Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters
Abstract
:1. Introduction: Mine Water Genesis
2. Source Control of Mine Pollution
3. Migration Control of Mine Pollution
3.1. Iron
Metal | Hydroxide | Sulfide |
---|---|---|
Al3+ | −33.5 | - |
Cu2+ | −19.8 | −35.9 |
Fe2+ | −16.3 | −18.8 |
Fe3+ | −38.6 | - |
Mn2+ | −12.7 | −13.3 |
Zn2+ | −16.1 | −24.5 |
3.2. Selective Precipitation of Other Transition Metals
3.3. Reduced Inorganic Sulfur Compounds and Sulfate
3.4. Other Metals and Metalloids
4. Conclusions
Conflicts of Interest
References
- Dold, B. Basic Concepts in Environmental Geochemistry of Sulfidic Mine-Waste Management. In Waste Management; Sunil Kumar, E., Ed.; InTech: Rijeka, Croatia, 2010; pp. 173–198. [Google Scholar]
- Banks, D.; Younger, P.L.; Arnesen, R.-T.; Iversen, E.R.; Banks, S.B. Mine-water chemistry: The good, the bad and the ugly. Environ. Geol. 1997, 32, 157–174. [Google Scholar] [CrossRef]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G. The Geochemistry of Acid Mine Drainage. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 9, pp. 149–204. [Google Scholar]
- Batterham, R. In Situ Leaching—How Far in the Future? In Biohydrometallurgy: Biotech Key to Unlock Mineral Resources Value; Qui, G., Jiang, T., Qin, W., Liu, X., Yang, Y., Wang, H., Eds.; Central South University Press: Changsha, China, 2011; pp. 21–22. [Google Scholar]
- Vera, M.; Schippers, A.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—Part A. Appl. Microbiol. Biotechnol. 2013, 97, 7529–7541. [Google Scholar] [CrossRef]
- Evangelou, V.P. Pyrite Oxidation and Its Control; CRC Press: New York, NY, USA, 2005. [Google Scholar]
- Domic, E.M. A review of the development and current status of copper bioleaching operations in Chile: 25 years of successful commercial implementation. In Biomining; Rawlings, D.E., Johnson, D.B., Eds.; Springer: Heidelberg, Germany, 2007; pp. 81–95. [Google Scholar]
- Neal, C.; Whitehead, P.G.; Jeffery, H.; Neal, M. The water quality of the River Carnon, west Cornwall, November 1992 to March 1994: The impacts of Wheal Jane discharges. Sci. Tot. Environ. 2005, 338, 23–39. [Google Scholar] [CrossRef]
- Falagan, C.; Sanchez-Espana, J.; Johnson, D.B. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiol. Ecol. 2014, 87, 231–243. [Google Scholar] [CrossRef]
- Johnson, D.B. Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol. Ecol. 2012, 81, 2–12. [Google Scholar] [CrossRef]
- Korehi, H.; Blöthe, M.; Sitnikova, M.A.; Dold, B.; Schippers, A. Metal mobilization by iron-and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama desert, Chile. Environ. Sci. Technol. 2013, 47, 2189–2196. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage: Remediation options. Sci. Tot. Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef]
- Swanson, D.A.; Barbour, S.L.; Wilson, G.W. Dry-Site versus Wet-Site Cover Design. In Proceedings of the 4th International Conference on Acid Rock Drainage (ICARD), Vancouver, BC, Canada, 31 May–6 June 1997; Volume 4, pp. 1595–1610.
- Lindsay, M.J.B.; Wakeman, K.D.; Rowe, O.F.; Grail, B.M.; Ptacek, C.J.; Blowes, D.W.; Johnson, D.B. Microbiology and geochemistry of mine tailings amended with organic carbon for passive treatment of pore water. Geomicrobiol. J. 2011, 28, 229–241. [Google Scholar] [CrossRef]
- Gehrke, T.; Telegdi, J.; Sand, W. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol. 1998, 54, 273–2747. [Google Scholar]
- Ghauri, M.A.; Okibe, N.; Johnson, D.B. Attachment of acidophilic bacteria to solid surfaces: The significance of species and strain variations. Hydrometallurgy 2007, 85, 72–80. [Google Scholar] [CrossRef]
- Johnson, D.B.; Yajie, L.; Okibe, N. “Bioshrouding”—A novel approach for securing reactive mineral tailings. Biotechnol. Lett. 2008, 30, 445–449. [Google Scholar] [CrossRef]
- Rowe, O.F.; Sánchez-España, J.; Hallberg, K.B.; Johnson, D.B. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ. Microbiol. 2007, 9, 1761–1771. [Google Scholar] [CrossRef]
- Tuttle, J.H.; Dugan, P.R.; Randles, C.I. Microbial dissimilatory sulfur cycle in acid mine water. J. Bacteriol. 1969, 97, 594–602. [Google Scholar]
- Ňancucheo, I.; Johnson, D.B. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles. Front. Microbiol. 2012, 3. Article 235. [Google Scholar] [CrossRef]
- Ňancucheo, I.; Johnson, D.B. Safeguarding reactive mine tailings by ecological engineering: The significance of microbial communities and interactions. Appl. Environ. Microbiol. 2012, 77, 8201–8208. [Google Scholar]
- Coulton, R.; Bullen, C.; Hallet, C. The design and optimization of active mine water treatment plants. Land Contam. Reclam. 2003, 11, 273–279. [Google Scholar] [CrossRef]
- Younger, P.L.; Jayaweera, A.; Elliot, A.; Wood, R.; Amos, P.; Daugherty, A.; Martin, A.; Bowden, L.; Aplin, A.; Johnson, D.B. Passive treatment of acidic mine waters in subsurface-flow systems: Exploring RAPS and permeable reactive barriers. Land Contam. Reclam. 2003, 11, 127–136. [Google Scholar] [CrossRef]
- Grishin, S.I.; Tuovinen, O.H. Fast kinetics of Fe2+-oxidation in packed-bed reactors. Appl. Environ. Microbiol. 1988, 54, 3092–3100. [Google Scholar]
- Wood, T.A.; Murray, K.R.; Burgess, J.G. Ferrous sulphate oxidation using Thiobacillus ferrooxidans immobilized on sand for the purpose of treating acid mine drainage. Appl. Microbiol. Biotechnol. 2001, 56, 560–565. [Google Scholar] [CrossRef]
- Long, Z.; Huang, Y.; Cai, Z.; Cong, W.; Ouyang, F. Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers. Biotechnol. Lett. 2003, 25, 245–249. [Google Scholar] [CrossRef]
- Rowe, O.F.; Johnson, D.B. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. System. Appl. Microbiol. 2008, 31, 68–77. [Google Scholar] [CrossRef]
- Heinzel, E.; Janneck, E.; Glombitza, F.; Schlömann, M.; Seifert, J. Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters. Environ. Sci. Technol. 2009, 43, 6138–6144. [Google Scholar] [CrossRef]
- Heinzel, E.; Hedrich, S.; Janneck., E.; Glombitza, F.; Seifert, J.; Schlömann, M. Bacterial diversity in a mine water treatment plant. Appl. Environ. Microbiol. 2009, 75, 858–861. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B.; Hedrich, S. Uncovering a microbial enigma: Isolation and characterization of the streamer-generating, iron-oxidizing acidophilic bacterium, “Ferrovum myxofaciens”. Appl. Environ. Microbiol. 2014, 80, 672–680. [Google Scholar] [CrossRef]
- Hallbeck, L.; Pederson, K. Autotrophic and mixotrophic growth of Gallionella ferruginea. J. Gen. Microbiol. 1991, 137, 2657–2661. [Google Scholar] [CrossRef]
- Janneck, E.; Arnold, I.; Koch, T.; Meyer, J.; Burghardt, D.; Ehinger, S. Microbial Synthesis of Schwertmannite from Lignite Mine Water and Its Utilization for Removal of Arsenic from Mine Waters and for Production of Iron Pigments. In International Mine Water Association Symposium—Mine Water and Innovative Thinking; Wolkersdorfer, C., Freund, A., Eds.; CBU Press: Sydney, NS, Canada, 2010; pp. 131–134. [Google Scholar]
- Hedrich, S.; Johnson, D.B. A modular continuous flow reactor system for the selective bio-oxidation and precipitation of iron in mine-impacted waters. Bioresour. Technol. 2012, 106, 44–49. [Google Scholar] [CrossRef]
- Regenspurg, S.; Peiffer, S. Arsenate and chromate incorporation in schwertmannite. Appl. Geochem. 2005, 20, 1226–1239. [Google Scholar] [CrossRef]
- Boonstra, J.; van Lier, R.; Janssen, G.; Dijkman, H.; Buisman, C.J.N. Biological Treatment of Acid Mine Drainage. In Biohydrometallurgy and the Environment toward the Mining of the 21st Century; Process Metallurgy 9B; Amils, R., Ballester, A., Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 559–567. [Google Scholar]
- Bratty, M.; Lawrence, R.W.; Kratochvil, D.; Marchant, P.B. Applications of Biological H2S Production from Elemental Sulfur in the Treatment of Heavy Metal Pollution including Acid Rock Drainage. In Proceedings of the 7th International Conference on Acid Rock Drainage (ICARD), St. Louis, Mo, USA, 26–30 March 2006; pp. 271–281.
- Ňancucheo, I.; Johnson, D.B. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microbial Biotechnol. 2012, 5, 34–44. [Google Scholar] [CrossRef]
- Ňancucheo, I.; Hedrich, S.; Johnson, D.B. New (micro-)biological strategies that enable the selective recovery and recycling of metals from acid mine drainage and mine process waters. Mineral. Mag. 2012, 76, 2683–2692. [Google Scholar] [CrossRef]
- Liljeqvist, M.; Sundkvist, J.-E.; Saleh, A.; Dopson, M. Low temperature removal of inorganic sulfur compounds from mining process waters. Biotechnol. Bioeng. 2011, 108, 1251–1259. [Google Scholar] [CrossRef]
- Dopson, M.; Johnson, D.B. Biodiversity, metabolism and applications of acidophilic sulfur- metabolizing micro-organisms. Environ. Microbiol. 2012, 14, 2620–2631. [Google Scholar] [CrossRef]
- Ňancucheo, I.; Johnson, D.B. Removal of sulfate from extremely acidic mine waters using low pH sulfidogenic bioreactors. Hydrometallurgy 2014, in press. [Google Scholar]
- Sasaki, K.; Konno, H.; Endo, M.; Takano, K. Removal of Mn(II) ions by a manganese-oxidizing fungus at neutral pHs in the presence of carbon fiber. Biotechnol. Bioeng. 2004, 85, 491–496. [Google Scholar]
- Mariner, R.; Johnson, D.B.; Hallberg, K.B. Characterisation of an attenuation system for the remediation of Mn(II) in contaminated waters. Hydrometallurgy 2008, 94, 100–104. [Google Scholar] [CrossRef]
- Bruneel, O.; Duran, R.; Casiot, C.; Elbaz-Poulichet, F.; Personne, J.-C. Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl. Environ. Microbiol. 2006, 72, 551–556. [Google Scholar]
- Battaglia-Brunet, F.; Crouzet, C.; Burnol, A.; Coulon, S.; Morin, D.; Joulian, C. Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor. Water Res. 2012, 46, 3923–3933. [Google Scholar] [CrossRef]
- Peak, D.; Sparks, D.L. Mechanisms of selenate adsorption on iron oxides and hydroxides. Environ. Sci. Technol. 2002, 36, 1460–1466. [Google Scholar] [CrossRef]
- Manaka, M.; Yanase, N.; Sato, T.; Fukushi, K. Natural attenuation of antimony in mine drainage water. Geochem. J. 2007, 41, 17–27. [Google Scholar] [CrossRef]
- Johnson, D.B. Resource Recovery from Waste Waters: Using Biomineralization for the Selective Recovery of Metals from Acid Rock Drainage and Mine Process Waters. In Proceedings of the World Mining Congress, Montreal, QC, Canada, 11–15 August 2013. Paper 803.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Johnson, D.B. Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters. Minerals 2014, 4, 279-292. https://doi.org/10.3390/min4020279
Johnson DB. Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters. Minerals. 2014; 4(2):279-292. https://doi.org/10.3390/min4020279
Chicago/Turabian StyleJohnson, D. Barrie. 2014. "Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters" Minerals 4, no. 2: 279-292. https://doi.org/10.3390/min4020279
APA StyleJohnson, D. B. (2014). Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters. Minerals, 4(2), 279-292. https://doi.org/10.3390/min4020279