
minerals

Article

Geostatistical Methodology to Characterize
Volcanogenic Massive and Stockwork Ore Deposits

David Silva and José Almeida * ID

NOVA University of Lisbon, Faculty of Sciences and Technology, Earth Sciences Department and GeoBioTec,
Quinta da Torre, 2829-516 Caparica, Portugal; dam.silva6@gmail.com
* Correspondence: ja@fct.unl.pt; Tel.: +351-91-972-8528

Received: 27 October 2017; Accepted: 27 November 2017; Published: 30 November 2017

Abstract: The Zambujal ore deposit, Neves-Corvo mine, is a zoned volcanogenic sulfide deposit
of copper and zinc, with massive ores at the top and stockwork ores at the bottom. Metal grades
are strongly zoned by ore types. The main methodology hereby proposed combines geostatistical
techniques so that an improved stochastic geological model of the Zambujal deposit encompassing
morphology and grades is presented. The model of the morphology was made in two main steps.
First, a 3D solid of the boundaries was created and then a 3D grid model of the local sulfide proportion
was simulated. This latter variable was modeled by using rock specific gravity as a proxy. After that,
a conditional grid model of relative copper grades, i.e., recalculated metal grades assuming only
the sulfide content, is also simulated in accordance with the morphology. At the end, the new tool,
metal tonnage cut-off surface, is proposed, which combines copper grades within massive ores and
stockwork ores. To validate the results found, the global tonnages of copper obtained by Ordinary
Kriging and the proposed methodology are compared.

Keywords: Neves-Corvo mine; Zambujal; sulfide ore deposit; proportion of sulfide; specific gravity
as a proxy; stochastic simulation; morphological model; metal grade model

1. Introduction

Geological models and metal grade models are fundamental tools used in the mining industry [1].
Both models are generated and constantly updated by taking into account the geological and
geochemical information, gathered during the investigations performed at different stages of a mining
project. The information provided by the geological modeling helps to better understand the geological
behavior of the study area, the spatial distribution of the ores and metal grades, and to further optimize
the mining works and mine planning.

The use of geostatistics for modeling mineral deposits boomed with the vulgarization of
drilling techniques, sampling and analytical determinations. Despite the increased computational
sophistication, traditional geological mapping plays an important role in modern modeling, because it
is a heuristic method of passing information to geological models [2,3].

Traditionally, the construction of a mineral deposit model involves the characterization of the
morphology and the contents of the elements with economic interest and penalties. In general,
the geostatistical evaluation of ore resources encompasses the main steps [1]: (i) definition of the
objectives of the study and database inventory, (ii) subdivision of the volume of interest of the mineral
deposit into a few regions according to contact with host rock, different ore types, etc. (morphological
model), (iii) zoning analysis of the mining variables according to the regions, (iv) creation of a
spatial model of each variable under study, (v) estimation of the values of each variable in the
non-sampled locations supported by a regular grid of blocks (model of metal grades), (vi) validation of
the estimated model, ensuring the consistency of the model with the available data and the geological
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domains, (vii) evaluation of resources and build of cut-off curves, and (viii) characterization of the local
uncertainty by the simulation of multiple scenarios. The uncertainty balances the available information
and its heterogeneity, and can further be used to plan newer boreholes [4].

A morphological model represents both the boundaries of the deposit and the ensemble of ore
types, which conditions the metals contents. In simple shape ore deposits, such as the stratigraphical
ones, modeling involves estimation of top and bottom surfaces. In more irregular shape deposits,
such as those of massive sulfides, the contact with the host rock is diffused and irregular, so possible
procedures are manual digitization of boundaries along several cross-sections, interpolation of surfaces,
and building a 3D solid (explicit modelling) [4,5]. Implicit modelling, encompassing the selection of
isovalues of scalar properties previously estimated over the entire volume of interest, emerges as an
alternative procedure [6,7]. When several types of ores condition the metal contents or properties of
interest, a high-resolution grid model of ore type is constructed. Here, geostatistical methodologies,
based on truncated plurigaussian modeling [8,9], or indicator formalism [10,11], such as indicator
kriging (IK), sequential indicator simulation (SIS), or simulation with multipoint statistics [4], are
currently being used.

The model of grades is primordially used for metal resources evaluations and cut-off curves and
should be built in accordance with the experimental data and the morphological model [1]. For this
purpose, geostatistical estimation methodologies provide the best linear unbiased and minimum error
solutions (kriging). On the other hand, geostatistical simulation methodologies provide several results
with the same probability of occurrence, which can then together be treated for local uncertainty
evaluation purposes (Turning Bands Method, Sequential Gaussian Simulation (SGS), and Direct
Sequential Simulation (DSS)) [10,12–15].

The results of kriging give a global estimate of resources. The simulation allows the generation
of several plausible scenarios with similar probability of occurrence, which reproduces the spatial
variability of the phenomenon by imposing the cumulative distribution function (cdf ) of the data,
the variogram and the data in its location [16]. The ensemble of simulated images can be used
to characterize the local and global uncertainty of the phenomenon under study, the planning of
exploration sequences and economic feasibility studies [11]. The two approaches, estimation and
simulation should be both applied in any case study, and globally they report similar quantities [17,18].

The Zambujal deposit of metal sulfides (Neves-Corvo Mine, Alentejo, Southern Portugal) is the
challenge case study examined in this paper. Lundin Mining Corporation, who also supplied the data
for the study, operates the deposit. The Zambujal deposit is a volcanogenic massive sulfide deposit
(VMS) of copper and zinc located in the southern Portuguese sector of the Iberian Pyrite Belt (IPB) [19].
It encompasses two ore types: massive ores (RM) in the top part and stockwork ores (RS) (both stringer
and impregnation types) in the bottom part. The stockworks contain sulfide metals and host rock in
variable proportions; it is important to note here that the extremely copper-rich ores in this domain
reflect zone refining and late enrichment by the remobilization processes. Clarke of copper (Cu) is
about 55 ppm (0.0055%), and the concentration clarke in chalcopyrite is 34.5/0.0055 = 6270 [20]; in
economic terms, the group of VMS constitutes of an important world supply of copper, which is one of
the top five metals used today. A better understanding of the genesis of copper deposits, encompassing
the spatial architecture of RM and RS ores is a critical issue concerning the extension of the already
discovered deposits and the prospection for new ones.

The cut-off grade of the primary metal in sulfide deposits, encompassing massive and stockwork
ores, should take into account the proportion of sulfides and host rock because flotation technologies
are more efficient in stockwork ores than in massive ores [21]. For this reason, in this study, it
was decided to model the morphological variable P(x), proportion of sulfides and host rock with
geostatistical approaches by using the rock specific gravity (SG) as a proxy. Also, for metal grades, an
auxiliary variable meaning relative Cu grades YCu(x) was modeled with geostatistics.
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MoveTM® software from Midland Valley (Glasgow, UK) was used for geological modeling and
visualization. Geostatistical simulations are performed using a high-performance parallel computing
version of the DSS algorithm [22,23].

2. Materials and Methods

2.1. Geological Background

The Neves-Corvo mine is a world-class copper mine in Europe, with a mining area that covers
13.5 km2 and an exploration concession area of about 112 km2. The mine is located in the Alentejo
region, about 220 km southeast of Lisbon. It exploits the richest ore deposit ever found in the IPB
and contains more than 300 Mt of massive sulfides, which is now considered a giant volcanogenic
massive sulfide [19,24–27]. Neves-Corvo encompasses six lenticular polymetallic orebodies, Neves,
Corvo, Graça, Zambujal, Lombador, and Semblana, which lie on both flanks of a main anticline [28].

The abnormal geochemistry of the Neves-Corvo is unique compared to the other deposits in the
IPB: it possesses uncommonly high copper to zinc ratios (100 Cu/(Cu + Zn) > 50%), which more than
doubles the other known deposits. The massive sulfide orebodies usually exhibit a classic lateral and
vertical metal zonation and rest on the felsic volcanic rocks. As a general rule, the copper-rich ores
occur at the base of the massive sulfide lenses, sometimes overlain by zinc-rich ores. Understanding
how exhalative volcanic massive sulfide deposits are formed, the environment in which they were
formed, and how the metals are saturated during genesis are critical to the exploration and exploitation
of these resources.

The Zambujal orebody, which is the focus of the present study, contains significant grades of
copper and zinc. It is estimated to be aerially about 600 m by 550 m with a maximum thickness of
55 m [28]. As said, it encompasses a mixture of two ore types, predominant massive ores (RM) in the
top part and stockwork ores (RS) (both stringer and impregnation types) in the bottom part.

The massive sulfides mineralization always appears to be intercalated with the black shales,
within locations with important silicified content. The massive lenses are connected and constitute
single well-defined stratigraphic horizons in Neves-Corvo. The most predominant sulfur mineral
is pyrite but chalcopyrite, sphalerite, and galena also occurs above 5%. Concerning the stockwork
mineralization, stringer, or fissure ore, it is composed of anastomosing veinlets networks (feeder
channels) and disseminations of sulfides that grade into massive sulfide lenses by coalescence of veins
and replacements. Stockworks occur principally in highly silicified and chloritized footwall volcanic
rocks. Sulfur minerals within stockwork ores are the same as within the massive ores, and host rock
occurs in variable proportions. The transition between massive ores and stockwork ores is quick
but without being abrupt, and this issue was decisive for the design of the methodology adopted
in this study. Figure 1 above display the SG and Cu grades along the depth of one representative
borehole intersecting the entire Zambujal orebody, the gradualness of the variations is clearly visible.
Distinction between ore types is a prior classification made by the mine company.
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Figure 1. Specific gravity (SG) and Cu grades along the depth of one borehole intersecting the entire
Zambujal deposit.

2.2. Methodology

A data-driven methodology was designed taking into account the irregular shape of the
Zambujal orebody, the blend between ores and the mining company recommendation for modeling a
morphological random variable proportion of sulfides within the rock matrix P(x). Stockwork ores
exhibit higher recovery of metals in mineral processing as compared to massive ores with equivalent
grades, because flotation separation between chalcopyrite and pyrite is lower in efficiency than between
chalcopyrite and host rock [21]. Despite the effective copper grades being much lower in the stockwork
ores than in the massive ores (internal dilution due to blend of small veins with host rock), the copper
grades in the fraction of sulfides within stockwork ores are in average more than the double of those in
the massive sulfides, and this issue increases the relevance of the stockwork ores even in regions with
poor copper grades.

Therefore, a high-resolution morphological model was built to quantify the local proportion of
sulfides for each block of the grid model (the random variable P(x)), followed by a model of relative
copper grades (the random variable YCu(x)) [29,30]. Both P(x) and YCu(x) are regionalized variables
and can be modeled by using geostatistical tools [10,11], and the total amounts of metals and ores can
be calculated directly from the estimated or simulated values of these variables.

For a sample location xi with a proportion of sulfide minerals P(xi) and effective grade of copper
ZCu(xi), the relative grade of copper YCu(xi) is evaluated by (1).

YCu(xi) = ZCu(xi) / P(xi) (1)

For instance, if a sample had a grade of 2% copper and a P(x) = 0.7, then the relative grade
of copper would be equal to 2%/0.7 = 2.86%. By doing so, the metal contents are recalculated and
modeled for the sulfide fractions rather than modeling the total copper content.

Modeling of the variable P(x) is no doubt important however it is not measured at borehole cores.
Thus, taking into account the principal paragenesis of the deposit, this work proposes the use of the
lab-measured SG available for all core boreholes plus the grades of the chemical elements as proxy
information for estimating P(x), first at borehole location and then for the entire deposit.

Combining grid models of both variables (P(x) and YCu(x)), a parametric resource of copper
surface relating the cut-off grade of copper and the proportion of sulfides (morphological constraint)
are readily constructed. The ability to construct such a surface in a straightforward way is an important
objective and outcome of this work.



Minerals 2017, 7, 238 5 of 16

The proposed methodology encompasses the following main steps:

1. Build a low-resolution 3D morphological model, delimiting the external boundaries and the main
transition between massive ores in the top (RM) and stockwork ores in the bottom (RS). For the
construction of this solid model, a classical procedure is used which involves digitalization of
closed polygons in several almost parallel cross-sections, interpolation of surfaces, merger of
surfaces in order to build a closed volume, and conversion of the volume into a voxel model (grid
mining blocks).

2. Taking into account the paragenesis of the Zambujal deposit, evaluate empirical cdf (s) of the
random variable P(x) at boreholes locations conditional to the SG, grades of metals and sulfur
grade all obtained from lab measurements to boreholes samples.

To compute local empirical cdf (s) of P(x), and as there is no linear relationship between P(x) and
the set of measured variables, and solutions are not unique, we use an approach based on multivariate
analysis. First, an extensive table combining all plausible mixtures of main minerals and host rock
of the Zambujal paragenesis are made. According to XRD and microscope polished surface analysis
already carried out by the mining company to several samples of ores [25], which are in line with the
chemical analyzes, only four minerals are present in quantities above 5% that justify the classification
proposed in this step: pyrite (FeS2, SG = 5.25), chalcopyrite (CuFeS2, SG = 4.20), sphalerite (ZnS,
SG = 3.85) and galena (PbS, SG = 7.5) together with host rock (average SG = 2.70). For each mixture
combination, theoretical values of SG’ and grades of Cu’, Zn’, Fe’, Pb’, and S’ are computed making
use of the chemical formulas and the atomic weights of chemical elements.

For the sake of illustration; for a mixture of 30% of host rock with, 30% of pyrite and 40% of
chalcopyrite, P(x) = 0.70, theoretical computed values are: Fe = 26.14%, S = 30.01%, Cu = 13.85%, and
SG = 4.10. Another example, a mixture of 70% of host rock, with 8% of pyrite, 12% of chalcopyrite,
3% of sphalerite and 7% of galena, P(x) = 0.30, will have the following results: Fe = 7.38%, S = 10.39%,
Cu = 4.16%, Zn = 2.01%, Pb = 6.06%, and SG = 3.52.

After this extensive theoretical table of mixtures is completed, each set of observed grades of Cu,
Zn, Fe, Hg, and S and SG of each core sample of Zambujal are then compared with each row of the
theoretical table, and the set of mixtures with the most similar grades and SG are selected. The set of
selected rows are able to build a local empirical cdf of the variable P(x). To evaluate the similitude
between theoretical values and lab-measured values, due to different variable dispersions, the Gower
distance [31] is used.

3. For estimation plus simulation of ns1 scenarios of this variable, generate ns1 scenarios of P(x)
for each borehole sample and compute their average. The Probability Field Simulation (PFS)
algorithm [32] is used to draw values from the local cdf (s), instead of Monte Carlo simulation, as
it accomplishes with both the local cdf (s) and the spatial continuity model of P(x).

4. Compute the auxiliary variable relative copper grade YCu(x) at sample locations. By using the
values generated in step 3, ns1 scenarios of YCu(x) plus the average scenario are obtained.

5. Estimate regional cdf (s) of the studied random variables P(x), YCu(x) and SG(x) for both regions
RM and RS by Indicator Kriging (IK) and estimate average images of those variables by Ordinary
Kriging (OK) [33].

6. Build a high-resolution morphological model of P(x) only within the blocks of each region RM or
RS, with Direct Sequential Simulation (DSS) conditional to the cdf (s) per ore type region [34].

7. Similarly to P(x), simulate the relative grade of Cu YCu(x) by using DSS conditional to cdf (s) per
ore type region [34]; ns = ns1·ns2 realizations are simulated, ns2 for each one of ns1 realizations
of P(x).

8. Calculate ore tonnages, Cu metal tonnages, and average grades with OK results [1,35].
Consider nb the total number of mining blocks, vb the unitary block volume, Z∗

Cu(x) OK estimates



Minerals 2017, 7, 238 6 of 16

of copper grade, and D∗(x) OK estimates of SG, the average grade and total copper tonnage is
given by

Z∗
Cu =

∑nb
i=1 Z∗

Cu(xi)

nb
TCu1 =

nb

∑
i=1

(Z∗
Cu(xi)·SG∗(xi)·vb) (2)

For relative grades, where Y∗
Cu(x) is the OK estimate of relative copper grade, the same values are

given by

Y∗
Cu =

∑nb
i=1 Y∗

Cu(xi)

nb
TCu2 =

nb

∑
i=1

(Y∗
Cu(xi)·P∗(xi)·DG∗(xi)·vb) (3)

For simulated relative grades, the calculations are as follows:

YS
Cu =

∑nb
i=1 ∑ns

s=1 Ys
Cu(xi)

nb.ns
TCu3 =

nb

∑
i=1

ns

∑
s=1

(
Ys

Cu(xi)·Ps(xi)·SG∗(xi)·vb
)

ns
(4)

For sake of validation, both results must be of the same magnitude: TCu1 ∼ TCu2 ∼ TCu3 .

9. Evaluate uncertainty, computing local variance of the simulated values for P(x) and YCu(x).
10. Build a parametric global surface of copper metal tonnages and function of cut-off copper grades

in massive ores and in stockwork ores.

Two notes:

(1) Variables P(x), ZCu(x) and YCu(x) are not stationary within the Zambujal deposit but are rather
constrained to ore types. For this reason, it was essential to delimit RM and RS bodies with 3D
computer solids and to constrain the simulations to the regional cdf (s) of the studied variables per
RM or RS ore type. A modified version of DSS in which the simulated values are resampled from
the regional cdf (s) is used to simulate the entire deposit [34] (steps 6 and 7 of the methodology).

(2) The boreholes assays are made mostly at one meter length and the block size is 2 m × 2 m × 2 m
(this is the size of the mining blocks used by the mining company, since it is considered the most
suitable for stope design and mine planning). In order to make these scales compatible, prior to
the application of the OK and DSS, the values of the boreholes are transferred to the blocks of
the model that contained them, and when there are several samples in each block the arithmetic
mean is made.

3. Case Study and Results

The case study follows the previous mentioned steps, combining geological heuristic mapping,
kriging estimation and stochastic simulation algorithms. The database provided by Lundin Mining
compiles information from more than 300 boreholes, for a total of about 58 km of drills. This database
contains four tables of data concerning borehole information, survey, geology/ores and assays.
With fewer exceptions, the boreholes assays are reported to one meter length intervals. It has
implemented a quality assurance/quality control (QAQC) program to monitor sampling selection,
sample preparation, and analytical process in order to assess the confidence in the stored data.

For sake of confidentiality, quantities are presented in all figures and tables previously multiplied
by a constant.

3.1. Low Resolution 3D Morphological Model

The two mineralized domains RM and RS were manually digitized along several parallel
cross-sections according to the borehole data and expertize heuristics. The distinction between RM
and RS in boreholes used the classification already proposed by the mining company. Then, three
surfaces were interpolated: the top of the massive ore (RM), the bottom of the massive ore/top of the
stockwork ore (RS), and the bottom of the RS (Figure 2a). The digitalization ensures a closed volume
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between surfaces. Then, this model of surfaces was converted into a mining block model (block size
2 m × 2 m × 2 m, total number of blocks is 1,505,350) coded by RM or RS (Figure 2b).
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3.2. Evaluate the Empirical Cdf of the Random Variable P(x) at Boreholes Locations

Before the geostatistical steps, the variable P(x) was estimated for all samples following the
procedure mentioned in step 2 of Section 2.2. To make this estimate at the sample locations, the
measured levels of the most abundant chemical elements (Fe, Cu, Zn, Sn, Pb, and S) were used, as well
as the SG(x) of the sampled cores and the main minerals of the deposit (pyrite, chalcopyrite, galena,
blend) plus host rock. Table 1 lists the main minerals of Zambujal, chemical formulas, specific gravity,
and theoretical chemical element percentages according to the atomic numbers of the elements. It is
important to emphasize the difference between the specific gravity of the host rock (about 2.8) and the
specific gravity of the sulfide minerals (all above 4).

Table 1. Main minerals of Zambujal, chemical formulas, specific gravity, and theoretical metal grades.

Minerals/Rock Formulas SG Fe (%) S (%) Cu (%) Zn (%) Pb (%)

Pyrite FeS2 5.02 47 53
Chalcopyrite CuFeS2 4.20 30 35 35

Sphalerite ZnS 4.00 33 67
Galena PbS 7.50 13 87

Host rock 2.80

An extensive table listing all admissible combinations of these minerals and the host rock was then
made with a resolution of 1% for proportion, and, for each combination, the theoretical values of the
element grades (based on the chemical formulas) and the composite specific gravity were computed.
Table 2 shows eight examples of the 4,598,126 identified as plausible.
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Table 2. Eight examples of mixtures of sulfide minerals and host rock and calculated grades of Cu, Pb,
Zn, S, and Fe and SG and P(x).

Mixtures of Host Rock (HR) and Minerals (%) Calculated Values of Grades (%)
SG’ P’(x)

HR FeS2 CuFeS2 ZnS PbS Cu’ Pb’ Zn’ S’ Fe’

0 0 0 0 100 0 86.6 0 13.4 0 7.5 100
0 20 10 50 20 3.64 17.32 33.55 33.32 12.34 4.924 100

20 10 20 30 20 7.28 17.32 20.13 24.88 10.73 4.582 80
20 10 50 20 0 18.2 0 13.42 29.38 19.85 3.942 80
30 10 30 30 0 10.92 0 20.13 25.69 13.77 3.772 70
40 40 0 10 10 0 8.66 6.71 26.03 18.6 4.238 60
50 20 10 10 10 3.64 8.66 6.71 18.82 12.34 3.924 50

100 0 0 0 0 0 0 0 0 0 2.7 0

Then, the laboratory-measured values of grades and SG are compared with each item of the
extensive table, and a set of the closest combination of minerals plus host rock was extracted. Based on
a sensitivity analysis for a selected set of 5% of the available assays [28], 10 theoretical mixtures of
minerals plus host rock were considered sufficient to characterize the local empirical cdf. Each selected
set of 10 values constitutes the local empirical cdf of P(x) variable at the locations of the boreholes.
Figure 3a shows the histogram of the averages of the values of P(x) and Figure 3b shows the histogram
of the coefficients of variation (dispersion measurement of the cdf ).Minerals 2017, 7, 238  8 of 15 
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Figure 3. (a) Histogram of average values of P(x) and (b) histogram of variation coefficients of P(x).

Values of P(x) clearly show two populations, respectively, for RM and RS ores, and the separation
threshold is about 0.6 (up to 60% of sulfides is stockwork, above 60% is massive ores). For the majority
of the cdf (s), the coefficient of variance is low (for 80% of the cdf (s) it is below 0.15). The maximum
observed range of P(x) (max-min) was 0.1 and the average range of all solutions was 0.04. These values
substantiate the proposed estimation of the local P(x) cdf (s).

3.3. Estimation and Simulation of P(x), ZCu(x)and YCu(x) Variables

Cdf (s) of P(x) were used for variography, estimation and simulation of this variable within the
entire deposit of Zambujal, as well as the calculation of relative grades YCu(x) at borehole locations.

To identify the principal structural directions of the deposit, experimental variograms were
computed for more than 20 directions according to the direction of the boreholes for all modeled
variables [28]. Besides, for nugget effect evaluation, downhole variograms were also computed.
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Based on the results, three orthogonal directions: (1) W-E and 20◦ dip (90◦; −20◦), (2) N-S, horizontal
(0; 0), and (3) W-E with 70◦ dip (90◦; 70◦) were selected as principal directions. The directions (1) and (3)
are contained in the plane of the sections used in the previous step of digitalization, while the
direction (3) intersects those sections. The nugget effect displayed by downhole variograms is about 5%
for P(x) and 10% for ZCu(x) and YCu(x); because these amounts themselves are relatively low and with
the upscaling between the borehole scale and the block model scale, no nugget effect was considered
for OK or DSS.

Experimental variograms adjustments are of good quality for all variables. All variograms were
fitted with spherical functions (SPH) and no nugget effect was added. Anisotropy ratio is remarkable
for variables P(x) and SG(x) about 6×, major range is 300 m and minor range is 60 m. For grades and
relative grades anisotropy ratio is much smaller about 1.33×, major range is about 40 m and minor
range is 30 m. Figure 4 shows the experimental variograms for P(x) in the above-mentioned directions
and Figure 5 the experimental variograms for YCu(x) for the same directions.
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The proportion of sulfide ore minerals P(x) was simulated using DSS for the two regions (RM 
and RS) at once. Instead of using a global cdf, the simulation of P(x) was performed using a modified 
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P(x)|RM and P(x)|RS are estimated using IK of 20 P(x) classes. 
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namely the use of IK to estimate conditional cdf of YCu(x)|RM and YCu(x)|RS, followed by DSS with 
local histograms. 

Figure 6 displays 3D views of average values of P(x) and YCu(x) variables. For sake of 
comparison, Figure 7 shows a set of results in an intermediate vertical cross-section of the model, W-
E oriented. 

Figure 4. Experimental variograms of P(x) and YCu(x) variables for the three mentioned directions:
W-E 20◦ E (90◦; −20◦), N-S (0◦; 0◦) and W-E 70◦ W (90◦; 70◦). (a) SPH1 (C1 = 0.128; a1 = 300 m);
(b) SPH1 (C1 = 0.128; a1 = 200 m); (c) SPH1 (C1 = 0.128; a1 = 60 m); (d) SPH1 (C1 = 15,127; a1 = 40 m);
(e) SPH1 (C1 = 15,127; a1 = 30 m); (f) SPH1 (C1 = 15,127; a1 = 35 m).

As explained before, the next experimental steps are: (i) draw values from the local cdf (s) of P(x),
(ii) estimation of P(x), ZCu(x) and YCu(x) variables by OK, and (iii) DSS of P(x) and YCu(x) variables.
Thirty realizations of P(x) plus three realizations of YCu(x) for each one of P(x) are performed: (ns = 90;
ns1 = 30; ns2 = 3). Ninety realizations for YCu(x) are common for simulation of variables of this type,
and the smooth appearance of the output images of uncertainty confirms this issue. Figure 5 shows a
3D view of a single from the thirty realizations of P(x) at the locations of the boreholes done by PFS.
It became perceptible that the higher values are at the top of the structure and the lower values at
the bottom.
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Figure 5. 3D view of a realization of P(x) at the locations of the boreholes. Red colors represent higher
values of P(x) (massive ores at top), and blue-based colors refer to lower values of P(x) (stockwork ores
at bottom).

The proportion of sulfide ore minerals P(x) was simulated using DSS for the two regions (RM
and RS) at once. Instead of using a global cdf, the simulation of P(x) was performed using a modified
version of DSS that uses local cdf (s) for each region, P(x)|RM and P(x)|RS. For declustering purposes,
P(x)|RM and P(x)|RS are estimated using IK of 20 P(x) classes.

The simulation of relative copper grades YCu(x) follows the same approach as taken for P(x),
namely the use of IK to estimate conditional cdf of YCu(x)|RM and YCu(x)|RS, followed by DSS with
local histograms.

Figure 6 displays 3D views of average values of P(x) and YCu(x) variables. For sake of comparison,
Figure 7 shows a set of results in an intermediate vertical cross-section of the model, W-E oriented.Minerals 2017, 7, 238  10 of 15 
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Figure 6. 3D view of (a) average values of proportion variable P(x); (b) average relative copper grades
YCu(x) (%).

From Figures 5, 6a and 7b,e,f, higher values of P(x) are located at the top of the structure, and
lower values at the bottom, and the transition between the two regions is quick; in fact, histogram of
Figure 3 supports this issue.

Figures 6b and 7c,d,h,i show that the relative grades in stockwork ores are significantly higher
than those in the massive ores. The transition of grades between regions is smooth, which is in
accordance with the variability of the grades along the boreholes.
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It is important to note that the values obtained with (5) are similar to the estimated ones, and the 
range is similar. This evidence is a good indicator that the proposed methodology can be applied and 
does not bias the results. 

In addition, for validation of results, the average of grades obtained by using OK and DSS for 
the massive ore region, the stockwork ore region, and both regions combined is compared in  
Table 3. Deviations are very small, confirming that the use of relative grades YCu(x) and DSS with 
local histograms generates unbiased realizations. 

Figure 7. Results in an intermediate cross-section: (a) RM (in blue) and RS (in red) regions according the
3D solid model; (b) kriging estimated image of P(x); (c) kriging estimated image of ZCu(x); (d) kriging
estimated image of YCu(x); (e) one of the thirty simulated images of P(x); (f) average image of P(x)
calculated from simulations; (g) image of variance (uncertainty) calculated from the set of simulated
images of P(x); (h) one of the ninety simulated images of YCu(x); (i) average image of YCu(x) calculated
from simulations; (j) image of variance (uncertainty) calculated from the set of simulated images
of YCu(x); (k) binary image of variance (uncertainty) identifying the 25% of blocks with lower local
variance calculated from the set of simulated images of P(x); (l) binary image of variance (uncertainty)
identifying the 25% of blocks with lower local variance calculated from the set of simulated images
of YCu(x).
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For sake of validation, histograms and variograms of selected realizations were computed and
the results (Figure 8 show an example of one realization of P(x) and YCu(x)) show that they are quite
well reproduced [28]. Also, copper grades were computed from the inverse relationship.

Z∗
Cu(xi) = Y∗

Cu(xi)· P(xi) (5)
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It is important to note that the values obtained with (5) are similar to the estimated ones, and the
range is similar. This evidence is a good indicator that the proposed methodology can be applied and
does not bias the results.

In addition, for validation of results, the average of grades obtained by using OK and DSS
for the massive ore region, the stockwork ore region, and both regions combined is compared in
Table 3. Deviations are very small, confirming that the use of relative grades YCu(x) and DSS with local
histograms generates unbiased realizations.

Table 3. Summary of ore volumes and tonnages, average proportions, mean and variance (VAR)
of grades and relative grades obtained by Ordinary Kriging (OK) and Direct Sequential Simulation
(DSS) approaches.

Variable Item RM RF RM + RF

3D solid model

Number of blocks 737,049 1,802,404 2,539,453
Ore volume (m3) 5,896,392 14,419,232 20,315,624

[SG(x)]OK 4.394 3.125 3.497
Ore tonnage (tons) 25,908,746 45,060,100 70,968,846

Morphological
model of P(x)

[P(x)]OK 0.756 0.184 0.350
VAR[P(x)]OK 1.18 × 10−6 1.42 0.097

[P(x)]DSS 0.768 0.176 0.348
VAR[P(x)]DSS 1.08 × 10−6 2.05 × 10−7 0.099

Copper metal
grades ZCu(x) and

copper relative
grades YCu(x)

[ZCu(x)]OK 1.050 0.549 0.695
VAR[ZCu(x)]OK 2.44 × 10−6 3.71 × 10−7 1.740

[YCu(x)]OK 1.465 3.289 2,763
[YCu(x)]DSS 1.482 3.339 2.795

[YCu(x)]OK·[P(x)] OK 1.051 0.545 0.692
VAR[YCu(x)]OK·[P(x)] OK 1.92 × 10−6 3.25 × 10−7 1.629
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3.4. Construction of the Tonnage-Surface Function for Copper Grades and Geological Dilution

Using the simulated values of the variables P(x) and YCu(x), average estimates for [P(xi)]*,
[YCu(xi)]*, and [ZCu(xi)]* = [P(xi)]*·[YCu(xi)]* were computed for each mine block xi. The tonnage of
copper (TCu) within each mine block xi with volume V and ore specific gravity SG(xi) is given by:

TCu(xi) = V·SG(xi)·[P(xi)]· [YCu(xi)]/100 (6)

A surface representing the total average tonnage of copper as function of copper cut-offs for both
massive (RM) and stockwork ores (RS) is now presented in Figure 9a; two vertical planes are also
displayed: (blue) equal copper cut-offs for massive and stockwork ores; (green) cut-offs for massive
ores are 1.2× of the ones of stockwork ores. The two corresponding cut-off curves, respectively for
equal cut-off grades and richer copper cut-offs in RM than is RS (1.2×) are displayed in Figure 9b.
The classification of each block as RM or RS ore type was done by applying a threshold value of 60%
(0.6) to the morphological model of P(x) (see Figure 3a).
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Copper metal 
grades ZCu(x) and 

copper relative 
grades YCu(x) 

[ZCu(x)]OK 1.050 0.549 0.695 
VAR[ZCu(x)]OK 2.44 × 10−6 3.71 × 10−7 1.740 

[YCu(x)]OK 1.465 3.289 2,763 
[YCu(x)]DSS 1.482 3.339 2.795 

[YCu(x)]OK·[P(x)] OK 1.051 0.545 0.692 
VAR[YCu(x)]OK·[P(x)] OK 1.92 × 10−6 3.25 × 10−7 1.629 

3.4. Construction of the Tonnage-Surface Function for Copper Grades and Geological Dilution 

Using the simulated values of the variables P(x) and YCu(x), average estimates for [P(xi)]*, 
[YCu(xi)]*, and [ZCu(xi)]* = [P(xi)]*·[YCu(xi)]* were computed for each mine block xi. The tonnage of 
copper (TCu) within each mine block xi with volume V and ore specific gravity SG(xi) is given by: 

େܶ୳(ݔ) = ܸ · (ݔ)ܩܵ · ሾܲ(ݔ)ሿ · ሾ େܻ୳(ݔ)ሿ/100 (6) 

A surface representing the total average tonnage of copper as function of copper cut-offs for both 
massive (RM) and stockwork ores (RS) is now presented in Figure 9(a); two vertical planes are also 
displayed: (blue) equal copper cut-offs for massive and stockwork ores; (green) cut-offs for massive 
ores are 1.2× of the ones of stockwork ores. The two corresponding cut-off curves, respectively for 
equal cut-off grades and richer copper cut-offs in RM than is RS (1.2×) are displayed in Figure 9(b). 
The classification of each block as RM or RS ore type was done by applying a threshold value of 60% 
(0.6) to the morphological model of P(x) (see Figure 3(a)). 

(a) (b) 

Figure 9. (a) Copper tonnages resources as a function of copper cut-off grades for both massive ores 
(RM) and stockwork ores (RS); (b) cut-off curves corresponding to equal cut-off grades within RS and 
RS ores and richer copper cut-offs in RM than is RS (1.2×). 

Figure 9. (a) Copper tonnages resources as a function of copper cut-off grades for both massive ores
(RM) and stockwork ores (RS); (b) cut-off curves corresponding to equal cut-off grades within RS and
RS ores and richer copper cut-offs in RM than is RS (1.2×).

The maximum resource is 528,000 tons and is computed for all blocks independently of the copper
grade and of being RM or RS ore type. If a Cu cut-off of 1.3% is applied for the entire deposit (RM + RS),
the available copper tonnage is 261,905 tons (line in blue at Figure 9b). However, if a Cu cut-off of
1.3% is applied for the RM ore and Cu cut-off of 1.08% is applied for RS ores (line in red at Figure 8b,
ZRM

Cu (x) = 1.2 ZRS
Cu(x)), the available copper tonnage increased to 280,100 tons.

4. Discussion and Conclusions

The proposed methodology highlights the importance of the stockwork ores in the Zambujal
deposit, and as mineral processing is more efficient in stockwork ores, metal cut-offs should take into
account the proportion of sulfides relative to host rock. Also, Zambujal stockwork ores present lower
grades of penalty elements, such as lead, arsenic, and bismuth.

When building a grade model of a VMS deposit with massive ores and stockwork, it is important
to take into account the following issues:

1. The proportion between sulfides and host rock P(x) can be modeled as a morphological
random variable. Local values of P(x) at the borehole locations allow calculating the auxiliary
variable relative copper grades YCu(x), meaning the hypothetical metal grades if host rock is
not considered.
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2. Modeling the relative copper grades variable YCu(x) together with the proportion variable P(x),
adds information to each mine block and enables the establishment of conditional cut-off grades
to grades and morphology.

The variables in this study are modeled by using Ordinary Kriging (OK) and Direct Sequential
Simulation (DSS). OK allows estimating the best unbiased total amount of ores and metal for each
domain (RM and RS). In the present case study, OK and DSS results are of the same order of magnitude
(see Table 3); hence, no bias was made in any calculation.

Given the available information, the realizations generated by the simulation algorithm, allows
for an evaluation of the locations with highest uncertainty, taking into account the distance to the
closest samples, the spatial continuity and the local heterogeneity of the observations. The Zambujal
deposit has sufficient information to show results almost everywhere with confidence.

The proposed methodology is relevant in the sense that geostatistics demonstrated the
importance of the stockwork ores in the Neves-Corvo deposits, in particular the Zambujal deposit.
The Neves-Corvo deposit is known to possess an uncommonly high copper to zinc ratio. In the deeper
parts of the ore masses, corresponding to the stockwork ores, it is important to note the extremely
copper rich ores reflect zone refining and late enrichment. One relevant point is the fact that stockwork
ores are usually undervalued because high metal grades are diluted by the host rock within this region.
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