col d’Ambin and Gran Paradiso massifs,
(e) Monte Rosa massif, Ossola (g) and Valchiavenna (h) lower Pennidic nappes. Australpine Domain:
(f) Sesia–Lanzo Zone, (i) Tonale–Ulten-Meran basement, (j) Pustertal–Ahrntal basement. South Alpine
Domain: (k) Ivrea–Verbano Zone, (l) Serie dei Laghi, (m) Lugano volcanic platform, (n) Dervio–
Olgiasca–Morbegno basement, (o) Athesian volcanic platform, (p) Valsugana Variscan granitoids and
basement, (q) Periadriatic Variscan granitoids, (r) Cenozoic granitoids (Adamello, Masino-Bergell,
Rieserferner, Biella, Traversella), (s) Cenozoic volcanics (Euganean–Lessini–Berici-Marosticano),
(t) Triassic volcanics (Pasubio–Dolomites).
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Feldspar sources are hereafter outlined separately for the Paleozoic units of the Western
and Central–Eastern Alps (i.e., west and east of Lake Maggiore, respectively) and the
Mesozoic and Cenozoic units.

3.1.1. Paleozoic Units of Western Alps

Paleozoic units in the Western Alps host several feldspar occurrences, essentially
within Variscan terrains (mostly Carboniferous to Permian). These occurrences pertain to:

• Aplites and pegmatites (87 occurrences) which are present in all geological domains,
but much more frequently in the South Alpine and secondarily in Pennidic units.

• Granitoids (80 samples) are dominant in the South Alpine sector (65 samples), plus
some occurrences in the Helvetian and Pennidic Briançonnais units.

• Rhyolites and porphyries (70 occurrences) are known essentially in the South Alpine
domain.

• Metamorphics (204 samples, gneisses and minor migmatites) are present in all domains.

Aplites and pegmatites in South Alpine units are found essentially in the Ivrea–
Verbano Zone [29–32] with few deposits known in the Serie dei Laghi [33,34]. In the
Pennidic terrains, aplites and pegmatites occur more frequently in the Moncucco–Isorno–
Orselina unit [33–37] with some in the Monte Rosa–Antrona–Camughera units and the
Briançonnais Dora–Maira massif [38,39]. Only one pegmatite occurrence is known in the
Australpine (Sesia–Lanzo Zone) and the Helvetian (Argentera) terrains [33]. The composi-
tion of pegmatites and aplites in the Western Alps is substantially granitic (Figure 3a and
Table 1) with a wide range of alkali ratio, that leads to quartz–feldspathic fluxes, mostly
NKQ and KNQ (Figure 3b). Some deposits exhibit a more accentuated sodic character and
are plotted in the NQ field or are classified, as in the case of albitized terms, as syenites
and NN. The degree of alteration is generally incipient to moderate (Figure 3c), with a
few samples characterized by a strong alteration (plotting in the QKN field). Most aplites
and pegmatites have contents of Fe2O3 and TiO2 low enough to be potentially high-grade
fluxes. The remaining samples have potential as low-grade fluxes, as their chromophore
content is not too high (Figure 3d).

The main occurrences of granitoids are in the South Alpine sector, mostly in the Serie
dei Laghi [33,34,40–50] with some samples from the Ivrea–Verbano Zone, Canavese and
Ligurian Alps [33,51]. Granitoids in the Helvetian domain mainly occur in the Argentera
massif [52–55]. The composition spans from granite to granodiorite in the Serie dei Laghi
and is granitic in the other cases (Figure 3a). Occurrences of episyenite (Serie dei Laghi) and
alkaligranite (Argentera) fall within the syenite field (Figure 3). Overall, granitoids in the
Western Alps are classified as NKQ to KNQ fluxes, when alteration is minor to moderate
(Figure 3b) or as QKN when the degree of weathering is strong (Figure 3c). Most granites
have chromophore and feldspar contents that provide the potential for low-grade fluxes.
In addition, there are leucogranites that exhibit sufficiently low percentages of iron and
titanium for high-grade potential. On the other hand, granodiorites have chromophore
contents too high to be candidates for ceramic fluxes (Figure 3d).
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Unit 
Helvetian 
Argentera 

Pennidic 
MIO * 

Pennidic 
MRAC * 

Pennidic Dora–
Maira 

South Alpine 
IVZ * 

South 
Alpine SdL 

* 

SouthAlpine 
Cima d’Asta 

Australpine 
Tonale 

Australpine 
Sondalo 

Australpine 
Ulten 

Site 
rock 

Pianche di 
Vinadio 1 

Piano dei 
Lavonchi 2 

Mud di 
Mezzo 1 

Martiniana Po 2 
Torrente 

Bagnone 2 
Lentrée 2 Al Lago 1 Scarpa 2 Stavello 2 

Monte Stalla 
Rossa 2 

%wt           
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Figure 3. Potential of feldspathic raw materials in the Paleozoic units of Western Alps: metamorphics
(gneisses) and Variscan granitoids, acidic volcanics and subvolcanics and aplite–pegmatites. Black
dots are resource deposits already exploited for ceramic fluxes. (a) Classification by the TAS diagram;
(b) technological classification of ceramic fluxes; (c) degree of alteration by the Chemical Index of
Alteration; (d) prospect for exploitation. For the interpretation of these schemes, see explanation
given in Section 2 and Figures 1 and S1.

Table 1. Examples of chemical composition of aplites 1 and pegmatites 2 (prior to any beneficiation)
in various geological units of the Alps.

Unit Helvetian
Argentera

Pennidic
MIO *

Pennidic
MRAC *

Pennidic
Dora–
Maira

South Alpine
IVZ *

South
Alpine SdL *

SouthAlpine
Cima

d’Asta

Australpine
Tonale

Australpine
Sondalo

Australpine
Ulten

Site
rock

Pianche di
Vinadio 1

Piano dei
Lavonchi 2

Mud di
Mezzo 1

Martiniana
Po 2

Torrente
Bagnone 2 Lentrée 2 Al Lago 1 Scarpa 2 Stavello 2 Monte Stalla

Rossa 2

%wt ⋆ ⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆ ⋆ ⋆⋆⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆

SiO2 73.21 76.50 77.82 75.30 73.65 74.50 74.08 76.16 75.27 74.02
TiO2 0.06 0.03 0.07 0.03 0.09 0.10 0.07 0.02 0.01 0.01

Al2O3 13.53 14.12 13.93 14.20 15.46 14.80 16.46 14.11 15.08 14.79
Fe2O3

t 1.16 0.51 0.25 0.79 0.70 0.40 0.33 0.25 0.25 0.94
MgO 0.25 0.29 0.25 0.17 0.14 0.20 0.35 0.25 0.25 0.09
CaO 0.50 1.07 5.47 0.18 0.68 0.60 0.90 1.09 1.16 0.56

Na2O 3.99 3.55 2.60 2.16 3.41 5.80 3.86 3.35 4.90 4.62
K2O 4.34 3.79 0.68 5.62 4.90 2.80 2.50 5.51 4.02 3.85
L.o.I. n.d. 0.54 0.30 1.50 0.82 0.80 1.41 0.28 0.25 0.55

Ref. [33] [34] [33] [38] [31,32] [56] [57] [33] [33] [58]

* MIO: Moncucco–Isorno–Orselina Unit; MRAC: Monte Rosa–Antrona–Camughera Units; IVZ: Ivrea–Verbano
Zone; SdL: Serie dei Laghi. Importance of deposit: from prospect (⋆) to extensive mining, overall below 104 t
(⋆⋆), over 106 t (⋆⋆⋆⋆⋆). Fe2O3

t is total iron oxide.
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Acidic volcanics are present in the South Alpine domain, as lava flows, ignimbrites,
coarse volcanic breccia and tuffs of the Serie dei Laghi unit [33,34,59–65]. Furthermore,
in the Ligurian Alps, various porphyries and metarhyolites (locally known as porphy-
roids) occur [33,66–68]. The composition is mainly rhyolitic, with minor rhyodacite–dacite
(Figure 3a). These rocks suffer from significant alteration, often strong to very strong
(Figure 3c), that has brought about low equivalent feldspar contents and a marked potas-
sium character, along with moderate amounts of chromophore oxides (Table 2). For this
reason, volcanic occurrences in the Western Alps pertain to the KNQ and QKN classes,
even QQF in cases of very strong alteration (Figure 3b), and present good potential for
low-grade ceramic fluxes (Figure 3d).

Metamorphic rocks as possible sources of feldspathic fluxes have been sought in all
geological domains of the Western Alps. Occurrences of orthogneiss, minor paragneiss and
other felsic metamorphics (leptynite) have been evaluated in the South Alpine sector, pri-
marily in the Serie dei Laghi and occasionally in the Ivrea–Verbano Zone [33,34,69]. In addi-
tion, orthogneisses have drawn attention in Lower Pennidic units, such as the Monte Leone,
Antigorio, Verampio and Lebendun nappes [33,34,70], as well as in Middle–Upper Pennidic
units: Moncucco–Isorno–Orselina [33,71] and Monte Rosa–Antrona–Camughera [33,34].
Pennidic Briançonnais terrains include orthogneisses from the Mallare–Barbassiria and Cal-
izzano units [51,66,72,73] along with gneisses from the Dora–Maira, Gran Paradiso, Gran
San Bernardo and Ambin massifs [33,74]. Various Australpine units have been considered:
Fobello–Rimella orthogneisses and porphyroids [33,34]; orthogneisses of the Sesia–Lanzo
Zone; and further units, such as Arolla and Mount Mary [33,34]. Regarding the Helvetian
domain, occurrences of orthogneisses and migmatites have been evaluated in the Argentera
massif [33,52–54]. All of the previously mentioned felsic metamorphics seem derived from
granite–granodiorite–tonalite parent rocks (Figure 3a) and are plotted in the NKQ and
KNQ classes or sometimes QNK-QKN (Figure 3b). They exhibit an incipient to strong
alteration (Figure 3c) and potential for low-grade fluxes, in force of moderate amounts
of Fe2O3 and TiO2 (Figure 3d). In contrast, paragneisses and several migmatites are not
eligible as ceramic fluxes since they have too-high percentages of chromophore oxides.

Table 2. Examples of chemical composition of acidic volcanics (prior to any beneficiation) in the
various geological units of the Alps.

Unit
Serie dei

Laghi
Permian

Serie dei
Laghi

Permian

Serie dei
Laghi

Permian

Serie dei
Laghi

Permian

Lugano
Platform
Permian

Athesian
Platform
Permian

Athesian
Platform
Permian

Pasubio
Valleys
Triassic

Euganean
Hills

Oligocene

Site
rock

Boca
rhyolite

Maggiora
porphyry

Lozzolo
porphyry

Melogno
porphyroid

La Rasa
porphyry

Ora Fm
porphyry

Mt
Zaccon

porphyry

Pianegonda
rhyolite

average
(n = 8)

rhyolite
%wt ⋆⋆⋆⋆ ⋆⋆⋆ ⋆⋆⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆⋆

SiO2 75.90 74.69 76.79 76.58 78.05 75.23 68.65 71.78 72.40
TiO2 0.10 0.15 0.10 0.18 0.06 0.21 0.31 0.36 0.28

Al2O3 13.30 15.05 13.18 13.05 12.05 13.67 13.70 16.70 14.52
Fe2O3

t 0.90 1.34 1.52 1.71 1.36 1.80 2.78 0.82 1.46
MnO 0.04 0.02 0.04 0.02 0.01 0.07 n.d. 0.01 0.04
MgO 0.10 0.32 0.32 0.70 0.25 0.47 2.59 0.33 0.19
CaO 0.10 0.10 0.07 0.50 0.50 0.56 2.57 0.24 0.53

Na2O 0.50 1.23 1.11 0.43 2.40 2.55 3.25 0.63 4.18
K2O 7.30 4.63 5.79 5.43 5.50 5.40 3.89 4.55 5.74
P2O5 0.03 0.01 0.02 0.03 0.01 0.04 n.d. 0.16 0.05
L.o.I. 1.70 2.47 1.06 1.60 1.19 1.61 2.17 4.41 0.63

Ref. [38] [60] [61] [33] [33] [75] [76] [77] [78,79]

Importance of deposit: from prospect (⋆) to extraction, overall below 104 t (⋆⋆), between 104 and 105 t (⋆⋆⋆),
or 105 and 106 t (⋆⋆⋆⋆). Fe2O3

t is total iron oxide.
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3.1.2. Paleozoic Units of Central and Eastern Alps

Various feldspathic materials occur in the Paleozoic units of the Central and Eastern
Alps, basically in Variscan terrains (Carboniferous to Permian):

• Aplites and pegmatites (63 occurrences) are present in both South Alpine and Aus-
tralpine units.

• Granitoids (103 samples) are dominantly in the South Alpine sector, plus some occur-
rences in the Australpine units.

• Rhyolites and porphyries (38 samples) occur exclusively in the South Alpine domain.
• Metamorphics (70 occurrences) are mostly known in the Australpine domain and

some in the South Alpine and Lower Pennidic units.

Aplites and pegmatites are well known within the South Alpine units, both in the
metamorphic basement—especially in the Dervio–Olgiasca–Morbegno and Valsugana
units [33,56,80–85]—and granitic intrusions of Cima d’Asta [57,86,87] and Bressanone–
Ivigna–Monte Croce [88–90]. Albitites have been found close to Periadric intrusions at
Giustino and Monte Sabion [91,92]. In the Australpine domain, pegmatites occur in
the metamorphic basement, within the Tonale, Untertal, Meran–Mules and Vinschgau
units [33,58,93–95] as well as in the Sondalo gabbro [33,96]. These differentiates typically
have a granitic composition (Figure 4a) with incipient to moderate alteration (Figure 4c) and
variability of the alkali ratio, which results in NQ-NKQ-KNQ classes (Figure 4b). Partially
or fully albitized bodies are plotted as NN or NK fluxes. The amount of Fe2O3 and TiO2

is always low to very low, and these differentiates are candidates for high-grade feldspar
(Figure 4d).

Granitoids are dominantly in the South Alpine sector [97,98], including the Cima
d’Asta and Caoria [57,87,99,100], Val Biandino [33,101], Bressanone–Ivigna–Monte
Croce [88–90,102,103] and Dazio intrusions [33]. Further granitoids were evaluated in the
Australpine domain, among the Monte Rolla, Monte Capra, Pizzo Bianco and Pizzo Can-
ciano units [33]. Although the overall composition extends over the granite–granodiorite-
tonalite–diorite and syenite fields (Figure 4a), the limited fluctuations of the alkali ratio
make most samples fall within the NKQ and KNQ classes (Figure 4b). The degree of
alteration is scarce to moderate (Figure 4c). However, the content of Fe2O3 plus TiO2 is
too high for any ceramic application in the cases of granodiorites, tonalites and diorites.
Amongst granites, only a few leucocratic terms (from Pizzo Bianco, Cima d’Asta and Monte
Sabion) meet the requirements for high-grade fluxes; the remainder have some potential for
low-grade fluxes (Figure 4d). Syenites in the Monte Croce pluton [89] have a high feldspar
content (86%) but contextually a rather large amount of chromophore oxides (4.4%).

Intermediate to acidic volcanic rocks are present exclusively in the South Alpine
Variscan units, mainly as so-called porphyry. Most occurrences are in the Athesian plat-
form [33,75,76,88,104–107]; further samples come from the Lugano platform [33] and the
Orobic Alps [67]. Overall, the composition of these porphyries extends over a wide range,
including rhyolite, dacite, trachydacite and andesite (Figure 4a). Alteration, usually going
from moderate to strong (Figure 4c), has induced a distinctive potassic character to many
porphyries (Table 2), which fall mainly in the KNQ, KQ and QKN classes (Figure 4b).
Nevertheless, only rhyolitic compositions have Fe2O3 and TiO2 concentrations low enough
for low-grade fluxes (Figure 4d).
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Figure 4. Potential of feldspathic raw materials in the Paleozoic units of the Central and Eastern
Alps: Variscan granitoids, acidic volcanics, aplite–pegmatites and metamorphics (orthogneisses).
Black dots are deposits already exploited for ceramic fluxes. (a) Classification by the TAS diagram;
(b) technological classification of ceramic fluxes; (c) degree of alteration by the Chemical Index of
Alteration; (d) prospect for exploitation. For the interpretation of these schemes, see explanation
given in Section 2 and Figures 1 and S1.

Felsic metamorphic rocks assessed as ceramic raw materials occur mainly in the
Australpine domain [108]: orthogneisses of the Untertal, Anterselva and Gran Veneziano
units [33] as well as orthogneisses, migmatites and leucogneisses of the Tonale unit [33,109].
In the South Alpine sector [110], the Morbegno and Monte Pedena gneisses have been
studied [33] as well as gneisses in the Tambò, Suretta and Monte Gruf units of the Lower
Pennidic domain [33]. The composition of all these gneisses is coherent with granite (and
minor granodiorite) parent rocks (Figure 4a). In many cases, the points fall within the
NKQ and KNQ classes (Figure 4b). However, highly altered gneisses are depleted in
feldspars (Figure 4c) and therefore are classified as QNK and QQF. On the other hand,
leucocratic gneiss veins, mainly found in the Tonale unit, may exhibit a sodic character and
are plotted in and close to the NQ field. These leucocratic terms meet the requirements for
high-grade fluxes, while most granitic orthogneisses exhibit some potential for low-grade
fluxes (Figure 4d). This is not the case of orthogneisses derived from granodiorites and
tonalites, which contain too-high percentages of chromophores for ceramic applications.

3.1.3. Cenozoic and Mezosoic Units in the Italian Alps

This section describes the post-Palezoic occurrences of feldspathic raw materials in
the Italian Alps, which are all comprised in the Austridic domain and mainly in its South
Alpine sector. These resources consist of:
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• Triassic intrusives (34 occurrences) in the Predazzo area, Trento province.
• Triassic volcanics (40 occurrences) in the Pasubio valleys, Vicenza province.
• Paleocene–Oligocene volcanics (17 occurrences) outcropping in the Lessini, Berici and

Euganean Hills and in the Marosticano area in Veneto.
• Cenozoic Alpine intrusives, essentially Oligocene in age: Cervo Valley (24 samples)

in Piedmont; Masino–Bergell (32 samples) and Adamello–Presanella (77 samples) in
Lombardy; Riesenferner (34 samples) in the Bozen province.

• Pliocene lacustrine sediments in Piedmont (7 samples).

Triassic intrusives outcrop in a limited area of the Dolomites (Predazzo and Monzoni)
as distinct stocks of granitoids and syenites, together with aplite–pegmatite differenti-
ates [111–116]. From the compositional point of view, it is a suite of granites, syenites,
monzonites and monzodiorites (Figure 5a). Granites and aplite–pegmatites are classified as
NKQ and KNQ fluxes (Figure 5b) apart from two samples with strong alteration (Figure 5c)
that are plotted within the QKN field. Syenites contain more feldspars and are therefore
NK and KN fluxes. Most aplites and pegmatites have a mining prospect for high-grade
fluxes, while granites and the remaining differentiates’ prospect is for low-grade fluxes
(Figure 5d).

Predazzo monzonites and monzodiorites have too-high levels of chromophores for
ceramic applications, while syenites—usually containing 3%–5% Fe2O3 + TiO2—have better
potential, considering equivalent feldspar amounts in the 80%–90% range.

Triassic volcanics occur as lava flows, ignimbrites, breccias, subvolcanic bodies and
dykes in the Pasubio Valleys [117]. The composition of the samples taken into account
(Figure 5a) includes rhyolites, dacites and trachytes, with minor andesites [77,117,118].
There is a duality between rocks affected by strong to very strong alteration and terms
with incipient to moderate weathering (Figure 5c). The former exhibit a marked potassic
character (Table 2) and therefore are classified as KQ and KNQ as well as QKN and QQF
(Figure 5b). They have some potential as low-grade fluxes, often with rather low feldspar
content [77]. The latter are plotted across the NKQ-KNQ fields and have little mining
interest for ceramics due to the quite high percentages of chromophore oxides (Figure 5d).

Paleocene–Oligocene volcanics were put in place as lava flows, subvolcanic bodies,
volcaniclastics and hyaloclastites [119]. The only lithotypes of interest for the ceramic
industry are currently acidic to intermediate terms. Nonetheless, in the past basalts were
also used in the manufacture of tiles with a red-coloured body [38,120]. They are mainly
trachytes and rhyolites (Figure 5a) with some latite [78,79,121,122], with an incipient degree
of alteration (Figure 5c). These occurrences are mainly sodic and therefore classified as
NKQ and NK fluxes or sometimes as KNQ (Figure 5b). Rhyolites have a prospect for
high-grade fluxes, while those trachytes with a not excessive amount of chromophores
have some potential for low-grade fluxes (Figure 5d).

Cenozoic intrusions drew attention as ceramic fluxes (Figure 5a): granites and syen-
ites of the Cervo valley [33,34,44,123–126]; granites, granodiorites and diorites of Masino–
Bergell [33,127–130]; granodiorites, tonalites and granites from Adamello–Presanella [128,131,132];
and granodiorites, tonalites and granites from Riesenferner [33,133,134]. Their degree of alter-
ation is generally negligible to incipient (Figure 5c). Rocks from the Adamello, Masino–
Bergell and Riesenferner plutons are classified as NKQ (with few KNQ), while granites
from the Cervo valley fall within the KNQ and NKQ fields with similar frequency. On the
other hand, Cervo valley syenites are spread over the KN-NK-NN-KKN classes (Figure 5b).
Overall, the percentage of Fe2O3 + TiO2 in these Cenozoic intrusives is too high to provide
any prospect for ceramics, even though there are some exceptions (Figure 5d and Table 3).
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Black dots are deposits already exploited for ceramic fluxes. (a) Classification by the TAS diagram;
(b) technological classification of ceramic fluxes; (c) degree of alteration by the Chemical Index of
Alteration; (d) prospect for exploitation. For the interpretation of these schemes, see explanation
given in Section 2 and Figures 1 and S1.

Table 3. Examples of chemical composition of granites (prior to any beneficiation) in various
geological units of the Alps.

Unit LA *
Variscan

Argentera
Variscan

Cervo V.
Cenozoic

SdL **
Variscan

SdL **
Variscan

SdL **
Variscan

Masino V.
Cenozoic

Adamello
Cenozoic

Cima
d’Asta

Variscan

Dolomites
Triassic

Site Torrente
Letimbro Vinadio Piaro Baveno Montorfano Cacciano San

Fedelino
Western

Adamello
Cima

d’Asta Predazzo

%wt ⋆ ⋆ ⋆ ⋆⋆⋆⋆⋆ ⋆⋆⋆⋆ ⋆⋆⋆⋆⋆ ⋆⋆ ⋆ ⋆⋆ ⋆

SiO2 73.87 75.36 69.52 75.74 77.01 72.50 74.62 74.21 71.58 74.79
TiO2 0.27 0.19 0.32 0.18 0.11 0.08 0.08 0.10 0.31 0.12

Al2O3 13.29 13.81 15.07 13.13 13.18 15.80 15.22 14.10 14.96 13.28
Fe2O3

t 2.54 1.82 2.97 1.28 2.32 1.10 0.85 1.04 2.56 1.94
MnO 0.04 0.04 0.05 n.d. 0.03 n.d. 0.05 0.04 0.05 0.03
MgO 0.59 0.39 1.22 0.07 0.25 0.10 0.24 0.28 0.85 0.25
CaO 0.93 0.76 2.78 0.55 2.22 0.10 1.84 2.51 2.06 1.25

Na2O 2.07 3.28 3.20 3.90 3.40 3.30 3.89 3.07 2.92 2.3
K2O 4.93 4.29 4.67 4.93 2.32 5.40 3.64 3.99 3.94 5.53
P2O5 0.17 0.15 0.18 n.d. 0.07 n.d. 0.05 0.04 0.07 0.03
L.o.I. 1.27 0.04 n.d. 0.48 0.70 1.60 0.42 0.36 0.67 0.60

Ref. [33] [33] [34] [40] [34] [42] [33] [132] [57] [33]

* LA: Ligurian Alps. ** SdL: Serie dei Laghi. Importance of deposit: from prospect (⋆) to overall below 104 t
(⋆⋆), between 105 and 106 t (⋆⋆⋆⋆), or over 106 t (⋆⋆⋆⋆⋆). Fe2O3

t is total iron oxide.
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In particular, leucocratic granites occurring in the various Oligocene plutons have
potential for low-grade fluxes (and even high-grade). However, none of these resources
has ever been exploited for ceramic applications.

Arkosic sands are found in a Pliocene lacustrine basin in Northwestern Pied-
mont, which was filled with sediments from the erosion of Variscan granitoids and por-
phyries [33,38]. These sands are classified in the QNK-QQF classes (Figure 5b) and have a
recognized potential for ceramic fluxes and fillers, from high-grade to low-grade, depend-
ing on the chromophore percentage (Figure 5d).

3.2. Feldspar Resources in the Apennines

Feldspar resources in the Apennines are present in several geological units: from the
Paleozoic metamorphic basement to Jurassic ophiolites and Cenozoic sediments, up to the
Plio-Quaternary magmatic provinces (Figure 6).
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3.2.1. Cenozoic to Paleozoic Units of the Apennines

This section deals with an array of feldspar resources spread along the Apennines:
from Paleozoic metamorphic basement to Mesozoic ophiolites, Cenozoic and minor Qua-
ternary sediments:

• Quaternary sand deposits, mostly of aeolian origin, in Latium (4 samples);
• Miocene sandstones from southern Italy: Numidian Flysch (56 occurrences) and

Calabria (33 occurrences);
• Oligocene–Miocene sediments of volcanic origin (cinerites) from Piedmont, Emilia-

Romagna, Marche and Umbria (37 occurrences);
• Eocene–Oligocene sandstones from epi-Ligurian deposits in Emilia–Romagna: Loiano

Formation (37 samples) and Anconella Formation (8 samples) and other Cenozoic
sand occurrences (3 samples, Ranzano Formation);

• Plagiogranite and leucocratic gabbro occurrences within Jurassic ophiolites spread in
the Ligurian units of northern and southern Apennines (30 samples);

• Various metamorphic rocks from the Paleozoic basement of Southern Tuscany
(25 samples).

Quaternary aeolian sand deposits, occurring along the southern Latium coast, have
a high content of silica [136–138] and are classified as QQF (Figure 7b). They are under
exploitation, coherently with their potential for high-grade fillers (Figure 7d).
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The Numidian Flysch outcrops across Molise, Apulia, Campania, Basilicata, Calabria
and Sicily [139–146]. These sandstones are generally very rich in silica (quartzarenites,
classifiable as QQF, Figure 7b) but can locally have a fair feldspar content (subarkoses,
QNK). They are substantially eligible as ceramic fillers (Figure 7b). In contrast, the Miocene
arenites that are present in various synthems in Calabria have a significant content of
feldspars [147–149]. These arkoses are classified as NKQ-KNQ, with some QNK-QKN
(Figure 7b) and usually exhibit a negligible to moderate alteration (Figure 7c). They are
promising for low-grade fluxes (Figure 7d).

Volcanic ash layers or cinerites [150–152] occur as intercalations in Oligocene–Miocene
sedimentary sequences in Emilia–Romagna [153–159], Piedmont [153,154], Marche and
Umbria [160,161]. These cinerites are frequently affected by moderate to strong alteration
(Figure 7c) that led to compositions resembling dacite or andesite (Figure 7a). Occurrences
with higher equivalent feldspar contents are classified as NKQ (Figure 7b) and were actually
exploited as low-grade fluxes [156,157,159]. The remaining volcanic ashes fall within the
QNK-QKN fields but contain too-high amounts of chromophores to be of interest for the
ceramic industry (Figure 7d).

Sandstones in epi-Ligurian basins pertain to the Loiano Formation (Eocene) [162–165]
while minor occurrences refer to the Anconella Formation (Oligocene) [164,165] or further
Cenozoic units in Emilia–Romagna and Piedmont [38,166]. The Loiano (and Anconella)
arkoses are classified mainly as KNQ and QKN (Figure 7b) with a recognized potential for
high-grade to low-grade fluxes, according to their weathering and content of Fe2O3 + TiO2

(Figure 7c,d). The pelite-to-sandstone ratio is another important factor that may vary
regionally; however, it generally favors the coarse fraction to a large extent. Indeed, they
are extensively mined for ceramic tiles production [38,163–165]. In contrast, sandstones of
the Ranzano Formation, while falling into the QNK-QKN fields, have too-high amounts of
chromophores to serve as ceramic fluxes.

Feldspathic raw materials occur within the Jurassic ophiolites in the Ligurian units of
the northern Apennines [167–172] and southern Apennines [173]. Their compositions go
from granite-like (plagiogranites classified as NKQ) to syenite-like (albitites, NQ to NN)
along with leucocratic gabbro (Figure 7a,b). Since the extent of deposits is modest and
the chromophore content is never very low, the appeal for ceramics is limited, although
albitites have potential for high-grade fluxes (Figure 7d).

A range of metamorphics (gneiss, micaschist, phyllite, porphyroid, quartzite, schist)
occur in the Paleozoic basement of Tuscany [174,175]. They are plotted as granite–
granodiorite–tonalite–diorite in the TAS diagram (Figure 7a) and can be classified as
QNK-QKN (and QQF when the degree of alteration is very strong) with some NKQ-KNQ
(Figure 7b). However, the percentage of Fe2O3 + TiO2 is too high to have any prospects as
ceramic fluxes (Figure 7d).

3.2.2. Tuscan Magmatic Province (Miocene–Quaternary)

The feldspar resources of this magmatic province consist essentially of crustal anatectic
rocks [135,176–179] that occur in southern Tuscany and northern Latium (Figure 6):

• Granites forming large intrusions (Monte Capanne in the Elba island) and stocks
(Botro ai Marmi, Gavorrano);

• Acidic differentiates forming stocks, laccoliths, dykes and sills (Elba);
• Lava flows and domes and porphyries (Roccastrada, San Vincenzo and Elba);
• Volcanic cone formed by lava flows and domes (Mount Amiata);
• Volcanic complex formed of lava flows, domes and ignimbrites (Cimini mountains);
• Multicenter complex with pyroclastics, lava flows and domes (Tolfa–Manziati–Ceriti).
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Intrusive rocks consist of granites, also leucocratic (Figure 8a) and minor alkali
feldspar granites and granodiorites [179–186]. Acidic differentiates are essentially aplites
and pegmatites [178,184,187]. All these rocks usually exhibit a negligible to incipient al-
teration (Figure 8c) and are classified as NKQ-KNQ (Figure 8b). Leucocratic terms have a
good potential as high-grade fluxes and have been mined for a long time at Botro ai Marmi
(Figure 8d).

Minerals 2025, 15, x FOR PEER REVIEW 17 of 60 
 

 

 

Figure 8. Potential of feldspathic raw materials in the Tuscan magmatic province (Miocene–Quater-
nary). Black dots are deposits already exploited for ceramic fluxes. (a) Classification by the TAS 
diagram; (b) technological classification of ceramic fluxes; (c) degree of alteration by the Chemical 
Index of Alteration; (d) prospect for exploitation. For the interpretation of these schemes, see expla-
nation given in Section 2 and Figures 1 and S1. 

Table 4. Examples of chemical composition (prior to any beneficiation) of epithermal alterations (eu-
rite and other altered granitoids, volcanics and metamorphics) and pyrometamorphics (sanidinite) 
in Italy. 

Unit Tuscan Elba Tuscan Elba 
Roman-
Vulsini 

Roman 
Vulsini 

Calabria 
Aspromonte 

Calabria 
Stilo 

Calabria 
Stilo 

Sardinia 
Montiferro 

Site Crocetta 
Marciana  

Val Cappone 
Piano  

del Pazzo 
Poggio  

San Luce Pirgo Davoli Satriano 
Cuccurru 

Forru 

rock eurite eurite sanidinite sanidinite 
altered felsic 

metamorphics
altered  

granitoid 
altered  

granitoid 
altered vol-

canics 
%wt         
SiO2 70.63 75.84 63.01 71.66 51.54 62.50 59.18 72.03 
TiO2 0.00 0.17 0.64 0.70 n.d. 0.24 n.d. 0.26 
Al2O3 17.39 15.92 20.44 13.15 21.69 20.26 19.22 14.98 
Fe2O3t 0.53 0.65 0.98 0.43 4.57 1.19 1.56 1.30 
MgO 0.28 0.41 0.10 0.08 6.00 6.13 4.11 0.20 
CaO 0.64 1.02 0.68 0.40 0.87 0.14 0.49 0.20 
Na2O 0.13 0.29 1.65 1.75 1.68 2.12 

4.85 
1.81 

K2O 7.92 3.33 10.08 8.90 5.01 2.82 7.89 

Figure 8. Potential of feldspathic raw materials in the Tuscan magmatic province (Miocene–
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Chemical Index of Alteration; (d) prospect for exploitation. For the interpretation of these schemes,
see explanation given in Section 2 and Figures 1 and S1.

Further differentiates, locally called eurite (i.e., an altered porphyritic aplite), have
undergone epithermal alteration, leading to more or less extensive sericitization [188–191].
As a consequence of this marked potassic overprinting, eurites fall within the KQ, KNQ and
QKN classes (Figure 8b). Sericitization is a peculiar feature amongst the various epithermal
alteration occurrences in Italy (Table 4). Due to low content of chromophore oxides, eurite
is known as high-grade flux (Figure 8d) and has long been extracted on the island of Elba
(especially at the Crocetta mine).

Acidic volcanics and subvolcanics outcrop in Tuscany, close to Roccastrada [192–196]
and San Vincenzo [181,193,197], while various porphyry units occur on the island of
Elba [184,185,190,198]. They exhibit distinct features: the Roccastrada unit consists of
rhyolites (Figure 8a) affected by strong alteration (Figure 8c), which are classified as QKN
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(Figure 8b), with a recognized potential as low-grade fluxes (Figure 8d), as they are currently
mined together with kaolinized facies [194–196]. The San Vincenzo volcanics encompass
rhyolite–dacite–andesite terms (Figure 8a) with moderate alteration (Figure 8c). They are
plotted essentially in the KNQ field (Figure 8b) and denote a potential for low-grade ceramic
fluxes (Figure 8d). On Elba, Portoferraio, San Martino and Capo d’Arco, porphyries are
essentially rhyolite–dacite, while Orano porphyries have an andesite–dacite composition
(Figure 8a). The former are mainly classified as NKQ (Figure 8b) and have a prospect for
low-grade fluxes, while the latter, even when falling within the NKQ-KNQ fields, have
too-high contents of chromophore oxides for some ceramic applications (Figure 8d).

Mount Amiata is formed of prevailing trachydacite rocks [199–203] with incipient
alteration (Figure 8a–c) that can be classified as KNQ (Figure 8b). Their iron and titanium
concentrations are too high to be of any ceramic interest (Figure 8d).

The occurrences in the Cimini Mountains are trachydacites to latites (Figure 8a) with
a few olivine–latite and basalt lavas [176,204,205]. They all pertain to the KNQ class
(Figure 8b). Since their chromophore oxide content is always quite high, they are not a
resource of appeal for ceramic production (Figure 8d).

The volcanic complex comprising Tolfa, Manziati and Ceriti is characterized by
trachydacites and rhyolites prevailing over dacites and latites [183,206,207]. Rocks with
a low degree of weathering are plotted within (or close to) the KNQ field (Figure 8b,c).
Moderate to strong alteration enhances the potassium character, and these samples fall
within the QKN class. Rhyolites from Ceriti and Manziati can be considered a prospect for
low-grade fluxes (Figure 8d).

Table 4. Examples of chemical composition (prior to any beneficiation) of epithermal alterations
(eurite and other altered granitoids, volcanics and metamorphics) and pyrometamorphics (sanidinite)
in Italy.

Unit Tuscan Elba Tuscan Elba Roman
Vulsini

Roman
Vulsini

Calabria
Aspromonte

Calabria
Stilo

Calabria
Stilo

Sardinia
Montiferro

Site Crocetta Marciana
Val Cappone

Piano
del Pazzo

Poggio
San Luce Pirgo Davoli Satriano Cuccurru

Forru

rock eurite eurite sanidinite sanidinite altered felsic
metamorphics

altered
granitoid

altered
granitoid

altered
volcanics

%wt ⋆⋆⋆⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆

SiO2 70.63 75.84 63.01 71.66 51.54 62.50 59.18 72.03
TiO2 0.00 0.17 0.64 0.70 n.d. 0.24 n.d. 0.26

Al2O3 17.39 15.92 20.44 13.15 21.69 20.26 19.22 14.98
Fe2O3

t 0.53 0.65 0.98 0.43 4.57 1.19 1.56 1.30
MgO 0.28 0.41 0.10 0.08 6.00 6.13 4.11 0.20
CaO 0.64 1.02 0.68 0.40 0.87 0.14 0.49 0.20

Na2O 0.13 0.29 1.65 1.75 1.68 2.12
4.85

1.81
K2O 7.92 3.33 10.08 8.90 5.01 2.82 7.89
L.o.I. 2.26 n.d. 2.61 2.85 n.d. 4.40 n.d. 1.25

Ref. [190] [172] [208] [208] [209] [210] [211] [212]

Importance of deposit: from prospect (⋆) to limited (below 104 t ⋆⋆) or extensive mining, over 106 t (⋆⋆⋆⋆⋆).
Fe2O3

t is total iron oxide.

3.2.3. Roman Magmatic Province (Quaternary)

Feldspar resource deposits are potentially present in the large volcanic complexes
that constitute the Roman magmatic province (Latium and southernmost Tuscany). These
extinct volcanoes are mainly formed by potassic (trachybasalt to trachyte) and ultrapotassic
(leucite tephrite to phonolite) rocks, mainly pyroclastics with minor lavas [135].
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The major volcanic complexes are (Figure 6):

• Vulsini: several multicenter volcanic complexes with calderas (Latera) developed
around a volcanic–tectonic depression (Bolsena Lake). Pyroclastic deposits and ign-
imbrites are predominant, associated with some lavas [135,177,213].

• Vicani: a stratovolcano with a central caldera (Vico Lake) and a few small circum-
caldera eruptive centers. Pyroclastic fall deposits and ignimbrites prevail over
lavas [135].

• Sabatini: two major multicenter complexes (Sacrofano and Bracciano) with several
calderas (e.g., Bracciano Lake) made up of pyroclastic fall deposits and ignimbrites
with some lavas [135].

• The Albani Hills are constituted of a stratovolcano with central nested calderas and sev-
eral craters and maars formed by pyroclastic fall, flow and hydromagmatic products
prevailing over lavas [214].

The occurrences in the Vulsini mountains range from a potassic series (trachybasalt to
trachyte) to a highly potassic series with leucite tephrite to phonolite [120,176,183,215–220].
This leads to their classification as KN-KKN and minor KNQ and KQ (Figure 9b) apart
from a few altered terms that are depleted in equivalent feldspar content (Figure 9c). Along
with these volcanics, zeolitized pyroclastics [221–225] and pyrometamorphics (sanidinites)
are also known in deposits of ceramic interest [208,216,217]. Pyrometamorphic rocks are
formed at high temperatures and low pressures, i.e., over 800 ◦C and below 2 kbar [226].
Samples with more than 80% equivalent feldspar content are contextually characterized by
high amounts of Fe2O3 + TiO2, such that their potential as nepheline syenite-like fluxes is
very low (Figure 9d). From the ceramic point of view, the most appealing occurrences are
sanidinites, which meet the compositional requirements for low-grade fluxes. Only small
deposits are known, which have been already widely exploited in the past.

The occurrences in the Vicani mountains pertain to a highly potassic series: the
main lithologies are leucite tephrites to phonolites (Figure 9a) with minor latites and
trachytes [62,183,205,207,227–231]. These lithologies are classified as KKN and KN, with
minor KNQ (Figure 9b) in cases of moderate to strong alteration (Figure 9c). Both the very
high amount of alkali, often over 12%, and the scarce alteration make phonolites a prospect
for nepheline syenite-like fluxes (Figure 9d and Table 5). Nevertheless, the beneficiation of
such very high amounts of Fe2O3 + TiO2 is challenging. On the other hand, trachytes that
have suffered moderate alteration have some potential as low-grade fluxes.

In the Sabatini Mountains, rock compositions mainly range from phonotephrites to
phonolites (Figure 9a) with minor trachytes [120,135,183,231–235]. Zeolitized pyroclastics
are also reported [222,236]. Such highly potassic rocks can be classified mostly as KKN and
KN fluxes, apart from some trachytes belonging to NK-NNK (Figure 9b). Some phonolite
and tephriphonolite occurrences exhibit not-so-high contents of chromophore oxides along
with negligible alteration (Table 5). These features make them an interesting prospect for
ceramic fluxes (Figure 9d).



Minerals 2025, 15, 87 19 of 60

Minerals 2025, 15, x FOR PEER REVIEW 19 of 60 
 

 

oxides along with negligible alteration (Table 5). These features make them an interesting 
prospect for ceramic fluxes (Figure 9d). 

 

Figure 9. Potential of feldspathic raw materials in the Roman magmatic province (Quaternary). 
Black dots are deposits already exploited for ceramic fluxes. (a) Classification by the TAS diagram; 
(b) technological classification of ceramic fluxes; (c) degree of alteration by the Chemical Index of 
Alteration; (d) prospect for exploitation. For the interpretation of these schemes, see explanation 
given in Section 2 and Figures 1 and S1. 

Table 5. Examples of chemical composition (prior to any beneficiation) of phonolite occurrences in 
Italy. Fe2O3t is total iron oxide. 

Province Roman Roman Roman Campanian Campanian Campanian Sardinian 
%wt Vulsini Vicani Sabatini Roccamonfina NYT Vulture Montiferro 
SiO2 55.51 57.29 56.99 56.66 58.62 54.81 59.69 
TiO2 0.50 0.52 0.41 0.46 0.41 0.29 0.57 
Al2O3 20.41 19.36 20.60 20.99 17.99 22.18 19.79 
Fe2O3t 4.29 4.08 3.14 2.91 3.97 2.53 2.57 
MnO 0.13 0.11 0.12 0.15 0.13 0.14 0.14 
MgO 0.88 1.04 0.53 0.50 0.57 0.38 0.34 
CaO 4.26 3.42 3.29 2.39 2.53 3.14 1.67 
Na2O 3.38 3.12 3.35 4.00 4.16 5.89 6.31 
K2O 9.54 9.90 10.87 9.32 8.46 7.16 7.45 
P2O5 0.18 0.14 0.10 0.60 0.13 0.08 0.09 
L.o.I. 1.25 1.22 0.60 1.77 3.30 3.41 1.34 
Ref. [219] [229] [135] [135] [237] [238] [239] 
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Black dots are deposits already exploited for ceramic fluxes. (a) Classification by the TAS diagram;
(b) technological classification of ceramic fluxes; (c) degree of alteration by the Chemical Index of
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Table 5. Examples of chemical composition (prior to any beneficiation) of phonolite occurrences in
Italy. Fe2O3

t is total iron oxide.

Province Roman Roman Roman Campanian Campanian Campanian Sardinian

%wt Vulsini Vicani Sabatini Roccamonfina NYT Vulture Montiferro

SiO2 55.51 57.29 56.99 56.66 58.62 54.81 59.69
TiO2 0.50 0.52 0.41 0.46 0.41 0.29 0.57

Al2O3 20.41 19.36 20.60 20.99 17.99 22.18 19.79
Fe2O3

t 4.29 4.08 3.14 2.91 3.97 2.53 2.57
MnO 0.13 0.11 0.12 0.15 0.13 0.14 0.14
MgO 0.88 1.04 0.53 0.50 0.57 0.38 0.34
CaO 4.26 3.42 3.29 2.39 2.53 3.14 1.67

Na2O 3.38 3.12 3.35 4.00 4.16 5.89 6.31
K2O 9.54 9.90 10.87 9.32 8.46 7.16 7.45
P2O5 0.18 0.14 0.10 0.60 0.13 0.08 0.09
L.o.I. 1.25 1.22 0.60 1.77 3.30 3.41 1.34

Ref. [219] [229] [135] [135] [237] [238] [239]

The Albani Hills constitute an ultramafic and highly potassic volcanic complex, with
dominant leucitite, leucite tephrite and phonotephrite [214,240] including zeolitized pyro-
clastics [222]. In all cases, the contents of Fe2O3 + TiO2 are too high for ceramics (Figure 9d),
and lapilli were used exclusively as fillers in red-firing bodies [120].
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3.2.4. Campanian, Aeolian and Sicilian Magmatic Provinces (Miocene–Quaternary)

This section overviews the feldspar resources known in the Quaternary to Miocene
magmatic provinces in the southern Apennines and eastern Sicily (Figure 6):

• The Campanian magmatic province is represented by stratovolcanoes (Roccamonfina,
Vesuvius) and multicenter complexes (Phlegrean fields);

• Mount Vulture is a stratovolcano with a few parasitic centers;
• the Aeolian province exhibits a magmatic arc formed by stratovolcanoes (Lipari and

Vulcano islands, amongst others);
• the Sicilian magmatic province encompasses a stratovolcano (Etna) and diatremes

plus small plateaux (Hyblean hills).

The Campanian magmatic province is characterized by potassic and ultrapotas-
sic rocks [135,241] with negligible alteration (Figure 10c). The occurrences around the
Phlegrean fields consist of important zeolitized deposits [222]: the Neapolitan Yel-
low Tuff [223,237,242–246] and the Campanian Ignimbrite [223,247,248]. These deposits
range in composition from trachyandesite and tephriphonolite to phonolite and trachyte
(Figure 10a). The corresponding classification is KN fluxes with minor KNQ (Figure 10b).
Phonolites present the most promising opportunities for ceramics, primarily because of
their exceptionally high Na2O + K2O content (exceeding 12%). However, the removal of
3%–5% Fe2O3 + TiO2 poses a significant technological challenge (Figure 10d and Table 5).
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Figure 10. Potential of feldspathic raw materials in the Campanian and Aeolian magmatic provinces
(Quaternary) and in the Sicilian magmatic province (Miocene–Quaternary). (a) Classification by
the TAS diagram; (b) technological classification of ceramic fluxes; (c) degree of alteration by the
Chemical Index of Alteration; (d) prospect for exploitation. For the interpretation of these schemes,
see explanation given in Section 2 and Figures 1 and S1.
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The Roccamonfina stratovolcano [249–251] is made up of lava flows and domes and
pyroclastics [241,252–254], some of them zeolitized [222]. A wide spectrum of compositions
is well represented: phonolites, tephriphonolites, trachytes, latites and trachyandesites
(Figure 10a). These occurrences can be classified mostly as KN, NK and KKN (Figure 10b).
Some ceramic potential is discernible for phonolites, trachytes and white leucite tuffs,
which are the lithologies with the lowest percentage of chromophores in the Roccamonfina
complex (Figure 10d and Table 5).

Mount Vulture is formed of a Na-K-rich series of silica undersaturated rocks, including
foidites with haüyne [135,238,255,256] and zeolitized tuffs [222]. The occurrences here
considered mainly comprise tephrites to phonolites (Figure 10a), which are characterized
by an equivalent feldspar content often exceeding 100% and therefore are classified as
NNK fluxes (Figure 10b). In particular, phonolites are promising as nepheline syenite-like
fluxes (Figure 10d), provided that the removal of 2%–4% Fe2O3 + TiO2 can be economically
performed (Table 5).

The Aeolian arc has predominant compositions from calc-alkaline (basalt–andesite–
rhyolite) to shoshonitic (basalt to rhyolite), with rare potassic alkaline products [257–260].
The occurrences surveyed span from rhyolite–dacite to trachyte–trachyandesite–andesite
(Figure 10a) and are not significantly affected by alteration (Figure 10c). Only rhyolites,
which are characterized by rather high alkali contents (Table 6) and can be classified as NKQ
(Figure 10b), have a potential for ceramic fluxes, witnessed by occasional use [120]. The
other lithologies fall mainly in the KNQ and NK classes but have too-high concentrations
of chromophores for ceramic purposes (Figure 10d).

Table 6. Examples of chemical composition of Cenozoic acidic volcanics (prior to any beneficiation)
in the Apennines.

Unit Emilia
Neogene

Tuscan
Neogene

Tuscan
Neogene

Tuscan
Neogene

Tuscan
Neogene

Roman
Quaternary

Roman
Quaternary

Campanian
Quaternary

Aeolian
Quaternary

Site Predosa Roccastrada San
Vincenzo

Porto-
Ferraio

Ceriti-
Manziati Vulsini Sabatini Rocca-

Monfina
Lipari
Island

rock cinerite rhyolite rhyolite porphyry rhyolite trachyte trachyte trachyte rhyolite
%wt ⋆⋆ ⋆⋆⋆⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆⋆

SiO2 68.21 72.77 69.30 70.30 69.39 62.50 66.52 63.82 73.53
TiO2 0.22 0.26 0.40 0.28 0.25 0.50 0.26 0.25 0.09

Al2O3 12.93 16.57 15.00 15.69 14.86 17.50 14.52 17.40 12.85
Fe2O3

t 2.09 0.97 2.61 1.86 1.90 2.60 2.68 1.66 1.96
MnO 0.07 0.03 0.03 0.03 0.03 n.d. 0.05 0.16 0.10
MgO 0.65 0.16 0.89 0.79 0.38 0.40 0.56 0.04 0.37
CaO 3.05 0.24 1.85 1.54 1.39 2.50 1.92 1.24 0.84

Na2O 2.08 1.22 2.89 3.56 2.94 2.20 3.00 5.37 4.00
K2O 2.37 5.27 4.53 4.58 6.06 9.50 5.37 5.84 4.78
P2O5 0.07 0.09 0.22 0.10 0.04 n.d. 0.09 0.01 0.06
L.o.I. 7.65 2.46 2.29 1.40 2.84 2.30 2.60 2.80 2.18

Ref. [157] [194] [107] [184] [183] [38] [183] [253] [257,260]

Importance of deposit: from prospect (⋆) to extraction, overall below 104t (⋆⋆) or between 105 and 106 t
(⋆⋆⋆⋆). Fe2O3

t is total iron oxide.

The Sicilian magmatic province consists of tholeiitic and Na-alkaline rocks pertaining
to the Etna volcano [261–264] and the Hyblean Hills [135,265,266]. Basic lithologies prevail,
such as hawaiite–mugearite–trachyandesite (Figure 10a), of which it is known the occasional
use as ceramic ingredients in red-firing bodies [267,268]. Only Etnean trachytes, which are
classified as NK (Figure 10b), may in principle be appealing for ceramic flux. However,
their content of chromophore oxides is likely too high to allow an economically sustainable
beneficiation (Figure 10d).
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3.3. Feldspar Resources in the Calabro–Peloritan Arc

Feldspar resources in Calabria and north-eastern Sicily are spread over the various
sectors of the Calabro–Peloritan Arc (Figure 11). In particular, feldspar deposits are known
in Variscan terrains: Sila, Castagna, Bagni and Longobucco units in the Sila massif; Stilo
and Castagna units in the Serre massif and Capo Vaticano area; and Aspromonte unit in the
Peloritan mountains and Aspromonte massif [269,270]. Feldspar occurrences are separately
overviewed for acidic differentiates (aplites and pegmatites, also albitized), granitoids
and metamorphics.
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3.3.1. Aplites, Pegmatites and Albitites in the Calabro–Peloritan Arc

Acidic differentiates occur essentially as veins and stocks, with different size and
frequency, put in place into magmatic or metamorphic terrains:

• Sila unit (281 occurrences);
• Longobucco unit (25 occurrences);
• Castagna unit (19 occurrences);
• Stilo unit (46 occurrences, including albitites);
• Aspromonte unit (46 occurrences).

Pegmatites and minor aplites are particularly frequent in the Diorito–Kinzigitic Zone of
the Sila unit [148,271]. The vast majority of them exhibit a granitic composition (Figure 12a)
and a negligible to incipient alteration (Figure 12c). Hence, their classification is mostly as
NKQ-KNQ-QNK-QKN fluxes, with few strongly altered occurrences that are classified as
QQF (Figure 12b). In addition, a dozen deposits have a trondhjemitic composition, falling
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in the KNQ class but with rather high CaO amounts (Table 7). Half a dozen deposits are
albitized and consequently are plotted in the NN-NQ-NNK classes.
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Table 7. Examples of chemical composition of aplites, pegmatites and albitites (prior to any beneficia-
tion) in the Variscan units of the Calabro–Peloritan Arc. Data are average of n occurrences. Fe2O3

t is
total iron oxide. Granitic 1 or trondhjemitic 2 composition.

Unit Sila Sila Sila Longobucco Castagna Stilo Stilo Aspromonte

rock pegmatite–
aplites 1

pegmatite–
aplites 2 albitites pegmatites–

aplites 1
pegmatite–

aplites 1
pegmatite–

aplites 1 albitites pegmatite–
aplites 1

%wt n = 230 n = 13 n = 6 n = 25 n = 19 n = 11 n = 4 n = 22

SiO2 76.42 70.80 68.11 77.89 75.81 75.17 72.45 74.25
TiO2 0.05 0.25 0.14 0.06 0.06 0.10 0.19 0.03

Al2O3 13.90 15.81 18.57 12.49 14.46 14.05 17.75 14.35
Fe2O3

t 0.74 1.50 0.43 0.64 0.75 0.52 0.39 0.43
MgO 0.35 0.74 0.33 0.34 0.35 0.65 0.55 0.33
CaO 1.08 5.93 0.91 0.75 0.67 1.04 0.67 1.03

Na2O 3.40 3.10 10.05 4.10 4.35 3.84 9.10 4.44
K2O 4.45 1.92 1.60 4.46 3.73 3.40 0.36 3.95
P2O5 0.11 0.22 0.19 0.12 0.17 0.10 0.12 0.12

Ref. [148] [148] [148] [148] [148] [148,149] [149] [149]
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Acidic differentiates in both Longobucco and Castagna units are represented by
pegmatites prevailing over aplites and some metapegmatites [148,272]. Although all have
a granitic composition (Figure 12a) and are mainly classified as NKQ-KNQ (Figure 12b),
the Longobucco occurrences result to be on average richer in feldspar than the Castagna
ones, also because these latter have incipient to moderate weathering (Figure 12c). As for
the Sila unit, in most cases, there is potential for high-grade fluxes (Figure 12d).

Albitites, aplites and pegmatites are equally represented in the Stilo unit [17,62,
148,149,272,273]. Overall, these resources show a wide compositional range (granites,
granodiorites and syenites, Figure 12a) and a variable degree of alteration (Figure 12c).
Albitites fall within the NN-NQ fields (Figure 12b) and always can be considered high-grade
fluxes, being in most cases already mined for ceramic purposes [17,62,272]. Pegmatites and
aplites are mainly classified as NKQ-KNQ (but for strongly altered samples plotting in the
QNK-QKN-QQF fields) and are potentially suited for low-grade fluxes (Figure 12d).

Pegmatites and metapegmatites are known in the Aspromonte unit, both in southern
Calabria [149,274,275] and in the Peloritan Mountains [276–280]. These differentiates are
almost exclusively granitic (Figure 12a) with a moderate degree of alteration (Figure 12c),
so present in most cases as NKQ fluxes (Figure 12b). Since their content of Fe2O3 + TiO2 is
usually low, they often represent a prospect for high-grade fluxes (Figure 12d).

3.3.2. Granitoids and Acidic Volcanics in the Calabro–Peloritan Arc

Variscan granitoids and subvolcanics outcrop extensively in northern and central
Calabria and in smaller bodies and stocks in the Aspromonte and Peloritan mountains
(Figure 11). The occurrences surveyed consist of the following:

• Granites, sometimes albitized, chloritized or kaolinized, in places microgranite or
leucogranite (180 samples);

• Granodiorites and trondhjemites (29 samples);
• Porphyry veins, sometimes lamprophyre-like (53 samples).

Granitoid occurrences in the Sila unit [281–283] are essentially granites (Figure 13a)
and minor granodiorites [148,284,285]. They fall mainly within the NKQ-KNQ classes
(Figure 13b) and show moderate weathering (Figure 13c). Their ceramic potential, whether
for high-grade or low-grade fluxes, depends on the amount of alkali and chromophores
(Figure 13). In addition, porphyries with rhyolitic composition occur in veins [148,286] and
can be classified as NKQ, with some potential for low-grade fluxes (Figure 13d).

The occurrences in the Longobucco and Castagna units are predominantly granites
(Table 8, Figure 13a) and some granodiorites [148,287]. They can be classified as NKQ-KNQ
(Figure 13b). As for the Sila unit, their potential for ceramic purposes is for low-grade
fluxes, and high-grade only for leucogranites with a limited degree of alteration [288].
In addition, porphyries occur in veins in the Longobucco unit [148]. They are rhyolites
(NKQ-KNQ classes) with moderate weathering (Figure 13c) and prospect for low-grade
fluxes (Figure 13d).



Minerals 2025, 15, 87 25 of 60

Minerals 2025, 15, x FOR PEER REVIEW 25 of 60 
 

 

chromophores (Figure 13). In addition, porphyries with rhyolitic composition occur in 
veins [148,286] and can be classified as NKQ, with some potential for low-grade fluxes 
(Figure 13d). 

 

Figure 13. Potential of feldspathic raw materials (granitoids and acidic volcanics) in the various 
geological units of the Calabro–Peloritan Arc. (a) Classification by the TAS diagram; (b) technolog-
ical classification of ceramic fluxes; (c) degree of alteration by the Chemical Index of Alteration; (d) 
prospect for exploitation. For the interpretation of these schemes, see explanation given in Section 2 
and Figures 1 and S1. 

The occurrences in the Longobucco and Castagna units are predominantly granites 
(Table 8, Figure 13a) and some granodiorites [148,287]. They can be classified as NKQ-
KNQ (Figure 13b). As for the Sila unit, their potential for ceramic purposes is for low-
grade fluxes, and high-grade only for leucogranites with a limited degree of alteration 
[288]. In addition, porphyries occur in veins in the Longobucco unit [148]. They are rhyo-
lites (NKQ-KNQ classes) with moderate weathering (Figure 13c) and prospect for low-
grade fluxes (Figure 13d). 

Table 8. Examples of chemical composition of granitoids and acidic volcanics (prior to any benefi-
ciation) in the Variscan units of the Calabro–Peloritan Arc. Data are average of n occurrences. Fe2O3t 
is total iron oxide. 

Unit Sila Sila Longobucco Castagna Stilo Aspromonte Aspromonte 
rock granite acidic volcanics granite granite granite granite trondhjemite 
%wt n = 48 n = 50 n = 20 n = 3 n = 28 n = 43 n = 6 

Minerals 2025, 15, x FOR PEER REVIEW 25 of 60 
 

 

chromophores (Figure 13). In addition, porphyries with rhyolitic composition occur in 
veins [148,286] and can be classified as NKQ, with some potential for low-grade fluxes 
(Figure 13d). 

 

Figure 13. Potential of feldspathic raw materials (granitoids and acidic volcanics) in the various 
geological units of the Calabro–Peloritan Arc. (a) Classification by the TAS diagram; (b) technolog-
ical classification of ceramic fluxes; (c) degree of alteration by the Chemical Index of Alteration; (d) 
prospect for exploitation. For the interpretation of these schemes, see explanation given in Section 2 
and Figures 1 and S1. 

The occurrences in the Longobucco and Castagna units are predominantly granites 
(Table 8, Figure 13a) and some granodiorites [148,287]. They can be classified as NKQ-
KNQ (Figure 13b). As for the Sila unit, their potential for ceramic purposes is for low-
grade fluxes, and high-grade only for leucogranites with a limited degree of alteration 
[288]. In addition, porphyries occur in veins in the Longobucco unit [148]. They are rhyo-
lites (NKQ-KNQ classes) with moderate weathering (Figure 13c) and prospect for low-
grade fluxes (Figure 13d). 

Table 8. Examples of chemical composition of granitoids and acidic volcanics (prior to any benefi-
ciation) in the Variscan units of the Calabro–Peloritan Arc. Data are average of n occurrences. Fe2O3t 
is total iron oxide. 

Unit Sila Sila Longobucco Castagna Stilo Aspromonte Aspromonte 
rock granite acidic volcanics granite granite granite granite trondhjemite 
%wt n = 48 n = 50 n = 20 n = 3 n = 28 n = 43 n = 6 

Figure 13. Potential of feldspathic raw materials (granitoids and acidic volcanics) in the various
geological units of the Calabro–Peloritan Arc. (a) Classification by the TAS diagram; (b) techno-
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Table 8. Examples of chemical composition of granitoids and acidic volcanics (prior to any beneficia-
tion) in the Variscan units of the Calabro–Peloritan Arc. Data are average of n occurrences. Fe2O3

t is
total iron oxide.

Unit Sila Sila Longobucco Castagna Stilo Aspromonte Aspromonte

rock granite acidic volcanics granite granite granite granite trondhjemite
%wt n = 48 n = 50 n = 20 n = 3 n = 28 n = 43 n = 6

SiO2 76.55 76.24 75.48 72.48 72.40 73.41 74.16
TiO2 0.09 0.12 0.13 0.23 0.24 0.17 0.08

Al2O3 13.72 13.42 13.84 14.89 14.04 14.47 15.42
Fe2O3

t 1.15 1.64 1.32 1.86 1.92 1.58 0.65
MnO 0.02 0.02 0.02 0.04 0.04 0.04 0.01
MgO 0.36 0.40 0.48 0.68 0.98 0.55 0.28
CaO 0.81 0.81 0.96 1.78 1.63 1.55 2.84

Na2O 3.51 3.52 3.43 3.44 3.83 3.50 5.29
K2O 4.28 4.13 4.35 3.45 3.34 3.41 0.69
P2O5 0.11 0.05 0.12 0.16 0.12 0.15 0.03
L.o.I. n.d. n.d. n.d. 0.96 0.74 1.10 0.73

Ref. [148] [148] [148] [148] [148,149] [149,274,275] [289]
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Granitoids of the Stilo unit are widely represented in the Serre sector [290,291] and
Capo Vaticano area [292,293]. They include granites, with leucogranitic and albitized
facies [148,149,270,294,295] and granodiorites [149,295,296]. This compositional range
(Figure 13a) is further widened by a variable degree of alteration (Figure 13c), from incipient
to strong [288,294,297]. Granites are classified as NKQ, with minor KNQ-QNK-QKN
(Figure 13b), and have potential for low-grade fluxes or high-grade for poorly altered
leucogranites (Figure 13d). Partially albitized granites are plotted in the NQ class with a
prospect for high-grade fluxes (unless strongly weathered). Granodiorites (NKQ) have
substantially no interest because of too-high amounts of Fe2O3 + TiO2.

In the Aspromonte unit are known granites and leucogranites in southern Cal-
abria [149,274,275] as well as leucogranites and trondhjemites in the Peloritan Moun-
tains [278,289,298]. Granites (classified as NKQ and minor KNQ) exhibit a potential for
low-grade fluxes (Figure 13b–d). Similarly to the above-described units, the prospect for
high-grade feldspathic materials is limited to the less altered leucogranites. Trondhjemites,
in particular, have potential for high-grade fluxes (NQ).

3.3.3. Metamorphics in the Calabro–Peloritan Arc

Metadata on metamorphics mainly concern the Castagna and Aspromonte units, and
to a minor extent the Sila, Stilo, Bagni and Longobucco units. Lithologies considered in the
survey are as follows:

• Phyllites and quartz + feldspars ± mica ± chlorite schists (136 occurrences);
• Orthogneisses and gneisses (93 occurrences);
• Felsic metamorphics and feldspathic schists (54 occurrences);
• Paragneisses and micaschists (15 occurrences);
• Migmatites and granulite (12 occurrences);
• Epithermal alterations (4 occurrences);
• Mylonites (2 occurrences).

The metamorphic rocks in the Sila unit came from the Diorito–Kinzigitic Zone [299,300]
and are mostly felsic, with occasional granulite and schists [148]. Metamorphics exhibit
a granite-like composition (Table 9 and Figure 14a) and are essentially classified as NKQ-
KNQ (Figure 14b). About the potential as ceramic raw materials, samples are spread
across the fields of low-grade to high-grade fluxes, depending primarily on the amount of
chromophore oxides. Schists and granulite have no ceramic prospect (Figure 14d).

Table 9. Examples of chemical composition of metamorphics (prior to any beneficiation) in the
Calabro–Peloritan Arc. Data are average of n occurrences. Fe2O3

t is total iron oxide.

Unit Sila Longobucco Castagna Castagna Castagna Aspromonte Aspromonte

rock felsic
metamorphics

felsic
metamorphics gneiss muscovitic

schist
feldspathic

schist gneiss schist

%wt n = 22 n = 8 n = 35 n = 92 n = 21 n = 49 n = 11

SiO2 77.64 76.55 75.06 76.04 75.33 74.20 74.01
TiO2 0.08 0.05 0.09 0.09 0.13 0.11 0.11

Al2O3 13.16 13.82 13.83 14.03 13.80 14.06 14.67
Fe2O3

t 1.29 0.75 1.10 0.91 0.74 1.03 0.89
MgO 0.35 0.33 0.36 0.36 0.45 0.43 0.43
CaO 0.68 0.67 0.72 0.89 1.36 1.36 1.43

Na2O 3.30 4.49 4.01 3.79 4.76 3.89 3.89
K2O 4.34 4.34 3.68 3.59 1.79 3.26 3.73
P2O5 0.05 0.10 0.13 0.16 0.10 0.12 0.14
L.o.I. n.d. n.d. n.d. n.d. n.d. 0.86 0.79

Ref. [148] [148] [148] [148] [148] [149] [149]
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exploitation. For the interpretation of these schemes, see explanation given in Section 2 and Figures 1
and S1.

In the Longobucco unit, only metamorphics have been considered [148]; they have
a granite-like composition and are plotted in the NKQ class (Figure 14a,b). In terms of
the variance of the Sila metamorphics, the degree of alteration is limited (Figure 14c) and
the content of Fe2O3 + TiO2 always low, so they may potentially be high-grade fluxes
(Figure 14d).

The many occurrences known in the Castagna unit are mainly gneisses and a range of
muscovite–feldspar–quartz schists and phyllites [148,287]. Gneisses have a granitic com-
position and are classified as NKQ (with minor NQ-KNQ). Also, phyllites and muscovite–
quartz schists fall within the granite and KNQ fields (Figure 14a,b). Their ceramic potential
fluctuates from low-grade to high-grade fluxes, similarly to the metamorphics of the Sila
unit, depending mainly on the sum of Fe2O3 + TiO2 (Figure 14d). In addition, there are
feldspathic schists that exhibit a certain degree of albitization, and consequently can be
classified as NQ with a prospect for high-grade fluxes [148]. A couple of occurrences from
the Bagni unit (phyllite and mylonite) were analyzed [148] but resulted to be too altered
and rich in chromophores to serve as ceramic fluxes.
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The few occurrences surveyed in the Stilo unit regard gneiss [149] as well as granitoids
and metamorphics affected by epithermal alterations [62,210,211]. These latter are charac-
terized by a strong to very strong degree of alteration (Figure 14c) and significant contents
of sericite and chlorite, and consequently high values of both alkali and MgO (Table 4).
They fall within the QNK class (Figure 14b) with encouraging features for low-grade fluxes
(Figure 14d) and past attempts of exploitation [210].

A range of metamorphics was taken into account in the Aspromonte unit: gneisses,
migmatites and schists in southern Calabria [149,275] as well as paragneisses [301] and
epithermal alterations [302,303] in the Peloritan Mountains. Gneisses and schists have
a composition comparable to granites (Figure 14a) and a moderate degree of alteration
(Figure 14c), leading to classification mainly as NKQ-NQ (Figure 14b). Their potential
varies from high-grade to low-grade fluxes, being largely dictated by the iron and titanium
percentages and the equivalent feldspar content (Figure 14d). In contrast, migmatites and
paragneisses have compositions resembling diorite–tonalites and, even if plotted in the
KNQ class, they have no interest for ceramic purposes because of excessive amounts of
Fe2O3 + TiO2.

3.4. Feldspar Resources in Sardinia

Feldspar resources are present in Sardinia in two well-distinct geological frameworks:
the Variscan chain (granitic batholites and Paleozoic metamorphic basement) and the
Cenozoic graben fillings, with volcanics and arkosic sandstones (Figure 15).

3.4.1. Variscan Magmatism in Sardinia

Acidic magmatic rocks outcrop extensively in the northeastern sector of the island and
also in three massifs in Southern Sardinia (Sarrabus, Monte Arcosu and Arburese):

• Aplites and pegmatites (16 occurrences);
• Albitites and albitized granitoids (70 samples);
• Granitoids: granites and leucogranites (106 samples), granodiorites and tonalites

(62 samples);
• Syenites (5 samples);
• Acidic lava flows and ignimbrites (30 samples) and porphyry in dykes (46 samples).

Dyke swarms of pegmatites and aplites occur frequently in both batholites and high-
grade metamorphic basement [18,304–310]. These differentiates have a granitic composition
(Figure 16a) and incipient to moderate alteration (Figure 16c). They can be mainly classified
as NKQ with minor NN and KN (Figure 16b) and in many cases they exhibit promising
features for high-grade fluxes (Figure 16d).
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Figure 15. Map of feldspar resources in Sardinia (redrawn from [311]): geological units and lithologies
considered in the present survey (in brackets).

In central Sardinia are well known important deposits of albitites [312–314] that occur
mainly in the Orani–Ottana–Oniferi district [315–319]. Further occurrences are reported
in the Baronie [320], Monteacuto [321] and Sulcis [322]. Deep albitization led to syenite-
like compositions and NN (sometimes NQ) fluxes (Figure 16a,b), which have been largely
exploited for ceramic purposes (Figure 16c). Partially albitized granitoids exhibit a potential
for high-grade fluxes as well, classifiable as NN-NKQ with minor NQ-KNQ (Table 10).
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Figure 16. Potential of feldspathic raw materials in the Variscan units (magmatic and metamorphic)
of Sardinia. Black dots are deposits already exploited for ceramic fluxes. (a) Classification by
the TAS diagram; (b) technological classification of ceramic fluxes; (c) degree of alteration by the
Chemical Index of Alteration; (d) prospect for exploitation. For the interpretation of these schemes,
see explanation given in Section 2 and Figures 1 and S1.

The extensive outcrops of granitoids in Sardinia [323–326] include granites, granodiorite–
tonalites and quartz–syenites [305,307,309,310,319,327–330] with incipient to moderate
alteration (Figure 16c). Granites are plotted in the NKQ-KNQ fields, sometimes NQ-QKN
(Figure 16b), and seem suitable for low-grade fluxes (high-grade in case of leucocratic
terms) witnessed by occasional use in ceramic production [18]. Syenites of the Luogosanto
unit [309] can be classified as NK-NKQ (sometimes NN) in force of high equivalent feldspar
contents. However, the amount of chromophore oxides is rather high, so constraining their
potential as ceramic fluxes. Granodiorites have little appeal for fluxes (NKQ) because of
too-high Fe2O3 + TiO2 percentages (Figure 16d).

Variscan acidic volcanics and subvolcanics occur as lava flows and ignimbrites,
ranging from rhyolite–dacite to andesite–latite [310,329,331], and as porphyry dikes [67,
309,310,330,332–335], essentially rhyolite–dacite in composition (Figure 16a and Table 11).
Volcanic rocks present a variable alteration (from incipient to very strong) and spread across
the NKQ-KNQ-QNK-QKN fields (Figure 16b,c). They should serve as low-grade fluxes
when the content of chromophores is low. The most weathered terms, classifiable as QQF,
have no ceramic attractiveness (Figure 16d).
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Table 10. Examples of chemical composition of Variscan intrusives and metamorphics (prior to any
beneficiation) in Sardinia. Data are average of n occurrences. Fe2O3

t is total iron oxide.

Unit Site Serra
Maiore

Monte Li
Conchi

Orani
Ottana

Orani
Ottana

Monte
Limbara

Monte San
Basilio Luogosanto Monte

Filau

rock pegmatite pegmatite albitite albitized
granitoid leucogranite leuco

granite syenite orthogneiss

%wt n = 20 n = 1 n = 9 n = 8 n = 20 n = 5 n = 5 n = 15

SiO2 70.94 69.49 68.27 68.35 74.20 72.92 60.71 75.21
TiO2 0.17 0.13 0.31 0.44 0.06 0.25 0.32 0.15

Al2O3 15.73 15.65 18.63 17.73 13.23 13.74 19.37 13.38
Fe2O3

t 0.74 1.71 0.15 0.39 1.18 2.82 2.86 1.19
MnO 0.08 0.01 0.01 0.01 0.01 0.11 0.01 0.02
MgO 0.62 1.35 0.17 1.58 0.50 0.86 1.27 0.18
CaO 1.16 0.25 1.50 2.39 0.68 1.91 3.13 0.41

Na2O 7.37 9.97 10.49 8.01 4.51 3.42 6.09 2.97
K2O 2.05 0.01 0.09 0.16 4.02 3.94 3.73 5.25
P2O5 0.39 0.01 0.07 0.16 0.01 0.17 0.12 0.13
L.o.I. 0.85 0.77 0.31 0.79 0.56 1.01 2.07 1.07

Ref. [320] [310] [319] [319] [310] [309] [310] [336]

3.4.2. Paleozoic Metamorphic Units in Sardinia

The following metamorphics, occurring in the Paleozoic basement, were taken
into account:

• High-grade metamorphics [337,338], essentially orthogneisses (23 samples);
• Acidic metavolcanics [339–341], mostly porphyroids (39 samples).

Table 11. Examples of chemical composition of Paleozoic acidic volcanics, subvolcanics and metavol-
canics (prior to any beneficiation) in Sardinia. Data are average of n occurrences. Fe2O3

t is total
iron oxide.

Age Late Carboniferous-Permian (Variscan) Ordovician

type/area Peralkaline Metalkaline Sarrabus Gerrei Monte Lasana Gerrei Sarrabus
rock porphyry porphyry porphyry ignimbrite ignimbrite porphyroid porphyry
%wt average average n = 11 n = 16 n = 1 n = 19 n = 3

SiO2 74.67 74.82 74.02 78.08 73.41 68.99 66.84
TiO2 0.07 0.10 0.11 0.20 0.14 0.37 0.62

Al2O3 14.05 13.35 14.17 11.04 13.43 16.92 16.13
Fe2O3

t 0.98 1.39 1.35 1.66 2.01 2.74 5.14
MnO 0.05 0.04 0.04 0.06 0.16 0.02 0.07
MgO 0.19 0.18 0.19 0.42 0.91 0.58 1.71
CaO 0.48 0.73 0.95 0.68 1.03 0.28 2.06

Na2O 3.52 4.11 3.71 1.58 3.91 1.37 3.32
K2O 4.96 4.47 4.61 3.64 4.04 6.90 3.09
P2O5 0.08 0.03 0.08 0.07 0.01 0.19 0.21
L.o.I. 0.98 0.82 0.82 2.63 0.84 1.66 1.28

Ref. [335] [335] [333] [331] [310] [342] [343]

The orthogneisses derive from granitic or granodioritic parent rocks [336,344]. The
former are classified as KNQ and denote a potential for low-grade to high-grade fluxes,
depending on degree of alteration and Fe2O3 + TiO2 contents (Table 10 and Figure 16). The
latter are plotted in the NKQ field but have no ceramic interest.

The acidic metavolcanics pertain to two Ordovician units: porphyroids of Gerrei [18,
38,342,343,345] and gray porphyries of Sarrabus [343,346]. The porphyroids of Gerrei are
rhyolitic to trachytic in composition and fall within the KNQ-QKN fields (Table 11 and
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Figure 17a,b). Although usually altered to a strong to very strong degree (Figure 17c),
they have a recognized potential for low-grade fluxes, as deposits with low percentages of
chromophores have been mined [18,38]. In contrast, the gray porphyries are mainly dacites
(NKQ class) and moderately weathered, but their high amount of Fe2O3 + TiO2 makes any
valorization in whiteware production difficult (Figure 17d).
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Figure 17. Potential of feldspathic raw materials in Ordovician and Cenozoic units of Sardinia.
Black dots are deposits already exploited for ceramic fluxes. (a) Classification by the TAS diagram;
(b) technological classification of ceramic fluxes; (c) degree of alteration by the Chemical Index of
Alteration; (d) prospect for exploitation. For the interpretation of these schemes, see explanation
given in Section 2 and Figures 1 and S1.

3.4.3. Cenozoic Magmatism in Sardinia

Two distinct magmatic provinces are present, of which acidic to intermediate terms
were considered:

• Oligo-Miocene volcanics, mainly ignimbrites, lava flows and domes (59 occurrences);
• Oligo-Miocene zeolitized pyroclastics (74 samples) and epiclastics (16 samples);
• Pliocene–Quaternary volcanics from the Monte Arci volcanic ridge (22 samples) and

the Montiferro multicenter complex (17 samples).

The Oligo-Miocene volcanics [347–351] outcrop mainly in northwestern, central
and southernmost Sardinia [305,352–357]. Their composition is rhyolite–dacite–trachyte
with incipient alteration, which is reflected in the NKQ-KNQ classes (Figure 17a,b). If
moderately to strongly weathered, they are plotted in the QKN-QNK fields (Figure 17b,c).
Given the rather high quantity of chromophores, there is generally no expectation for
ceramic purposes. An exception is made for lithotypes with lower Fe2O3 + TiO2 contents,
such as comendites [353,355], which have potential for low-grade fluxes (Figure 17d).
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Zeolitic rocks are known among the Oligo-Miocene units in northwestern and
central Sardinia [356,358–361]. They are more or less extensively zeolitized pyroclas-
tics [223,362–366] and lacustrine sediments derived from them, i.e., epiclastics [223,356,359].
The zeolitized pyroclastics fall within the dacite–rhyolite–trachyte–latite fields with al-
teration ranging from incipient to moderate (Figure 17a–c). This broad compositional
range leads, in technological terms, to a distribution in the NKQ-KNQ-QNK-QKN classes
(Figure 17b). Since the Fe2O3 + TiO2 percentage usually overpasses 2%, they have some
potential for low-grade fluxes only for higher equivalent feldspar content, between 50%
and 60% (Table 12 and Figure 17d). On the other hand, zeolitized epiclastics exhibit compo-
sitions comparable to moderately weathered dacites-andesites (Table 12) and are plotted
in the QKN-QNK classes (Figure 17b). However, they have little chances for ceramic
applications, unless in case of lower amount of chromophores [223,364].

Table 12. Examples of chemical composition of Cenozoic acidic volcanics and sandstones (prior to
any beneficiation) in Sardinia. Data are average of n occurrences.

Age Oligocene-
Miocene

Oligocene-
Miocene

Oligocene-
Miocene

Oligocene-
Miocene Miocene Pliocene Pliocene

area Sulcis Logudoro Guilcer Logudoro Florinas Monte Arci Montiferro

rock Peralkaline
rhyolite rhyolite zeolitized

pyroclastics
zeolitized
epiclastics

arkosic
sandstone rhyolite trachyte

%wt n = 7 n = 4 n = 37 n = 14 n = 2 n = 18 n = 6

SiO2 72.41 72.96 68.65 64.10 84.34 71.81 59.19
TiO2 0.30 0.21 0.34 0.35 0.04 0.30 0.80

Al2O3 12.64 14.66 12.83 13.21 9.47 14.12 19.49
Fe2O3t 3.65 2.27 2.32 3.25 0.29 2.28 3.41
MnO 0.10 0.06 0.07 0.05 n.d. 0.04 0.14
MgO 0.24 0.40 0.79 1.49 0.11 0.56 0.57
CaO 0.24 1.62 1.71 2.44 0.20 1.02 2.21

Na2O 4.48 3.20 2.87 1.70 0.19 3.83 5.37
K2O 5.10 4.75 3.43 2.54 4.03 4.93 6.59
P2O5 0.09 0.04 0.06 0.08 n.d. 0.12 0.20
L.o.I. 0.58 n.d. 5.75 10.55 1.20 1.00 2.01

Ref. [352] [355] [366] [359] [367] [368] [239]

Regarding the Pliocene–Quaternary volcanics [135], two clearly distinct situations im-
pact the Monte Arci complex [357,368,369], where rhyolite lavas occur with minor trachyte
and andesite (Figure 17a), and the Montiferro complex [370], where mainly trachytes and
phonolites were considered [239,371] together with epithermal alterations [211]. Volcanics
of Monte Arci can be mostly classified as NKQ-KNQ with incipient alteration (Figure 17b,c).
There is a potential for low-grade fluxes, which concerns essentially leucocratic rhyolites,
while trachytes, andesites and rhyolites (when containing more than 2% Fe2O3 + TiO2)
seem to be devoid of ceramic interest. On the other hand, the rocks of Montiferro fall
within or near the NK-NNK classes. Trachytes (Table 12) and especially phonolites (Table 5)
have a certain ceramic potential, despite their high chromophore content, due to the high
equivalent feldspar content (Figure 17d). Epithermal alterations exhibit a strong potassic
character (Table 4).

3.4.4. Cenozoic Sandstones in Sardinia

Arkosic sandstones outcrop mainly in northern Sardinia:

• Florinas Formation of Miocene age (25 samples);
• Quaternary synthem of Santa Teresa di Gallura (2 samples).
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The Florinas Formation is a well-established source of ceramic raw materials [18,38,
65,372]. These arkosic sandstones were deposited in a fluvio-marine environment such as
a Gilbert-like delta [356,373]. They can be classified mainly as QKN fluxes with incipient
to moderate weathering (Figure 17b,c and Table 12). However, occurrences with higher
amounts of quartz, which result as strongly altered and are plotted in the QQF class, are
suitable as ceramic fillers. Quaternary aeolian sands, like the Lu Falsaggiu deposit [374],
exhibit some potential for KNQ-QKN fluxes (Figure 17d).

4. Discussion
The various feldspathic resources in Italy are evaluated as ceramic fluxes, incorporat-

ing the different geological occurrences found in the Alps, Apennines, Calabro–Peloritan
Arc and Sardinia. Albitites, silica-saturated and undersaturated rocks, pegmatites and
aplites, granitoids, metamorphics, acidic volcanics and subvolcanics and arkosic sandstones
are reviewed separately. The assessment is industry-oriented and considers technological
classification, beneficiation issues and geological features of deposits. The composition of
Italian occurrences is compared with that of well-known feldspathic raw materials, which
are taken as benchmark for a given type of ceramic flux. These benchmarks allow for
a quick verification of how similar certain occurrences are to well-known fluxes on the
ceramic market.

4.1. Albitites and Related Rocks

Resources consisting mainly of sodic feldspar are found in the metamorphic basement
of Sardinia, Calabria and the Central Alps, associated with Variscan magmatism. Another
geological occurrence is as albitized plagiogranites within the Jurassic ophiolites of the
Apennines. The degree of albitization varies, as indicated by data distributed across the NN
and NQ fields (Figure 18a), but it is fully comparable to the benchmark for sodic feldspar,
i.e., the albitite from the Menderes massif in Turkey [375]. Plagiogranites typically exhibit a
less pronounced albitization and are categorized within the NKQ and low NQ fields.

The distribution of chromophore data are distinctly different between the Variscan
albitites and the lithotypes of the Apenninic ophiolites (Figure 18b). The former typically
exhibit values below 1.5% Fe2O3 + TiO2, with a significant proportion falling below the
benchmark, except for the Calabro–Peloritan Arc. In contrast, the latter generally contain
chromophores exceeding 2%, with few approaching the benchmark. Consistent with this
observation, the Variscan occurrences have largely been exploited, while those in the
ophiolites have been mined only infrequently.

There are several open questions regarding exploration that mainly concern the size
and geometry of the deposits and the process of albitization. The albitized bodies occur
mainly as dykes and stocks, which are typically small, especially in the case of ophiolites.
The major deposits, each containing at least one million tons of flux produced, are either
currently in operation, such as the Orani–Ottana district in Sardinia, or have been depleted,
as seen in Giustino in the Alps and the Capo Vaticano district in Calabria. The status of
partially albitized deposits remains less clear. The search for new deposits is hindered
by the lack of a genetic model for this type of albitites, which is essential for guiding
exploration efforts [313,376–378].

Two additional issues concern the geochemical processes that accompany albitization
in granitoid or ophiolitic contexts. In the former, there is a well-documented association
with mineralizations of magnesium silicates (talc and chlorite), particularly in central
Sardinia [312,314] and southern France [379,380]. Chlorite is a common component of
certain albitite facies in Sardinia and Calabria, leading to unusually high MgO contents (up
to 4%–5%) that can significantly influence the technical behavior of ceramic fluxes [381].



Minerals 2025, 15, 87 35 of 60

Conversely, plagiogranites may be associated with serpentinites in ophiolitic units [382,383].
Additionally, mining operations raise concerns about the potential occurrence of asbestos,
which poses a problem given the concentration limit currently set at 0.1% [384].
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4.2. Silica-Saturated and Silica-Undersaturated Rocks

This section discusses Italian resources of feldspathic materials that either do not
contain quartz (silica-undersaturated rocks, primarily phonolites and tephrites) or contain
only a minimal percentage of quartz (silica-saturated rocks, mainly trachytes, syenites
and monzonites). These materials represent a diverse array of geological contexts, geo-
chemical and petrological characteristics, as well as the size and arrangement of potential
deposits [119,125,135]. From an application standpoint, silica-saturated and undersaturated
rocks refer to distinct benchmarks: mixed Na-K feldspar and nepheline syenite/phonolite,
respectively (Figure 18c). It is important to note that these are the main Italian resources
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with a feldspar content sufficiently high to approach these benchmarks, with average alkali
content reaching up to 9% in syenites, 10.5% in trachytes and 13% in phonolites.

Different compositional characteristics are evident: for example, the Triassic and
Cenozoic syenites (and trachytes) of the Alps are either silica-saturated or slightly over-
saturated, spanning the NK-KN-NKQ-KNQ fields. In contrast, the Quaternary volcanics of
the Roman and Campanian magmatic provinces are predominantly potassic, exhibiting
both silica-undersaturated (KKN) and silica-saturated (KN) compositions. An exception is
Mount Vulture, where the volcanic rocks display mixed alkali terms with a predominant
sodic character (NNK-NK). Also in Sardinia and Sicily, the Quaternary trachytes and
phonolites are prevailingly sodic, plotting within the NK and NNK fields, respectively.

These lithologies exhibit an exceptionally wide range of dimensions and structures in
potential deposits, varying from small, uniform bodies (such as lava flows and pyroclastic
layers) to larger units (lava domes, pyroclastic cones) and extending to complex products
of explosive eruptions (ignimbrites, pyroclastic flows). Notably, the larger structures are
often affected by internal inhomogeneities (both lateral and vertical gradation), which can
result from metasomatic processes (such as zeolitization and feldspathization) and strong
heterogeneity among the involved lithologies [218,232,246,385]. The resources derived
from huge eruptions are well documented—examples include Neapolitan Yellow Tuff [237],
Campanian Ignimbrite [248] and Val Tiberina Yellow Tuff [236]—as they consist of thick
and extended deposits that have been extensively exploited as building materials, though
they have not been utilized for ceramic fluxes.

The primary challenge in exploiting these resources arises from the chromophore con-
tent, which varies widely between 2% and over 8% (Figure 18d). This variability renders
most occurrences beyond the current technological capacity to beneficiate rocks containing
such high levels of ferromagnesian minerals under economically sustainable conditions.
Additionally, the volcanic nature of the deposits, along with their strong heterogeneity,
complicates the situation. Compounds containing iron and titanium are present in various
forms [386–388]: phenocrysts, microcrystals within the groundmass, Fe and Ti dissolved in
the vitreous phase and iron oxide-hydroxide coatings due to weathering and/or metaso-
matic processes. Given these conditions, the beneficiation strategy necessitates multiple
actions for the liberation and separation of Fe and Ti minerals, as each form requires specific
particle sizes and magnetic separation settings. Furthermore, there is currently no effective
method to reduce the content of Fe and Ti in the glassy phase.

In reality, there exists a niche market for nepheline phonolites, as exemplified by
Chapada dos Índios in Brazil [389], České středohoří in Czechia [390] and Roche-en-
Régnier in France [391]. As previously mentioned, these phonolites typically have rather
high Fe2O3 + TiO2 contents, usually approaching 3%, which limits their application to red
bodies or only a small percentage in whiteware bodies.

4.3. Pegmatites and Aplites

Acidic differentiates occur particularly in the metamorphic basement and Variscan
magmatic rocks of Sardinia, the Calabro–Peloritan Arc and the Alps, having been emplaced
from the Late Carboniferous to the Early Triassic [83,392,393]. Additional occurrences
are associated with Cenozoic magmatism in Tuscany and the Alps. Limited informa-
tion exists regarding the geological classification [10,394] of these granitic pegmatites
and aplites, which are often considered barren or “ceramic type”. Nevertheless, some
occurrences on Elba Island and in the Alps are recognized as examples of rare-element
granitic pegmatites [93,94,187] and are currently under investigation as potential sources
of lithium [58,95,395].
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Overall, the Italian aplites and pegmatites exhibit granitic composition and most
occurrences are plotted in the NKQ-KNQ fields (Figure 19a), distributed all around the
symbols of benchmarks taken for mixed Na-K quartz–feldspathic fluxes, i.e., the Baveno–
Montorfano deposit in Italy [49] and the Kràsno deposit in Czechia [396]. In addition,
there is an interesting set of deposits in the Alps and the Calabro–Peloritan Arc (as well
as some in Sardinia) that are enriched in sodium, classifiable as NN-NQ-NK and are not
far from the benchmark for sodic feldspar. Many of these deposits have already been
industrially exploited in the Alps; however, none have been developed in Calabria or
Sardinia. Conversely, the acidic differentiates with a more or less pronounced potassic
character (KK-KQ-KN) are quite limited, primarily found in the Calabro–Peloritan Arc.
These deposits are not close to the benchmarks for mixed alkali feldspars, and none of
these occurrences have attracted industrial interest so far. Finally, there are occurrences in
the QNK-QKN fields, predominantly from the Calabro–Peloritan Arc, which substantially
represent weathered rocks that are depleted in feldspar, thus exhibiting limited potential as
ceramic flux.

The most appealing characteristics of pegmatites and aplites are their low content of
chromophores and the fact that the femic minerals are essentially micas, tourmaline and
garnet. These components are relatively easy to separate once liberated. These features are
supported by the Italian case study, which indicates that the combined values of Fe2O3

and TiO2 are generally less than 1.5% (Figure 19b). Specifically, approximately one-fifth of
the occurrences in the Alps and a quarter of those in Sardinia and the Calabro–Peloritan
Arc exhibit chromophore contents that are even lower than the benchmark established for
mixed alkali feldspars, namely the pegmatites of Oberpfalz, Germany [10,397].

On the other hand, there are important issues to be considered, which notoriously
affect aplites and pegmatites:

• The size of the individual bodies, often small to very small from the ceramic industry
viewpoint, which also seems to apply to most Italian pegmatites. However, there are
also pegmatite–aplite bodies and dyke swarms individually mapped in the geological
cartography, as in Sardinia [309,310].

• Greater difficulty and cost in mining swarms of dykes instead of major stocks, particu-
larly when occurring as high angle dipping veins. It is no coincidence that the major
pegmatite deposit in Italy and the only since long in operation (Lentrée–Pernighera in
Lombardy) is a stock type [56].

• Heterogeneity in composition within the same body, i.e., mineral zonation [398–400],
as well as from body to body within the same swarm [401–403]. The few Italian
examples known with sufficient detail confirm a quite wide variability of both Na/K
ratio and quartz content [30,115].

4.4. Granitoids

Granitoid rocks are the most widespread feldspathic resource in Italy, in particular
in Sardinia, the Calabro–Peloritan Arc and the Alps. These rocks are primarily associated
with Variscan magmatism (Carboniferous–Permian) and, to a lesser extent, with Alpine
magmatism (Oligocene–Miocene). The outcrops of granitoids vary significantly in size,
ranging from minor stocks on a decametric scale to batholiths that extend over several
kilometers. This results in deposit sizes that are generally larger than those of other feldspar
sources. Additionally, considering the compositional uniformity expected for granitic
bodies [404], this combination represents a significant advantage, despite the feldspar
content usually ranging between 50% and 70%. Detailed mapping of various lithologies
and magmatic facies is available in several regions. However, the petrographic description
does not always align with the technological profiles for ceramic fluxes. For example, the
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term leucogranite does not necessarily correspond in literature to particularly low values of
Fe2O3 + TiO2.
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From the compositional point of view, the vast majority of Italian granitoids concen-
trate in the NKQ-KNQ fields, distributed all around the symbols of benchmarks taken for
mixed Na-K quartz–feldspathic fluxes. Within this composite population, some differences
can be observed: the Variscan granitoids typically exhibit a lower average equivalent
feldspar content compared to the products of Alpine magmatism. The latter often display a
more sodic composition than the Variscan rocks (Figure 19c). Beyond this compositional
perimeter, a few occurrences exhibit distinctive features: a pronounced sodic character
(NN-NQ, though rarely approaching the benchmark for sodic feldspar), presumably linked
to localized albitization (as discussed in Section 4.1), or a potassium enrichment (KQ) asso-
ciated with sericitization phenomena [190,191]. Additionally, there are occurrences with
particularly low quartz contents (NK-KN) that are are close to syenites and to benchmarks
for mixed alkali feldspars (refer to comments on syenites in Section 4.2). Conversely, the
relatively low feldspar contents are primarily attributed to weathering, which can lead to
the formation of a thick regolith that significantly impedes mining activities, as observed in
certain areas of Calabria.

The differences in composition extend to the Fe2O3 + TiO2 content, which has a
narrower distribution in the granitoids from Sardinia and the Calabro–Peloritan Arc than
the Cenozoic occurrences and the Variscan rocks in the Alps (Figure 19d). This likely reflects
the varying frequency of granodiorite–tonalite terms, which are the richest in chromophores,
to the extent that they are unsuitable as sources of ceramic fluxes. If mixed alkali quartz–
feldspathic materials are used as a reference, it becomes evident that a significant portion
of the Variscan granitoids has chromophore contents below this benchmark: approximately
three-quarters in the Calabro–Peloritan Arc, two-thirds in Sardinia and around 40% in the
Alps. In contrast, Alpine magmatism presents a different scenario, with about one-quarter
of the granitoids exhibiting Fe2O3 + TiO2 values below the benchmark.

Beyond the iron oxide content, both the rock texture and the composition of femic
minerals are crucial, as they are influenced by weathering or metamorphic overprinting.
Generally, biotite, magnetite and hornblende are easier to remove than muscovite, enstatite
and coatings of iron oxyhydroxides [405,406]. This leads to a key point: the potential for
low-cost beneficiation, based on dry process and high-gradient magnetic separation, hinges
on effective mineral liberation, which is essential for achieving a high yield of quartz–
feldspathic flux. These opportunities largely depend on a favorable granite texture, with
the grain size of iron-bearing minerals being suitable for the magnetic process [15,16,407].

In all the areas where granitoids are exposed, mining activities for ornamental stones
—whether currently operational or abandoned—are known. This situation presents an
opportunity to utilize the mining waste left from previous operations, such as granite
dumps. This approach aligns with a model that has already been successfully implemented
in the ceramic supply chain [49,408], which encompasses comprehensive exploitation
concepts that underpin the sustainability of mining activities for ceramics [13,409].

4.5. Metamorphics

Metamorphic rocks considered in the exploration for ceramic fluxes in Italy encompass
an exceptionally wide range of lithologies, including various types of gneiss and schist,
among others. These rocks are found in the Paleozoic basement of the Alps, Sardinia, the
Calabro–Peloritan Arc and Tuscany. Despite exhibiting some promising characteristics,
none of these occurrences have been exploited for ceramic purposes. This mirrors the
global situation, where only a few deposits, such as mylonite and gneiss in Brazil, are
actively mined [410,411]. In contrast, quarrying for aggregates and ornamental stones is
quite common.
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The lithologies most frequently sampled—orthogneiss, felsic metamorphics and felds-
pathic schists—resemble granitic parent rocks from a compositional perspective. Conse-
quently, they are predominantly found in the NKQ-KNQ fields, with equivalent feldspar
content rarely exceeding 70%, which is, on average, lower than the benchmarks for quartz–
feldspathic materials (Figure 19e). This pattern is similarly observed in Sardinia, the
Calabro–Peloritan Arc and the Alps; however, it does not apply to Tuscany, where the
metamorphic rocks exhibit insufficient equivalent feldspar content to be considered viable
for ceramic fluxes. Additionally, there are partially albitized gneisses and schists, primar-
ily found in Calabria, which are classified as NQ (not plotting closely to the benchmark
for sodic feldspar) or even NN-NK in a few instances. The considerations discussed in
Section 4.1 largely pertain to these occurrences as well.

Interestingly, the distribution of Fe2O3 + TiO2 is promising, as the vast majority of meta-
morphics in the Calabro–Peloritan Arc exhibit chromophore levels below the benchmark
for quartz–feldspathic fluxes, with approximately half of the cases showing levels below
1%. The situation also appears favourable in Sardinia and the Alps, where occurrences of
Fe2O3 + TiO2 below the benchmark constitute at least half of the total (Figure 19f).

However, the discussion in the Section 4.4, regarding the significance of rock texture
and the composition of femic minerals, is even more pertinent in the context of metamorphic
rocks. Metamorphic processes undoubtedly induce preferential orientations and anisotropic
textures, as well as the transformation of primary minerals. These factors are likely to
interfere with the feasibility of low-cost beneficiation mentioned earlier. For instance, there
is a decrease in value as a ceramic flux, despite having the same equivalent feldspar content,
due to the increased presence of muscovite in gneiss compared to granitoids [70]. This
reduction in value is attributed to a lower beneficiation yield, as muscovite is considered
an undesirable component in ceramic bodies [3,412].

The advantages associated with the size and uniformity of deposits, claimed for
granite parent rocks, cannot be similarly applied to metamorphics, which often experience
significant tectonic deformations and structural discontinuities.

4.6. Acidic Volcanics and Subvolcanics

This section addresses the volcanic equivalents of granitoids, which, despite their
limited compositional range (rhyolite–rhyodacite–dacite–trachydacite) represent a remark-
ably diverse array in terms of their formation processes (including porphyry dykes and
hypabyssal bodies), age (Ordovician to Quaternary), size and geometry of deposits, degree
of alteration or metamorphism and potential for mining for ceramic applications.

Once considered in technological terms, the chemical composition of acidic volcanics
does not precisely mirror that of granitoids but instead exhibits a more diverse distribution
(Figure 20a). A significant group of samples primarily falls within the NKQ-KNQ fields,
similar to granitoids, and is close to the benchmarks for mixed alkali quartz–feldspathic
fluxes. This group includes Variscan volcanics and subvolcanics from the Alps, the Calabro–
Peloritan Arc and Sardinia, along with some Cenozoic rhyolites and Ordovician porphy-
roids. However, within this group, there exists a second population characterized by a more
potassic character and equivalent feldspar contents even exceeding 70%. This population
consists of Quaternary volcanics from the Tuscan magmatic province, specifically from the
Ceriti and Cimini mountains.

All of these resources have been infrequently utilized for ceramic fluxes due to the
relatively high concentration of chromophores, which includes the group containing
Fe2O3 + TiO2 beyond the benchmark shown in Figure 20b. The complexities involved
in the beneficiation of volcanic rocks, as illustrated in Section 4.2, further contribute to
this underutilization. However, the ceramic industry’s interest in these resources can
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be revitalized, given that the alkali content can exceed 10%. This allows for operational
exploration to focus on minimizing chromophore levels while considering the favorable
size and geometry of the deposits.

Another group is distinctly potassic and exhibits lower equivalent feldspar contents,
resulting in the samples being distributed across the KQ, QKN and QQF fields (Figure 20a).
This distribution is attributed to various alteration processes, including sericitization and
pyrometamorphism, which position these metavolcanics closer to the benchmark for arkose
(Bavarian sandstones) rather than for potassic feldspar (Saarland rhyolites), both in Ger-
many [397]. These resources primarily consist of Permian porphyries from the Alps and
Ordovician porphyroids from Sardinia, along with Cenozoic subvolcanic bodies on Elba
Island, which have undergone epithermal alteration (sericitized eurite), and Quaternary
sanidinites from the Roman magmatic province, products of pyrometamorphic processes.
Deposits from all these sources are currently in operation or have been in the past, particu-
larly those with lower Fe2O3 + TiO2 contents, as the beneficiation challenges mentioned in
Sections 4.4 and 4.5 are even more pronounced for altered porphyries or metavolcanics.
Indeed, the potential for valorising large volumes of acidic volcanics, especially products
of huge explosive eruptions—such as those in the Serie dei Laghi (Piedmont), Athesian
platform (Eastern Alps) and Tuscan magmatic province—largely depends on ongoing
advancements in mineralurgical treatments.
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4.7. Arkoses and Related Rocks

Arkosic and subarkosic sandstones are well-known quartz–feldspathic fluxes [4,9].
Based on the content of feldspars, they can be distinguished in arkose (feldspars > 25%)
and subarkose (5%–25%) [413]. These sandstones should not be confused with silica sands,
quartzarenites and quartzites, which are quartzous materials used as filler in ceramic bod-
ies [3]. The resources surveyed show a wide range of equivalent feldspar contents within
which three populations with different characteristics can be identified (Figure 20c,d):

• Arkoses (Fdeq from 35% to over 60%) pertaining to both the Loiano–Anconella for-
mations in Emilia and the Miocene units in Calabria. The former are slightly more
potassic and have lower amounts of chromophores than the latter. Only the Loiano
sandstones are currently exploited by the ceramic industry.

• Subarkoses with a pronounced potassic character are mined in Sardinia (Florinas
Formation) and Piedmont (Biella) in force of their low amount of chromophores and
fair feldspar content (Fdeq from 25% to over 50%).

• Quartz arenites (to subarkoses) of Southern Italy exhibit wide ranges of Na/K ratio
and feldspar content (Fdeq 0%–15%, sometimes up to 30%) associated to rather high
percentage of Fe2O3 + TiO2 (particularly the Numidian Flysch). Only few occurrences
with the greatest feldspar content have been mining as fluxes, while others are under
exploitation as silica sands.

The most important among these resources are the result of mass-flow deposition,
such as proximal turbidites (Loiano Formation) or Gilbert-deltas (Florinas Formation and
Biella). These environments typically create favorable conditions regarding the size and
geometry of deposits. All these sandstones can be directly or indirectly linked to Variscan
crystalline source rocks in the Serie dei Laghi (Piedmont) or the Corsican–Sardinian block
(for the Florinas and Loiano formations).

In addition to the size and geometry of deposits, the successful upgrading of other
sandstones largely depends on the interplay of two key factors: a sufficiently high equiv-
alent feldspar content (approximately over 30%) and the concentration (and type) of
chromophores that would enable beneficiation at an acceptable cost. The presence of clay
fractions (which can be removed through attrition and washing), femic minerals or diage-
netic iron-bearing forms (which can be eliminated via magnetic separation) is preferable
to the presence of coatings on quartz and feldspar grains (which require acid leaching
for removal) or iron oxide in rock fragments. This information is essential for determin-
ing whether seemingly promising occurrences, such as Numidian Flysch subarkoses and
Calabrian arkoses, truly possess potential for use as ceramic fluxes.

5. Conclusions
The search for mineral resources, including critical raw materials such as feldspar,

to feed the ceramic production can be systematically conducted, as demonstrated by the
present case study of the Italian territory, through a comprehensive survey of field occur-
rences. A primary focus should be on chemical characterization (major oxides) as there is a
well-established correlation between the technological and aesthetic properties—especially
fusibility and color after firing— and the chemical composition of feldspathic fluxes.

The rationale consists of gathering, as a first step, information from geological cartog-
raphy, petrological and geochemical literature and basic mining exploration. The following
step is data interpretation performed under an industry-oriented perspective, which de-
clines the compositional features in terms of both technological behavior and chances of
successful beneficiation of ceramic fluxes. Such an assessment can take advantage from
comparison with benchmarks, which are well-known raw materials, currently utilized by
the ceramic industry.
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The present survey (~3500 metadata) gave rise to a complete picture of the potential
for feldspathic fluxes of a broad range of resources:

• Pegmatites and aplites are quite common in the Variscan units of Sardinia, Calabro–
Peloritan Arc and the Alps, but the pros (low content of femic minerals, easy enough
to separate) are often balanced by the cons (mostly quartz–feldspathic fluxes; small
size of single bodies; difficulty and cost in mining swarms of dykes instead of major
stocks; compositional heterogeneity within the same swarm or even the same dyke).

• Albitites: the main occurrences are in Sardinia and Calabria, where the production
of high-grade sodium fluxes is well known. The challenges come from the lack of a
genetic model to guide exploration and the strict association with talc and chlorite
mineralizations (that can lead to high MgO contents).

• Granitoids and syenites are the most widespread resources for quartz–feldspathic
fluxes, with compositional differences between the Variscan and Alpine magmatism.
Crucial is low-cost beneficiation, which is possible when both a low amount of chro-
mophores and a favorable texture for the magnetic separation process are present.
Advantage can be taken from the extraction of ornamental stones, by exploiting
granite dumps.

• Acidic volcanics, subvolcanics and metamorphic equivalents are known in a broad
range of geological units (Ordovician to Quaternary). They usually consist of rhy-
olites with limited potential for low grade fluxes due to rather high amounts of
chromophores that are difficult to remove. Nevertheless, occurrences with a marked
potassic character—especially products of huge explosive eruptions (e.g., Serie dei
Laghi, Athesian platform, Tuscan magmatic province)—offer good prospects, assum-
ing that consistent improvements of mineralurgical treatments are achieved.

• Sands and sandstones are widely used by the ceramic industry, which accepts varying
contents of feldspars (arkoses, subarkoses and quartzarenites). The main target for
exploration is mass-flow deposition, like in Gilbert-deltas and proximal turbidites.
Success largely lies in a sufficiently high feldspar content combined with amount (and
type) of chromophores to allow a beneficiation at an acceptable cost (as in Sardinia
and Northern Apennines).

• Felsic metamorphics occur in the Paleozoic basement of various regions, but the more
promising are orthogneiss and feldspathic schists with low amount of chromophores,
which outcrop especially in the Calabro–Peloritan Arc. However, metamorphic pro-
cesses can induce textural and mineralogical features that make low-cost beneficiation
difficult. Muscovite, in particular, can reduce the beneficiation yield and is an undesir-
able component in ceramic bodies.

• Silica-saturated and silica-undersaturated volcanics are abundant in Central and
Southern Apennines: the average alkali content (trachytes 10.5%, phonolites 13%) is
appealing for high-grade fluxes, but the main challenge is developing the technological
capacity to beneficiate in economically sustainable conditions rocks with chromophore
content as high as 2%–8%.

• Granitoids or felsic metamorphics that have undergone epithermal alteration can act
as fluxes, like the well known eurite from Elba Island. They exhibit peculiar enrichment
in MgO and/or K2O, due to pervasive sericitization and chloritization and often a
low Fe2O3 percentage. Occurrences are few, essentially in Tuscany and the Calabro–
Peloritan Arc, but a mineralization model to guide exploration is missing. There are
also cases of high temperature alteration, like the Quaternary sanidinites of the Roman
magmatic province (formed by pyrometamorphic processes) which are potentially
attractive for their accentuated potassium character.
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The ranking of potential ceramic interest can guide operational mining exploration
toward the most promising areas and resources. Nevertheless, several pieces of informa-
tion, not collected in the current survey, may be found in the cited literature and/or need
to be acquired, such as detailed petrographic–geochemical characterization and geolog-
ical mapping. This information is essential for understanding the dimensions, shapes,
tectono-structural arrangements and uniformity of the ore body, along with its textural and
mineralogical features, to effectively design the beneficiation strategy.

Every word in the present case study regarding the prospects for exploitation, of any
given resource, did not consider specific restriction (e.g., protected areas, other destined
use of land) or the existing mining licenses, which must, of course, be taken into account
prior to any exploration activities.
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surveyed. Figure S1: Classification of feldspathic fluxes based on the alkali ratio versus equivalent
feldspar amount diagram. (A) Nomenclature of ceramic fluxes. (B) Examples of ceramic fluxes on
the market with common commercial names. (C) Examples of geological sources of commercial
ceramic fluxes.
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