Supplementary Materials:

Role of Collectors and Depressants in Mineral Flotation: A Theoretical Analysis Based on Extended DLVO Theory

Yaowen Xing 1,2,3*, Xiahui Gui 3,*, Fırat Karakas 2,4 and Yijun Cao 3

- ¹ School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
- ² Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; karakas@mpip-mainz.mpg.de
- ³ Chinese National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; yijuncao@126.com
- ⁴ Mineral Processing Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; karakasf@itu.edu.tr
- * Correspondence: cumtxyw@126.com or xing@mpip-mainz.mpg.de (Y.X.); guixiahui1985@163.com (X.G.); Tel.: +86-0516-83591116 (Y.X.)

Figure S1. Potential curves between a 200-µm-radius hydrophilic silica sphere covered with hydrophobic hemispherical asperities with different radii and an air bubble in 5×10^{-3} M NaCl solution: (a) 0.5 nm; (b) 1 nm. The corresponding surface coverage fractions, θ , are 0.0625% and 0.25%, respectively. The number distribution density of asperity, *n*, is fixed at 7.96 × 10¹⁴ m⁻². Surface potentials of the air bubble and silica are both –35 mV. The decay length of hydrophobic force is 1.5 nm.

Figure S2. Potential curves between a 200-µm-radius hydrophilic silica sphere covered with different number distribution densities of hydrophobic hemispherical asperities and an air bubble in 5×10^{-3} M NaCl solution: (a) 1.99×10^{14} m⁻²; (b) 7.96×10^{14} m⁻². The corresponding surface coverage fractions, θ , are 0.0625% and 0.25%, respectively. The radius of asperity, *r*, is fixed at 1 nm. Surface potentials of the air bubble and silica are both -35 mV. The decay length of hydrophobic force is 1.5 nm.

Figure S3. Potential curves between a 200-µm-radius hydrophobic silica sphere covered with hydrophilic hemispherical asperities with different radii and an air bubble in 5×10^{-3} M NaCl solution: (**a**) 0.5 nm; (**b**) 1 nm; (**c**) 2 nm; (**d**) 4 nm. The corresponding surface coverage fractions, θ , are 0.0625%, 0.25%, 1%, and 4%, respectively. The number distribution density of asperity, *n*, is fixed at 7.96 × 10¹⁴ m⁻². Surface potentials of the air bubble and silica are both –35 mV. The decay length of hydrophobic force is 1.5 nm.

Figure S4. Potential curves between a 200-µm-radius hydrophobic silica sphere covered with different number distribution densities of hydrophilic hemispherical asperities and an air bubble in 5×10^{-3} M NaCl solution: (**a**) 1.24×10^{13} m⁻²; (**b**) 4.98×10^{13} m⁻²; (**c**) 1.99×10^{14} m⁻²; (**d**) 7.96×10^{14} m⁻². The corresponding surface coverage fractions, θ , are 0.0625%, 0.25%, 1%, and 4%, respectively. The radius of asperity, *r*, is fixed at 4 nm. Surface potentials of the air bubble and silica are both –35 mV. The decay length of hydrophobic force is 1.5 nm.