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Abstract: The Langcun W-Mo deposit, located in the Zhejiang Province of South China, is a
medium-sized porphyry deposit. The ore bodies mainly occur in aplite, granite porphyry,
and the contact zone with hornfels of the Nanhua System. Four stages of mineralization
are recognized in the Langcun deposit, including the quartz–K-feldspar stage (stage I),
quartz–sericite–molybdenite stage (stage II), quartz–chlorite–pyrite stage (stage III), and
calcite stage (stage IV). Stages I and II are the main ore-forming stages for wolframite
and molybdenite. The petrographic and microthermometric results show that four types
of fluid inclusions exist in the Langcun W-Mo deposit, including two-phase liquid-rich
fluid inclusions (type LV), three-phase CO2-rich fluid inclusions (type LC), pure CO2

fluid inclusions (type C), vapor H2O inclusions (type V), and multi-phase inclusions with
daughter minerals (type LDV). In stage I, the fluid inclusion assemblage is LDV + LV
+ V, and the LDV and LV fluid inclusions have similar homogenization temperatures
(281–387 ◦C), indicating a boiling fluid inclusions association. In stage II, the fluid inclusion
assemblage is LC + C, indicating immiscibility between CO2 and aqueous fluids. The
homogenization temperatures of type LC are in the range of 228–342 ◦C, and the salinities
are in the range of 2.77–5.14 wt.% NaCl equiv. The fluid inclusions in stages III and IV
are type LV, with homogenization temperatures in the ranges of 224–275 ◦C and 200–225
◦C, respectively, and salinities in the ranges of 1.74 to 4.96 wt.% NaCl equiv and 1.06 to
3.39 wt.% NaCl equiv, respectively. Hydrogen and oxygen isotopic results indicate that
the ore-forming fluids mainly come from magmatic water in the early stage and may have
received an input of meteoric water in the late stage, which results in the decrease in the
temperature and salinity of ore-forming fluid. Early W-Mo precipitation was induced by
CO2 escape because of decompression, and fluid mixing resulted in Mo precipitation in the
later stage.

Keywords: Langcun W-Mo deposit; fluid inclusion; H-O-S isotope; W-Mo precipitation

1. Introduction
The South China W-Sn metallogenic province is renowned for its substantial resources of tung-

sten (W) and tin (Sn), contributing more than 60% and 11% of the global reserves, respectively [1,2].
The majority of the W polymetallic deposits are intimately associated with Mesozoic granitoids [3,4].
The predominant deposit types in South China are skarn (e.g., the Shizhuyuan W-polymetallic
deposit [5]), greisen and quartz-vein (e.g., the Hongshuizhai deposit [6]), and porphyry (e.g., the

Minerals 2025, 15, 109 https://doi.org/10.3390/min15020109

https://doi.org/10.3390/min15020109
https://doi.org/10.3390/min15020109
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-9715-6209
https://orcid.org/0000-0001-5344-6709
https://orcid.org/0000-0002-8447-7097
https://doi.org/10.3390/min15020109
https://www.mdpi.com/article/10.3390/min15020109?type=check_update&version=1


Minerals 2025, 15, 109 2 of 17

Yangchuling deposit [7]). Skarn and greisen–quartz-vein deposits have historically accounted for
over 90% of identified tungsten resources. In recent years, the discovery of several giant porphyry
W deposits, such as Dahutang [8], Dongyuan [9], and Xingluokeng [10], has highlighted the sig-
nificance of porphyry systems. Despite these advancements, there is currently limited research on
fluid inclusions in porphyry W deposits. Fluid inclusion studies are fundamental to understand the
nature and evolutionary process of the ore-forming fluids in porphyry W deposits, and for the overall
understanding of their genesis. In turn, this knowledge has important consequences for the research.

Langcun is a medium-size porphyry tungsten–molybdenum (W-Mo) deposit that was recently
identified in South China, and it hosts significant resources with 18,500 tonnes of WO3. The mineral-
ization of tungsten and molybdenum is predominantly as veins and stockworks within the aplite,
granite porphyry, and surrounding rocks. Aplite is characterized by the presence of quartz–K-felspar
druses, within which molybdenite occurs. Based on our detailed field observation, we conducted
petrological, mineralogical, fluid inclusions, and stable isotopic analysis for the ore host granite
porphyry, aplite, hydrothermal veins, and altered rocks. The findings reveal that the ore-forming
fluids are CO2-rich NaCl-H2O fluids, marked by a relatively high temperature (~387 ◦C), high to
medium salinities, and are predominantly derived from magmatic water. These research results have
a direct and profound impact on guiding mineral exploration and improving exploration efficiency.

2. Geological Setting
2.1. Regional Geology

The Langcun W-Mo deposit is located in the southeastern part of the Yangtze Block, which is
part of the South China Block (Figure 1). Tectonically, the South China Block was formed by the
amalgamation of the Yangtze Block and Cathaysia Block during the Neoproterozoic era (ca. 850 Ma)
(Figure 1) [11–13]. The region has undergone multi-phase tectonic–magmatic events. Notably, the
most significant was associated with the Mesozoic subduction of the Paleo-Pacific plate beneath
the South China Block, which resulted in a shift in the tectonic regime from the Tethys to the
Paleo-Pacific [14–16]. Subsequently, alterations in the subduction angle of the Pacific plate shifted
the tectonic setting from compression to extension, prompting lithospheric thinning and consequent
extensive granitic magmatism and mineralization [17,18]. The transition is estimated to have begun
around ca. 145 Ma [19] and lasted to approximately ca. 123 Ma. During this period, the South China
Block entered a post-collisional phase, as evidenced by the emergence of extensive A-type granites
and the diabase dike along the southern margin of the Yangtze Block [20–23].

Minerals 2025, 15, x FOR PEER REVIEW 3 of 19 
 

 

  

Figure 1. Distribution of the major W deposits in South China (modified from [24]).  
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region include the Nanhua, Sinian, Cambrian, Silurian, Cretaceous, and Quaternary Sys-
tems (Figure 2) [25]. The Xiuning Formation, which is mainly silty hornfels and greywacke, 
is overlain by the manganese dolomite-bearing sandstone of the Nantuo Formation. The 
Doushantuo Formation is composed of siliceous rock and hornfels. The Dengying For-
mation with marbleized dolomite overlies the Doushantuo Formation. The Hetang For-
mation consists of interbedded shale and siliceous rock, while the Dachenling Formation 
comprises lime dolostone and thin layers of siliceous rock. The Yangliugang Formation is 
predominantly limestone. The Xiaxiang Formation consists of interbeds of siltstone and 
silty mudstone, which are an unconformity in relation to the clastic sedimentary and vol-
caniclastic rocks of the Laocun Formation. The area is crisscrossed by multiple fault sys-
tems, including NE-trending major thrusts, such as F1 and F3, and the NW-trending F2 
fault (Figure 2). Furthermore, a series of secondary NE and NW trending faults have de-
veloped in the region, significantly influencing the occurrence and distribution of wolf-
ramite and molybdenite–quartz veins. 
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2.2. Ore Deposit Geology

The Langcun W-Mo deposit, located in Anji County in Zhejiang Province in northwest
South China, is characterized by diverse lithological units. The dominant units in the re-
gion include the Nanhua, Sinian, Cambrian, Silurian, Cretaceous, and Quaternary Systems
(Figure 2) [25]. The Xiuning Formation, which is mainly silty hornfels and greywacke, is
overlain by the manganese dolomite-bearing sandstone of the Nantuo Formation. The
Doushantuo Formation is composed of siliceous rock and hornfels. The Dengying Forma-
tion with marbleized dolomite overlies the Doushantuo Formation. The Hetang Formation
consists of interbedded shale and siliceous rock, while the Dachenling Formation comprises
lime dolostone and thin layers of siliceous rock. The Yangliugang Formation is predom-
inantly limestone. The Xiaxiang Formation consists of interbeds of siltstone and silty
mudstone, which are an unconformity in relation to the clastic sedimentary and volcani-
clastic rocks of the Laocun Formation. The area is crisscrossed by multiple fault systems,
including NE-trending major thrusts, such as F1 and F3, and the NW-trending F2 fault
(Figure 2). Furthermore, a series of secondary NE and NW trending faults have developed
in the region, significantly influencing the occurrence and distribution of wolframite and
molybdenite–quartz veins.
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Figure 2. Simplified geologic map of the Langcun deposit (modified from [25]).

The Yanshanian magmatism was intense in the Langcun area, and is characterized by
the presence of various intrusions, such as biotite monzonite porphyry, aplite, granite por-
phyry, and lamprophyre dykes. Aplite often occurs together with lamprophyre (Figure 3a),
which can be observed cutting through biotite monzonite porphyry. These intrusions are of-
ten associated with quartz–K-feldspar–epidote druses and veins, indicating hydrothermal
activity (Figure 3b,c). The zircon LA-ICP-MS U-Pb ages of these intrusions have yielded age
values predominantly ranging from 144 to 132 Ma [26]. These data correlate well with the
LA-ICP-MS U-Pb age of 127 Ma obtained from wolframite [26], suggesting a late-Mesozoic
W mineralization event in the region.
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Figure 3. Photographs showing the ore geology and mineralization of the Langcun W-Mo de-
posit. (a) Aplite occurs together with lamprophyre; (b) quartz–K-feldspar druses occur in aplite;
(c) quartz–K-feldspar–epidote veins occur in aplite; (d) wolframite occurs as disseminations in aplite;
(e) molybdenite occurs as disseminations and veins in aplite; (f) quartz–molybdenite stockworks in
aplite. Abbreviations: Ep—epidote; Kfs—K-feldspar; Mo—molybdenite; Py—pyrite; Qtz—quartz;
Ser—sericite; Wf—wolframite.

2.3. Mineralization

The mineralization of wolframite and molybdenite mainly occurs within aplite and
granite porphyry, with minor occurrences in hornfels (Figure 3d–f). Twenty wolframite
vein ore bodies have been identified in the mine, with an average grade of 1.25% WO3

and an estimated resource of 18,500 t of WO3. Additionally, minor scheelite ore bodies
in the Xiuning Formation have been observed, with an average grade of 0.153% WO3.
Molybdenite’s mineralization, often associated with wolframite, is yet to be fully assessed
for its resource potential. Mineralization appears as disseminated (Figure 3d,e), stockworks
(Figure 3f), and veins (Figure 3e). Disseminated wolframite and molybdenite primarily
occur in aplite and granite porphyry, while vein and stockwork types are the main types of
W and Mo mineralization in the region, such as wolframite veins, quartz–wolframite veins,
molybdenite veins, quartz–molybdenite ± pyrite veins, and quartz–sulfide–wolframite
veins. These veins are composed of quartz, fluorite, wolframite, molybdenite, pyrite,
magnetite, and minor amounts of chalcopyrite, pyrrhotite, galena, and sphalerite.

The host rock experienced extensive hydrothermal alterations in the Langcun de-
posit, including K-feldsparization, silicification, sericitization, chloritization, epidotization,
and carbonation, among which silicification and sericitization are particularly associated
with W and Mo mineralization. A field observation of vein crosscutting relationships,
alteration patterns, and the mineral assemblages in the deposit suggests four continuous
mineralization stages:

Stage I: Quartz–K-feldspar stage.
The main tungsten mineralization stage is characterized by quartz–K-feldspar veins

and druses occurring within the aplite (Figure 3b,c and Figure 4a). The mineral assemblage
includes quartz, K-feldspar, wolframite, and scheelite, and a small amount of molybdenite
(Figure 5a,b).

Stage II: Quartz–sericite–molybdenite stage.
This stage includes the main molybdenite mineralization, in which the mineral assem-

blages are dominated by quartz, sericite, molybdenite, pyrite, and pyrrhotite (Figure 5c,d).
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occurring with chlorite in stage Ⅲ; (f) pyrite, pyrrhotite, and chalcopyrite in stage Ⅲ. Abbreviations: 
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3. Samples and Analytical Methods 
Samples for fluid inclusion studies were carefully collected across all mineralization 

stages. These samples, mostly quartz and calcite veins, were prepared as double-polished 
thin sections (~300 μm thick) for further observation and tests. 

The microthermometric study was conducted in the Fluid Inclusion Laboratory at 
the University of Science and Technology Beijing, Beijing, China (USTB), using a Linkam 
THMS600 heating–freezing stage with a temperature range from −196 °C to 600 °C. The 
accuracy of the temperature measurement was within ±0.2 °C for temperatures below 30 
°C, ±0.1 °C for the interval between 30 and 100 °C, and approximately ±2 °C from 100 to 

Figure 4. Photographs showing various veins in the Langcun deposit. (a) Quartz–molybdenite
vein in the aplite of stage I; (b) early wolframite vein cut by the quartz–chlorite–pyrite vein in
stage III; (c) molybdenite vein cut by the quartz–epidote vein in stage III; (d) molybdenite vein cut
by the quartz–pyrite vein in stage III; (e) quartz–molybdenite vein cut by the quartz vein in stage III;
(f) quartz–chlorite vein cut by the calcite in stage IV. Abbreviations: Cal—calcite; Ep—epidote;
Chl—chlorite; Kfs—K-feldspar; Py—pyrite; Qtz—quartz; Mo—molybdenite; Wf—wolframite.

Minerals 2025, 15, x FOR PEER REVIEW 6 of 19 
 

 

 

Figure 4. Photographs showing various veins in the Langcun deposit. (a) Quartz–molybdenite vein 
in the aplite of stage Ⅰ; (b) early wolframite vein cut by the quartz–chlorite–pyrite vein in stage Ⅲ; 
(c) molybdenite vein cut by the quartz–epidote vein in stage Ⅲ; (d) molybdenite vein cut by the 
quartz–pyrite vein in stage Ⅲ; (e) quartz–molybdenite vein cut by the quartz vein in stage Ⅲ; (f) 
quartz–chlorite vein cut by the calcite in stage Ⅳ. Abbreviations: Cal—calcite; Ep—epidote; Chl—
chlorite; Kfs—K-feldspar; Py—pyrite; Qtz—quartz; Mo—molybdenite; Wf—wolframite. 

 

Figure 5. Photomicrographs of ores in the Langcun deposit. (a) Wolframite coexisting with pyrite in 
stage Ⅰ; (b) molybdenite occurring in quartz–K-feldspar druses; (c) pyrite occurring in stage Ⅱ; (d) 
molybdenite coexisting with magnetite and pyrrhotite in stage Ⅱ; (e) molybdenite and magnetite 
occurring with chlorite in stage Ⅲ; (f) pyrite, pyrrhotite, and chalcopyrite in stage Ⅲ. Abbreviations: 
Chl—chlorite; Ccp—chalcopyrite; Kfs—K-feldspar; Po—pyrrhotite; Py—pyrite; Qtz—quartz; 
Mag—magnetite; Mo—molybdenite; Ser—sericite; Wf—wolframite. 

3. Samples and Analytical Methods 
Samples for fluid inclusion studies were carefully collected across all mineralization 

stages. These samples, mostly quartz and calcite veins, were prepared as double-polished 
thin sections (~300 μm thick) for further observation and tests. 

The microthermometric study was conducted in the Fluid Inclusion Laboratory at 
the University of Science and Technology Beijing, Beijing, China (USTB), using a Linkam 
THMS600 heating–freezing stage with a temperature range from −196 °C to 600 °C. The 
accuracy of the temperature measurement was within ±0.2 °C for temperatures below 30 
°C, ±0.1 °C for the interval between 30 and 100 °C, and approximately ±2 °C from 100 to 

Figure 5. Photomicrographs of ores in the Langcun deposit. (a) Wolframite coexisting with pyrite
in stage I; (b) molybdenite occurring in quartz–K-feldspar druses; (c) pyrite occurring in stage II;
(d) molybdenite coexisting with magnetite and pyrrhotite in stage II; (e) molybdenite and magnetite
occurring with chlorite in stage III; (f) pyrite, pyrrhotite, and chalcopyrite in stage III. Abbrevia-
tions: Chl—chlorite; Ccp—chalcopyrite; Kfs—K-feldspar; Po—pyrrhotite; Py—pyrite; Qtz—quartz;
Mag—magnetite; Mo—molybdenite; Ser—sericite; Wf—wolframite.

Stage III: Quartz–chlorite–pyrite stage.
Granitic wall rocks are pervasively altered by chlorite, quartz sulfide, and quartz–chlorite

(pyrite) veins, which together with barren quartz veins crosscut older wolframite veins
(Figure 4b), molybdenite veins (Figure 4c,d), and quartz–molybdenite veins (Figure 4e). The
mineral assemblage of this stage includes quartz, chlorite, pyrite with minor molybdenite
sphalerite, and galena (Figure 5e,f).
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Stage IV: Calcite stage.
Extensive carbonation and calcite veins over country rocks characterize this stage—these

carbonate veins crosscut quartz–chlorite veins (Figure 4f), with the mineral assemblage
dominated by calcite with little quartz and chlorite.

3. Samples and Analytical Methods
Samples for fluid inclusion studies were carefully collected across all mineralization

stages. These samples, mostly quartz and calcite veins, were prepared as double-polished
thin sections (~300 µm thick) for further observation and tests.

The microthermometric study was conducted in the Fluid Inclusion Laboratory at
the University of Science and Technology Beijing, Beijing, China (USTB), using a Linkam
THMS600 heating–freezing stage with a temperature range from −196 ◦C to 600 ◦C. The
accuracy of the temperature measurement was within ±0.2 ◦C for temperatures below
30 ◦C, ±0.1 ◦C for the interval between 30 and 100 ◦C, and approximately ±2 ◦C from
100 to 600 ◦C. The heating rate was initially set at 1–20 ◦C/min for the early stages of each
run and was reduced to 0.3–1 ◦C/min as the samples approached the phase change point.

The compositions of individual fluid inclusions were identified using HORIBA Jobin
Yvon HR800-type laser Raman spectroscopy with a laser wavelength of 633 nm in the
Inclusion Analysis Laboratory at the Beijing Research Institute of Uranium Geology, Beijing,
China (BRIUG). The scanning band was set to 1000–4000 cm−1 with a buildup time of 1 min
for each scan. The spectral resolution was ±0.14 cm−1 with a beam size of 2 µm.

Scanning electron microscopy/X-Ray Energy Dispersive Spectrum (SEM/EDS) anal-
ysis of daughter minerals in the fluid inclusions was performed at the Fluid Inclusion
Laboratory, USTB, using Phenom XL SEM equipped with an energy dispersive spectrome-
ter (EDS) system and element identification software. The accelerating voltage was 15 kV,
with a resolution of 10 nm and a maximum magnification of 100,000×. The samples used
in the experiment were prepared using a natural opening method for fluid inclusions. The
samples were crushed to yield particles 3 to 5 mm in size. Particles with relatively flat
cross-sections were selected and mounted on a glass slide with their flat surfaces facing
upward for observation.

Typical quartz samples from the first three stages were selected for H-O and S isotopic
analyses at BRIUG. The samples were processed using the BrF5 method described by
Clayton and Mayeda [27], and then the O-isotopic composition was determined using a
MAT-253 mass spectrometer. All values are reported relative to the V-SMOW standard [28],
with an uncertainty of ±0.2‰. H isotope analyses were conducted on the same samples
using the Zn reduction method at 450 ◦C [29]. Measurements were performed by the
MAT-252EM instrument, with analytical precision for δD of ±2‰. Thirteen pyrite and
molybdenite samples were used for the sulfur isotope analysis. The method of SO2 ex-
traction was described by Robinson and Kusakabe [30]; the S isotopic ratio (34S/32S) was
measured on the Finnigan MAT-251 mass spectrometer with a precision of ±0.2‰.

4. Results
4.1. Fluid Inclusion Petrography

Through the phase composition of fluid inclusion at room temperature and the phase
transition characteristics during heating and cooling [31], primary fluid inclusions were
classified into four types: two-phase liquid-rich fluid inclusions (type LV), three-phase
CO2-rich fluid inclusions (type LC), pure CO2 fluid inclusions (type C), and multi-phase
inclusions with daughter minerals (type LDV).
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Type-LV inclusion has a negative crystal, ellipsoidal, and irregular form, and consists
of an aqueous liquid and vapor phase (Figure 6a) with a vapor volume percentage ranging
from 12% to 45%.
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Figure 6. Microphotographs showing different types of fluid inclusions at the Langcun W-Mo de-
posit. (a) Type-LV inclusion; (b) type-LC inclusion containing three phases (LH2O + LCO2 + VCO2);
(c) type-LC inclusions with various filling percentages; (d) type-C inclusion; (e) type-LDV inclusion
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tions: Hl—halite.

Type-LC inclusion has liquid H2O, liquid CO2, and vapor CO2 (Figure 6b,c); only
liquid H2O and vapor CO2 are partially seen at room temperature (Figure 6c) and CO2

liquid circles appear during cooling. Type-LC inclusions are mainly negative crystal and
ellipsoidal in shape, 5–9 µm in size, and have gas phase filling in the range of 20%–80%,
and such inclusions are developed in stages I and II.

Type-C inclusion contains little to no water with high CO2 phase volumetric propor-
tions (VCO2 > 90%) (Figure 6e). It is generally 5–15 µm in size and has a sub-circular or
elliptical shape, often in close association with LC-type inclusions. Type-C inclusion is
mainly seen in stages I and II.

Type-LDV inclusions comprise an aqueous liquid, a vapor, and one or multiple daugh-
ter minerals (Figure 6e,f). Type-LDV inclusions are mostly isolated, with a negative crys-
talline or irregular shape, and 6–15 µm in size. Transparent daughter minerals are mainly
halite, while opaque daughter minerals can be recognized as chalcopyrite (see Section 4.4).
This type of inclusion occurs primarily in an early stage.

4.2. Microthermometry of Fluid Inclusion

The microthermometry results of fluid inclusions are summarized in Table 1 and Figure 7.

Table 1. Summary of fluid inclusion data from the Langcun deposit.

Host
Mineral

Mineralized
Stage

Inclusion
Type

Tm, CO2 Tm, ice Tm, clath Th, CO2 Th, total Tm, halite Salinity
◦C ◦C ◦C ◦C ◦C ◦C wt.% NaCl

Quartz I

LDV 281~312 362~392 43.5~46.6

LC −58.0~−57.0 3.3~7.9 20.8~30.5 296~377 3.95~11.57

C −58.1~−57.0 27.7~31.1

LV −6.0~−1.1 287~387 1.74~9.21
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Table 1. Cont.

Host
Mineral

Mineralized
Stage

Inclusion
Type

Tm, CO2 Tm, ice Tm, clath Th, CO2 Th, total Tm, halite Salinity
◦C ◦C ◦C ◦C ◦C ◦C wt.% NaCl

Quartz II
LC −58.3~−57.6 7.5~8.6 26.9~30.2 228~342 2.77~5.14

C −58.4~−57.6 25.2~28.9

Quartz III LV −3.3~−1.0 224~275 1.74~4.96

Calcite IV LV −2.4~−0.6 200~225 1.06~3.39

The pressure correction for LV inclusions has not been conducted.
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Stage I contains type-LV, -LC, -C, and -LDV fluid inclusions, which often have a
close spatial association, showing the characteristics of non-homogeneous capture. Halite
daughter minerals disappear later than vapor in type-LDV inclusions during the heating
process, with melting temperatures of 362~392 ◦C and salinities of 43.5~46.6 wt.% NaCl
equiv. Type-LV inclusions yielded ice-melting temperatures (Tmice) of −6.0~−1.1 ◦C
and salinities of 1.74~9.21 wt.% NaCl equiv with homogenization temperatures (Thtotal)
between 287 and 387 ◦C. Type-LC inclusion temperatures of CO2 solid melting (TmCO2)
are between −58.0 and 57.0 ◦C; the melting temperatures of clathrate (Tmclath) range from
3.3 to 7.9 ◦C, with calculated salinities between 3.95 and 11.57 wt.% NaCl equiv (Collins,
1979). The temperatures of partial homogenization (ThCO2) for CO2 phases range from
20.8 to 30.5 ◦C with CO2 liquid disappearance. Thtotal for type LC range from 296 to 377 ◦C,
with final homogenization generally occurring in the liquid phase. TmCO2 for type C is
between −58.1 and −57.0 ◦C, and ThCO2 is between 27.7 and 31.1 ◦C.

The main types of fluid inclusions in stage II are types LC and C. TmCO2 is between
−58.3 and −57.6 ◦C, Tmclath ranges from 7.5 to 8.6 ◦C, and the corresponding calculated
salinities are 2.77~5.14 wt.% NaCl equiv. ThCO2 and Thtotal for type LC are 26.9~30.2 ◦C
and 228~342 ◦C, respectively. TmCO2 for type C is between −58.4 and −57.6 ◦C, and ThCO2

is between 25.2 and 28.9 ◦C.
Stages III and IV are mainly type-LV inclusions. Stage III showed that Tmice ranged

from −3.3 to −1.0 ◦C, with calculated salinities of 1.74 and 4.96 wt.% NaCl equiv, and Thtotal

between 224 and 275 ◦C, which mainly occurs in the liquid phase. Type-LV inclusions in
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stage IV have Tmice values ranging from −2.4 to −0.6 ◦C, with calculated salinities ranging
from 1.06 to 3.39 wt.% NaCl equiv, and Thtotal ranging from 200 to 225 ◦C, mainly in the
liquid phase.

4.3. Laser Raman Spectroscopy Analysis

Representative FIs were measured using Laser Raman microspectroscopy to constrain
their compositions. The results show that the vapor and liquid phases of the LV- and
LDV-type inclusions are dominated by H2O (Figure 8a–d). The vapor phase of the LC-
and C-type inclusions is dominated by CO2 (1284.82 cm−1 and 1388.53 cm−1, respectively,
Figure 8e,g) with a small amount of N2 (2915.73 cm−1, Figure 8f) and CH4 (2915.73 cm−1,
Figure 8h). The vapor and liquid phases of inclusion in stage III are all H2O (Figure 8i,j).
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liquid phase in the type-LV inclusion of stage I; (e) CO2 spectrum of the vapor phase in the type-C
inclusion of stage I; (f) H2O and N2 spectra of the vapor phase in the type-LC inclusion of stage I;
(g) CO2 spectrum of the vapor phase in the type-C inclusion of stage II; (h) CO2 and CH4 spectra of
the vapor phase in the type-LC inclusion of stage II; (i,j) H2O spectra of the vapor phase and liquid
phase in the type-LV inclusion of stage III. “+” indicates the focus of Raman laser beam.

4.4. SEM Analysis of Daughter Minerals

The petrographic observation shows that the daughter minerals in type-LDV inclu-
sions at the early stage are both transparent and opaque. SEM analysis results reveal that
the daughter minerals include the following: (1) halite, which can occur alone or coexist
with other daughter minerals (Figure 9a–c); (2) strontianite, as shown by peaks of C, O,
and Sr in the SEM/EDS energy spectrum (Figure 9d), which is columnar in shape, and
often coexists with halite in fluid inclusions; (3) ilmenite, occurring in fluid inclusions of
rutile (Figure 9e), characterized by peaks of O, Fe, and Ti in the energy spectrum (Figure 9f);
(4) sericite, which is flake-like in shape (Figure 9g) and contains O, Si, Al, and K with an
Al/K atomic ratio of about 3:1 (Figure 9h), and is more common in the early stage and
often co-occurs with other daughter minerals, such as calcite (Figure 9g,i), chalcopyrite
(Figure 9j), and pyrite; (5) chalcopyrite, with a tetrahedral shape and peaks of S, Cu, and
Fe in the energy spectrum (Figure 9k), which can coexist with sericite and rhodochrosite
(Figure 9l); and (6) pyrite, characterized by its cubic shape (Figure 9m) and Fe and S in the
X-ray map analysis.
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respectively; (c,d) X-ray spectra of halite and strontianite, respectively; (e,f) backscattered elec-
tron image and X-ray spectrum of ilmenite in fluid inclusions of rutile; (g) backscattered electron
images of sericite and calcite in inclusions; (h,i) X-ray spectra of sericite and calcite, respectively;
(j) backscattered electron images of chalcopyrite, sericite, and rhodochrosite in inclusions; (k,l) X-ray
spectra of chalcopyrite and rhodochrosite, respectively; (m) backscattered electron image of pyrite.
Abbreviations: Cal—calcite; Ccp—chalcopyrite; Hl—halite; Ilm—ilmenite; Py—pyrite; Qtz—quartz;
Rds—rhodochrosite; Rt—rutile; Ser—sericite; Str—strontianite.

All of the abovementioned daughter minerals were precipitated from the fluid after
trapping. The evidence supporting this conclusion is multifaceted: (1) the daughter miner-
als exhibit regular crystal forms within the inclusions and have a growth relationship with
the inclusions; (2) the presence of daughter minerals is exclusively observed within the
primary inclusions of stage I, and the recurrence of identical daughter minerals is noted;
and (3) minerals that correspond to the daughter minerals also develop within aplite and
granite porphyry.

4.5. H-O Isotopic Compositions

The hydrogen and oxygen isotopic compositions of the analyzed quartz samples are
presented in Table 2 and Figure 10. The δD values of the extracted water for quartz in
stage I range from −70.4% to −89.0%. The δD values of quartz from stage II and III range
from −68.5% to −76.9% and −80.5% to −85.1%, respectively. The measured δ18O value
of quartz from stage I ranges from 9.4‰ to 12.8‰. Using the equations of Matsuhisa [32]
and the corresponding fluid inclusion average homogenization temperature data, the
δ18O value of aqueous fluid from stage I was calculated to range from 3.8‰ to 7.2‰. The
δ18O value of quartz from stages II and III range from 9.0‰ to 9.6‰ and 6.5‰ to 11.3‰,
respectively, and the calculated δ18O values of fluid range from 2.0‰ to 2.6‰ and −2.9‰
to 1.9‰, respectively.
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Table 2. Oxygen and hydrogen isotopic data for quartz from the Langcun W-Mo deposit.

Sample Number Mineral Ore-Formation Stage δDV-SMOW δ18 OV-SMOW δ18OH2O
(‰) (‰) (‰)

LC1064 Quartz

I

−78.9 10.5 4.9
LC2018 Quartz −79.6 9.4 3.8
LC1058 Quartz −89.0 11.9 6.3
LC1036 Quartz −81.4 12.7 7.1
LC2044 Quartz −76.6 12.8 7.2
LC2035 Quartz −70.4 12.1 6.5

LC2020 Quartz
II

−68.5 9.6 2.6
LC2034 Quartz −70.9 9 2.0
LC2021 Quartz −76.9 9 2.0

LC1093 Quartz
III

−80.5 6.5 −2.9
LC1013 Quartz −85.1 6.5 −2.9
LC1078 Quartz −84.2 11.3 1.9

4.6. Sulfide S Isotopic Compositions

The S isotope results are shown in Table 3. The δ34S values in pyrite and molybdenite
range from 5.7‰ to 9.5‰ and 4.2‰ to 7.2‰, respectively, and are mostly concentrated in
the range of 7‰ to 8‰.

Table 3. S isotope of sulfide from the Langcun W-Mo deposit.

Sample Number Ore-Formation Stage Mineral δ34S V-CDT‰

LC1064

I

Pyrite 7.1
LC2018 Pyrite 6.7
LC2035 Pyrite 6.3
LC2044 Pyrite 7.1
LC2043 Pyrite 5.7

LC1047

II

Pyrite 5.7
LC1070 Molybdenite 7.2
LC2021 Molybdenite 4.2
LC1093 Pyrite 8.3

LC1026

III

Pyrite 6.8
LC1046 Pyrite 9.5
LC1078 Pyrite 7.6
LC2033 Pyrite 9.3

5. Discussion
5.1. Source of the Ore-Forming Material

Because of the absence of sulfates, we assume that the sulfur isotopic composition of
these sulfides can be considered as representative of the overall sulfur isotope signature
of the Langcun deposit. The sulfur isotopes exhibit a narrow range from 4.2‰ to 9.5‰,
clustering between 7.0‰ and 8.0‰ (Figure 11), and a variation not exceeding 5‰, slightly
higher than the typical δ34S values of mantle sources [34], indicating that the sulfides in the
mineralization stage were mixed with heavy sulfur isotopes.
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Typically, the sulfur isotopic composition of primitive mantle is relatively homoge-
neous, with δ34S values ranging from 0 to 3‰. Magmatic sources generally have δ34S
values near 0‰, rarely exceeding 8‰. In contrast, sedimentary rocks exhibit a broader
isotopic variation, spanning from −40‰ to 50‰ [34]. Compared to the S natural reservoir,
most of the δ34S values in the Langcun W-Mo deposit are close to the magmatic sulfur
source. Moreover, the δ34S value at the early stage is slightly lower than that at the late
stage in the Langcun deposit (Figure 11) and is higher than that of magmatic sulfur-source
W deposits in South China, such as the Dongyuan W-Mo deposit [35] and Dahutang W
deposit [36]. Higher δ34S values can be explained by the incorporation of some sedimentary
sulfur through the interaction with sedimentary rocks [37].

5.2. Magmatic Fluid Evolution

Magmatic fluid exsolution is a pivotal process in magmatic–hydrothermal systems,
which can transport a significant amount of metallic elements, thereby contributing to the
formation of polymetallic deposits [38,39]. In the Langcun deposit, the mineralization of
wolframite and molybdenite is intricately linked to granitic porphyry and aplite. The pres-
ence of quartz–K-feldspar druses and early quartz–K-feldspar veins within the aplite illus-
trate the magmatic fluid exsolution process. The aplite structure and the quartz–K-feldspar
druses within aplite imply that decompression boiling (first boiling), triggered by the rapid
ascent of magma, is likely the predominant mechanism of fluid exsolution.

The fluid inclusions study in stage I reveals a variety of inclusions with different
vapor–liquid ratios and halite daughter minerals assemblage. Notably, liquid- and vapor-
rich inclusions show different homogenization patterns during heating, with the former
homogenizing to the liquid phase and the latter homogenizing to the vapor phase. On the
other hand, the range of homogenization temperatures is similar, indicative of boiling fluid
inclusions assemblage. This suggests that fluid boiling is a key process in the early stage of
mineralization. Fluid boiling leads to phase separation, forming a high-salinity liquid-rich
phase and a low-salinity CO2-rich phase fluid. The results of the fluid inclusion studies
indicate that early magmatic exsolution fluid belongs to the NaCl-H2O-CO2 system with
a high temperature (~387 ◦C) and high–medium salinity (1.74–46.60 wt.% NaCl equiv).
H-O isotope analysis shows that the δD values and calculated δ18O values overlap near
the primary magmatic fluids [33], implying that the ore-forming fluids are dominantly
magmatic. In contrast, the isotopic data of fluids for stages III and IV show low δ18O values,
and the plots in the δ18OH2O versus δDH2O diagram (Figure 10) indicate a significant
influence of meteoric water, which is consistent with the fluid characterized by the low
temperature and low salinity in late stages. Therefore, we suggest that the primary ore-
forming fluids were derived from the magmatic exsolution and were predominantly of
magmatic origin, whereas stages III and IV had the contribution of meteoric water.

5.3. Ore-Forming Mechanisms

The transport and precipitation of W in hydrothermal fluids involve complex mecha-
nism. Wood and Samson [40] concluded through thermodynamic experiments that, under
certain temperature and pressure conditions, tungsten migrates mainly as simple tungstic
acid (WO4

2−, H2 WO4, HWO4
−, and KHWO4) and basic tungstate ion pairs (KWO4

−,
NaWO4

−, and NaHWO4) in the hydrothermal fluid of the NaCl-H2O-CO2 composition.
The main mechanisms of tungsten precipitation include (1) the natural cooling of the
fluid [41]; (2) a water–rock reaction [42,43]; (3) fluid immiscibility/boiling [44]; and (4) fluid
mixing [45,46]. The role of CO2 in W mineralization is still a contentious issue. Ni et al. [41]
suggested the minor role that CO2 plays in tungsten mineralization, given the absence of
CO2-bearing inclusions in wolframite. However, several studies have documented variable
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CO2 contents in the ore-forming fluids of W and Mo deposits, such as the Dajishan W
deposit, Xingluokeng W deposit [47], and Larong W-Mo deposit in Tibet [48]. The pres-
ence of CO2 may be a common feature of ore-forming fluids of W and Mo deposits [49].
Higgins [50] suggested that, under high-temperature conditions, tungsten in CO2-rich
fluids may migrate as carbonates and bicarbonates. CO2 escape causes the pH fluctuation
in the fluid and disrupts the tungsten complex equilibrium, which in turn causes the pre-
cipitation of W minerals [47,48]. Through the calculation of the reaction equilibrium model,
Liu and Zhang [51] concluded that CO2 escape can reduce tungsten solubility in the fluid,
promoting the precipitation of wolframite.

Microthermometry results show that the temperature from stages I to II does not
decrease significantly, and there is no clear evidence of fluid mixing. However, wolframite
predominantly precipitated during stage I, indicating that cooling and fluid mixing were
not the primary drivers of precipitation for wolframite in the Langcun deposit. As described
above, fluid boiling occurred in the early stage of mineralization, which likely reduced
the stability of metal complexes in the fluid system and may have been a critical factor for
wolframite mineralization. Although some molybdenite was present in the early stages, the
main mineralization occurred later than that of wolframite. H-O isotopes suggest a minor
addition of meteoric water to the fluid during stage II. In addition, the absence of CO2-
bearing inclusions in stage III implies that CO2 escape occurred during or before that stage
(Figure 12). A significant number of CO2-rich fluid inclusions developed during the early
stages of W-Mo mineralization, especially in quartz associated with W-Mo mineralization,
whereas such inclusions are rarely seen in the late stages. This suggests that CO2 escaping
during the main mineralization stages could have triggered the precipitation of wolframite
and molybdenite. Therefore, CO2 appears to be a favorable factor for W-Mo mineralization.
In summary, fluid mixing and CO2 escape could be the primary mechanisms for Mo
mineralization in the Langcun deposit.
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6. Conclusions
1. The Langcun W-Mo deposit is a porphyry deposit that has evolved through

four stages: quartz–K-feldspar of stage I, quartz–sericite–molybdenite of stage II,
quartz–chlorite–pyrite of stage III, and calcite of stage IV. Among these, stages I and II
are the main mineralization stages. The fluid inclusions encompass a variety of types:
two-phase liquid-rich fluid inclusions (type LV), three-phase CO2-rich fluid inclusions
(type LC), pure CO2 fluid inclusions (type C), and multi-phase inclusions with daughter
minerals (type LDV).

2. The primary ore-forming fluids stem from magmatic exsolution, exhibiting
high–moderate temperatures, high–moderate salinity, and are rich in CO2. The H-O isotope
data indicate that the ore-forming fluids are predominately magmatic in origin, which,
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however, during the later stage of mineralization, were mixed with meteoric water, leading
to the decrease in the temperature and salinity of ore-forming fluids.

3. Early W-Mo precipitation was triggered by fluid boiling. The escape of CO2,
coupled with the mixing of magmatic fluid with meteoric water, facilitated the precipitation
of molybdenite.
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