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Abstract: Coral skeletons are built by Ca-carbonate (calcite or aragonite) crystals that exhibit distinct
morphological patterns and specific spatial arrangements that constitute skeletal microstructures.
Additionally, the long-standing recognition that distinct coral species growing in similar conditions
are able to record environmental changes with species-specific responses provides convincing
evidence that, beyond the thermodynamic rules for chemical precipitation, a biological influence
is at work during the crystallization process. Through several series of comparative structural and
geochemical (elemental and isotopic) data, this paper aims to firmly establish the specific properties
of the distinct major taxonomic units that are commonly gathered as deep-water “corals” in current
literature. Moreover, taking advantage of recent micrometric and infra-micrometric observations,
attention is drawn to the remarkable similarity of the calcareous material observed at the nanoscale.
These observations suggest a common biomineralization model in which mineralogical criteria are
not the leading factors for the interpretation of the geochemical measurements.

Keywords: deep-sea corals; vital effects; elemental ratios; biomineralization; nanograins; boron
isotopes; oxygen and carbon isotopes

1. Introduction

Reconstructing accurate environmental parameters for seawater is one of the main goals in
paleoceanography as interactions between seawater and atmosphere have many implications on the
Earth climate system. The conditions of the sea surface (e.g., Temperature, Salinity, pH) are well-studied
from diverse biocarbonates with the pioneering works of [1–3]. Since the 1990s, deep-sea scleractinian
aragonitic corals (DSSC, Figure 1c,d) have been used as deep-ocean archives to mainly characterize the
physico-chemical properties of deep-water masses from their oxygen isotopic compositions, 14C content
and elemental ratios ([4–8] and references therein). While paleoclimatic applications involving DSSC
are numerous (e.g., [9–13]), fundamental questions on the understanding of their biomineralization
mechanisms are still under debate (e.g., [8,14–16]).
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Figure 1. Deep-Sea Scleractinia corals (DSSC) and Deep-Sea Octocoralla Corals (DSOC). (a–d) 
Morphology and microstructure in one of the most studied DSSC: Lophelia pertusa. Dendroid colonies 
(a) are built by simple corallites (b) with radial linear septa and thick walls (c–e). Thin sections of 
septa exhibit typical crystal-like fibers perpendicular to the median continuous area). (e) Axis and 
polyps in one of the studied DSOC specimen (cf. Acanella sp., Muséum National d’Histoire 
Naturelle-MNHN-collections, Paris); (f) red arrow indicates the solid axis (normally covered by the 
common tissues joining the polyps) and yellow arrows point to the calcareous spicules that form the 
dense but flexible skeleton of the polyps; and (g) view of the articulated solid axis and the studied 
section (named Terrasses from the place it was collected). 

More recently, to extend the range of paleoceanographic data and to overcome the problem 
linked to biomineralization processes, the scientific community has been interested in another type 
of coral, calcitic in nature, the deep-sea octocorallian corals (DSOC, Figure 1a,b) (e.g., [17–23]). DSSC 
and DSOC both share the advantages of being well distributed in the global oceans over a large 
range of depth and having a long longevity [24]. However, their use as environmental archives is 
complicated by physiological factors (the so-called vital effects) [2]. The effects of these factors have 
been more commonly described for DSSC, and they could include processes like change in the 
chemistry of the calcifying medium via active biological pumps, increase of the internal pH [25–27], 
and kinetic effects [28–30]. In DSSC, the main particularity is the link between the geochemical 
signature and the optically observable microstructures, i.e., centers of calcification and fibers ([31], 
for a review see [8,15]; and references therein). These microstructures were first observed in tropical 
corals and were described as “the points from which fibers diverge” [32]. However, these 
microstructures seem not to be present in DSOC, implying that these corals could be easier to utilize 
as paleoenvironmental archives relative to DSSC.  

Calcareous skeletons built by the Scleractinia corals (Anthozoa Hexacoralla) and the Bamboo 
corals (Octocoralla, Isididae) exhibit clear differences with respect to the anatomical relationship 
between the soft tissues and the underlying calcareous hard-parts. In both cases, formation of the 
solid skeletons is due to mineralizing activity of the basal ectodermic epithelium but, in Bamboo 
corals, the polyps are not involved in the formation of the massive axes.  

The main calcareous structure on which chemical measurements are carried out is produced by 
the basal ectoderm of the animal but only by the part of the soft tissues that join the polyps together 
(Figure 1f). Polyps of the Bamboo corals have their own mineralizing activity but, as in many 
Octocoral families, polyps of the Bamboo corals also produce tiny calcareous units called the 
spicules (Figure 1f) that are built by either a single or a small number of associated ectodermal cells. 
Morphological diversity of these spicules is remarkable and clearly linked to taxonomy. Each species 
produces its own specific assemblage of spicules where morphologies are so diverse and precise that 
they have been used as taxonomic criteria since the early corallian studies. Unfortunately, although 
closely bound together during polyp life, the spicules remain basically free and are typically 

Figure 1. Deep-Sea Scleractinia corals (DSSC) and Deep-Sea Octocoralla Corals (DSOC).
(a–d) Morphology and microstructure in one of the most studied DSSC: Lophelia pertusa. Dendroid
colonies (a) are built by simple corallites (b) with radial linear septa and thick walls (c–e). Thin sections
of septa exhibit typical crystal-like fibers perpendicular to the median continuous area). (e) Axis
and polyps in one of the studied DSOC specimen (cf. Acanella sp., Muséum National d’Histoire
Naturelle-MNHN-collections, Paris); (f) red arrow indicates the solid axis (normally covered by the
common tissues joining the polyps) and yellow arrows point to the calcareous spicules that form the
dense but flexible skeleton of the polyps; and (g) view of the articulated solid axis and the studied
section (named Terrasses from the place it was collected).

More recently, to extend the range of paleoceanographic data and to overcome the problem linked
to biomineralization processes, the scientific community has been interested in another type of coral,
calcitic in nature, the deep-sea octocorallian corals (DSOC, Figure 1a,b) (e.g., [17–23]). DSSC and
DSOC both share the advantages of being well distributed in the global oceans over a large range of
depth and having a long longevity [24]. However, their use as environmental archives is complicated
by physiological factors (the so-called vital effects) [2]. The effects of these factors have been more
commonly described for DSSC, and they could include processes like change in the chemistry of
the calcifying medium via active biological pumps, increase of the internal pH [25–27], and kinetic
effects [28–30]. In DSSC, the main particularity is the link between the geochemical signature and the
optically observable microstructures, i.e., centers of calcification and fibers ([31], for a review see [8,15];
and references therein). These microstructures were first observed in tropical corals and were described
as “the points from which fibers diverge” [32]. However, these microstructures seem not to be present
in DSOC, implying that these corals could be easier to utilize as paleoenvironmental archives relative
to DSSC.

Calcareous skeletons built by the Scleractinia corals (Anthozoa Hexacoralla) and the Bamboo
corals (Octocoralla, Isididae) exhibit clear differences with respect to the anatomical relationship
between the soft tissues and the underlying calcareous hard-parts. In both cases, formation of the solid
skeletons is due to mineralizing activity of the basal ectodermic epithelium but, in Bamboo corals,
the polyps are not involved in the formation of the massive axes.

The main calcareous structure on which chemical measurements are carried out is produced by
the basal ectoderm of the animal but only by the part of the soft tissues that join the polyps together
(Figure 1f). Polyps of the Bamboo corals have their own mineralizing activity but, as in many Octocoral
families, polyps of the Bamboo corals also produce tiny calcareous units called the spicules (Figure 1f)
that are built by either a single or a small number of associated ectodermal cells. Morphological
diversity of these spicules is remarkable and clearly linked to taxonomy. Each species produces its own
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specific assemblage of spicules where morphologies are so diverse and precise that they have been
used as taxonomic criteria since the early corallian studies. Unfortunately, although closely bound
together during polyp life, the spicules remain basically free and are typically dispersed after decay
of the polyp tissues. This makes a precise identification of the fossil axes generally impossible at the
species level. Contrastingly, in the Scleractinia, either solitary (Figure 1a,b) or colonial, the polyp
itself is the mineralizing unit. However, in many colonial forms, individuality of the polyps is hardly
recognizable (e.g., Figure 2d).
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from the collection of the Muséum National d’Histoire Naturelle (MNHN) of Paris integrated in a 
comparison involving results from the literature. The new results generated from analyses of these 
Bamboo corals were then compared to the Scleractinia literature data, allowing for parallels to be 
drawn between this geochemical synthesis and a series of observation data illustrating recent 
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Figure 2. Taxonomy-linked skeletal patterns in the Scleractinia: (a–c) distal growth edge of Favia
fragum; and (d–f) Distal growth edge of Diploria labyrinthica. These species illustrate the specific and
easily recognizable morphologies of the distal growth edges, each of them corresponding to a specific
distribution of the two distinct mineralizing areas. (g,j) Organization of calcareous components in
the septum of the DSSC Lophelia sp. The linear septum of the Lophelia corallites (see Figure 1a,b) is
built by two microstructurally distinct areas: the distal growth edge (h); and symmetrically deposited
onto lateral sides the layers of fibrous tissue (i). Interestingly, these two microstructurally distinct
aragonitic compartments (j) exhibit specific and strongly distinct chemical, biochemical and isotopic
properties [8,15,29], although synchronically deposited by the basal ectoderm layer of the polyp.

To test the potential difference between the aragonite or calcite mineralizing corals, we present
in this study bulk and in situ elemental (Li, Na, Mg, and Sr) and isotopic (δ18O, δ13C and δ11B)
measurements in samples of gorgonian Bamboo corals carried out on recently collected samples
from the collection of the Muséum National d’Histoire Naturelle (MNHN) of Paris integrated in a
comparison involving results from the literature. The new results generated from analyses of these
Bamboo corals were then compared to the Scleractinia literature data, allowing for parallels to be
drawn between this geochemical synthesis and a series of observation data illustrating recent changes
in the concept of crystalline calcium carbonate polymorphs (viewed as the basic unit of coral skeletons).
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2. Materials and Methods

2.1. Scleractinian Coral and Octocorallan Coral

In the Scleractinia, nowhere is the precise biological control exerted by the polyp on Ca-carbonate
deposition more visible than at the growing edge of the septa, as illustrated by Figure 2b,c,e,f.
The obvious control exerted by the polyp on the morphology of its skeletal components explains
why, from Milne-Edwards [33] up to Wells [34], morphology was almost exclusively used as taxonomic
criteria. However, at the end of the 19th century, the pioneering investigations of Ogilvie [32]
initiated a new taxonomical approach by studying the microstructure of the coral skeletons, i.e.,
the three-dimensional arrangements of the fibrous units that built the septa and walls of the corallites.
The remarkably simple organization of the skeleton in the DSSC Lophelia illustrates the surprising
difference in the crystallization pattern between the two areas that are involved in building the septa
and walls in every Scleractinia coral (Figures 1c,d and 2g,j).

Remarkably, this innovative method was almost universally rejected over decades. The main
reason is that observation of thin sections of coral observed in transmitted polarized light (Figure 3a),
and later confirmed by Scanning Electron Microscope (SEM) views (Figure 3b,c) provides obvious
support to the concept of “spherulitic crystallization” as a mechanism for skeleton formation in
corals [35]. Reinforced by the statement that coral skeletons were “biologically induced” structures
(i.e., with skeletal organization weakly controlled [36,37]), this resulted in the long-term consensus that
the chemical measurements made on coral skeletons can be interpreted only from a purely chemical
and thermodynamic viewpoint.
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fractionations made obvious the existence of a biological mechanism able to influence not only the 
morphology of the scleractinian coral skeletons, but also their composition up to the isotopic level (as 
hypothesized by Urey et al. [2] by the expression “vital effect”). Several decades of chemical and physical 
investigations were required to establish converging support to the Weber and Woodhead [38] evidence 
by showing that, up to the nanometric level, specific organic components interfere with the 
crystallization process. In this slow methodological progression, evidence of the specific 
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Figure 3. The crystal-like fibers and spherulitic crystallization of coral skeletons (a,c) and the
biochemical evidence of an initial mineralization area with specific biochemical properties. (a,b) Thins
section viewed in polarized light (a); and SEM picture of a fracture surface clearly support the concept
of “spherulitic crystallization” of the fibers (c); (d–g) The initial mineralization area in Montasdrea (d)
illustrates: the biochemical specificity by UV fluorescence (e); acridine orange staining (f); and XANES
(X-ray Absorption Near Edge Structure) mapping of sulfated polysaccharides (g).

From a historical perspective, Weber and Woodhead [38] were able to establish the first data that
progressively led to an opposite view. The species-specific differences of oxygen isotopic fractionations
made obvious the existence of a biological mechanism able to influence not only the morphology of
the scleractinian coral skeletons, but also their composition up to the isotopic level (as hypothesized by
Urey et al. [2] by the expression “vital effect”). Several decades of chemical and physical investigations
were required to establish converging support to the Weber and Woodhead [38] evidence by showing
that, up to the nanometric level, specific organic components interfere with the crystallization process.
In this slow methodological progression, evidence of the specific composition and structure of the
initial mineralization area was an important step, illustrated by Figure 3d–g. Interestingly, the essential
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role of these early mineralizing areas as the developmental framework of coral skeletons was proposed
more than a century ago in paleontological investigations by Volz [39] who termed the shape formed
by these particular areas “urseptum” (=primitive septum).

The observation of the presence of organic components associated with the formation of any
biological Ca-carbonate was generalized during the last decades. This feature appears also in
the studied bamboo corals, which are used as representatives of biological calcite in this study
(Figure 4). Noticeably, owing to the origin of the solid axis secreted by the common tissues joining the
polyps, the microstructure of these skeletal samples is simpler compared to the Scleractinia corallites.
No distinction between centers of calcification and fibers can be made in this type of corals. However,
as in the skeletons of the Scleractinia, organic components can be characterized into the crystallized
structure of the DSOC axes (Figure 4d–f).
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Figure 4. Microstructure, cristallinity and organic distribution in the Bamboo coral “Jasus” used in this
study: (a) partial view of the specimens; (b) SEM view at medium enlargement: no clear indication of
elongated and continuous fibers; (c) at the same enlargement, calcite is crystallized as small and rather
disordered units; and (d–f) Acridine orange staining of the regular concentric growth layers (d).

2.2. Description of the Corals Measured in the Study

Three bamboo corals were studied: two modern samples coming from the collection of the
Museum National d’Histoire Naturelle de Paris (Terrasses and Jasus samples, Figure 5a,b), and one
sample coming from the collection of the Laboratoire des Sciences du Climat et de l’Environnement
(Valpareso sample, Figure 5c). The Terrasses sample (MNHN-IK-2008-1541) was collected in October
2008 at a depth between 511 m and 1050 m, off New Caledonia (21◦58′ S, 167◦07′ E). The Jasus sample
(MNHN-IK-2011-1576), Isidella sp., was recovered in July 1986 from a depth between 1575 m and
2100 m, near Saint Paul Island (38◦38′ S, 77◦19′ E). The Valpareso sample was collected off the coast of
Chile (33◦ S, 77◦ W) at a depth of 500 m [40].
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To determine the age of the Chilean DSOC (Valpareso sample), five 14C datations were performed
at the national facility ARTEMIS, Laboratoire de Mesure du Carbone 14 (UMS 2572, Gif-sur-Yvette,
France). The samples were taken from the center to the periphery of the Valpareso section. After
collection of the carbonate powder (equivalent to about 1 mg of C), the calcite samples were attacked
with dehydrated orthophosphoric acid at 60 ◦C to produced CO2 (see [41] for a full description of the
system). The CO2 was then reduced by H2 in the presence of iron powder at 600 ◦C. The amount of
iron was equal to 3 times the amount of carbon. The carbon was then deposited onto the iron powder
and the resulting assembly was then pressed into a target.

The 14C activity of the sample was calculated by comparing the sequentially measured intensities
of the 14C, 13C and 12C bundles of each sample with those of CO2 standards prepared from the
oxalic reference acid HOxII. It is expressed in pMC (percent modern carbon) standardized at a
δ13C value of −25‰. The radiocarbon ages were calculated according to [42] by correcting the
fractionation with the δ13C calculated from the measurement of the 13C/12C ratio on ARTEMIS.
This δ13C analysis includes fractionation occurring both during sample preparation and during
Accelerator Mass Spectrometry (AMS) measurement. The measurement error takes into account the
statistical error, the variability of the results and the blank subtracted from the result. The result is
given without reservoir age subtraction.

The data on Valpareso sample indicate a duration of formation of the calcititic skeleton between
397 years and 659 years (Table 1). The mean growth rate is in between 45 µm and 75 µm per year, in
agreement with others estimates [43–45]. However, the first 10 mm of the specimen exhibited faster
growth compared to that of the next 20 mm.

Table 1. 14C datation of Valpareso sample. BP: Before Present; AD: Anno Domini.

Sample Ref Sample Name mg C Age BP (1σ) Age AD Calibrated (2σ)

Sac40169 B1 2.50 1.26 1505 (±30) 530–637
Sac40170 B2 9.00 1.24 1470 (±30) 545–645
Sac40171 B3 15.50 1.41 1300 (±30) 661–773
Sac40172 B4 21.50 1.36 1015 (±30) 972–1047
Sac40173 B5 28.80 1.41 910 (±30) 1034–1189

2.3. Bulk Measurements

2.3.1. Oxygen and Carbon Isotopic Measurements

On the Valpareso and Jasus samples, two different sub-sampling strategies were carried out.
We first applied macro-sampling (Valpareso sample) to document the stable isotopic composition of
our samples with those previously published by applying a similar subsampling technique. For this
coral sample, about 20 aliquots from equidistant locations on the radius were taken from the inner part
to the outer part of the skeleton. The carbonate powders were obtained using a dental drill (0.8 mm
diameter) thus providing about 200 µg of carbonate.

The second sampling strategy was based on studies taking into consideration the microstructure
of DSSC [25,46–49]. Therefore, we used a micro-sampling technique to allow for a continuous sampling
of “Jasus” skeleton. A slab of coral was cut perpendicular to its growth axis and mounted with epoxy
on a glass slide. The sample was then polished with abrasive paper to obtain a flat surface that was first
digitalized and then milled using a micro-sampler (Micromill, New Wave Research, ESI Inc., Fremont,
CA, USA). The resolution of the sampling using this technic is about 250 µm, and was used to derive
an estimate of the isotopic variability at the surface of the sample.

About 100 µg of carbonate (either from micro-drilling or classical drilling) were reacted with
100% phosphoric acid at 90 ◦C in an automated line coupled to an OPTIMA VG mass spectrometer.
(Isoprime Inc., Manchester, UK) Results are reported in delta notation expressed in per mil relative
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to V-PDB (Vienna Pee Dee Belemnite). The reproducibility (1 SD) is ±0.07‰ for δ18O and ±0.05‰
for δ13C.

2.3.2. Trace Element Measurements

Powders obtained by microdrill were also used to perform trace element measurements by
ICP-MS (Inductively Coupled Plasma Mass Spectrometry). The coral powders were dissolved in
ultraclean HNO3 solution (0.5 N). The isotopes of 23Na, 24Mg, 43Ca, 44Ca and 88Sr were measured to
determine the TE/Ca ratios. The carbonate standard JCp-1 was analyzed before and after the 22 coral
samples to ensure of the stability and the accuracy of the measurements. A reproducibility of ±0.5%
was obtained for Na/Ca, Mg/Ca and Sr/Ca ratios.

2.4. SIMS Measurements

For SIMS (Secondary Ion Mass Spectrometry) measurements, a branch of the studied corals (Jasus,
Terrasses, and Valpareso) was cut perpendicular to the growth axis. The samples were mounted
in epoxy and then polished down to 1-µm diamond paste. Ion probe analyses were performed at
CRPG-CNRS (Nancy, France) using the Cameca ims 1280 HR2 for isotopic measurements and the
Cameca ims 3f for the elemental analyses.

2.4.1. Oxygen and Boron Isotopic Measurements

The instrumental conditions are similar to those described in [50]. Briefly, a primary beam
of Cs+ ions with an impact energy of 10 kV and an intensity of 5 nA was focused to a spot of
approximately 5 µm wide and 15 µm long. A normal-incidence electron flood gun was used to
compensate for sample charging during analysis. Measurements of O isotopes were conducted
in multicollection mode (secondary ions counted simultaneously) using two off-axis Faraday cups
(L’2 and H1). The measurements were performed with ion intensities of about 5 × 106 counts per
second (cps) on the 18O− peak. The typical acquisition sequences were 25 cycles of 2 s duration
each. In multicollection, the L’2 and H1 Faraday cup gains were systematically inter-calibrated at the
beginning of each analytical session. During the analytical session, the internal reproducibility was
better than ±0.1‰ and the external reproducibility, based on repeated measurements of two in-house
calcite reference materials (MEX and CARB, [50]), was between ±0.1‰ and ±0.3‰ (1σ), depending
on the analytical session. As gorgonian corals are composed of high-Mg calcite, the effect of Mg content
on the instrumental mass fractionation was corrected using the method described in [51]. All of the
following δ18O values are expressed relative to the V-PDB international standard.

For the ion probe analyses, we used the same technique as described in [27,49]. A primary beam
of 16O− ions with an intensity of about 50 nA was focused to a spot of about 15-µm wide and 35-µm
long. A mass resolution of ≈3000 was used for B isotope analyses. The boron isotopes were analyzed
in monocollection mode using the central electron multiplier. The typical intensities of 11B+ were about
6000 cps. The analysis consists of 60 cycles of 10 s for 10B+ and 6 s for 11B+ after a presputtering of
60 s. Thus a typical internal error of ±0.8‰ was reached for the samples. The reference material was a
calcium carbonate with a B concentration of 22 ppm and a δ11B of 17.8‰ relative to NIST SRM 951
standard. The average external error, as estimated by multiple measurements of the reference material,
was ±1.1‰ (1σ).

2.4.2. Trace Elements

For trace element measurements (Li, Na, Mg, Sr/Ca), the analytical conditions are the same
as described in [30]. A focused O− ion beam of about 10 nA was used to analyze the samples.
Ions of 7Li+, 23Na+, 24Mg+, 44Ca+ and 88Sr+ were measured using a −70 eV energy filtering after
a presputtering time of 2 min, in monocollection mode on an electron multiplier. The possible
isobaric interference of 88Sr2+ on 44Ca+ was checked by measuring the mass 43.5 (87Sr2+) and was
observed as negligible. The calcite in-house reference OKA-C was used to determine the Na/Ca and
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Mg/Ca ion yields (Na/Ca = 1.94 mmol/mol, Mg/Ca = 4.55 mmol/mol, Sr/Ca = 19.3 mmol/mol, [52]),
and CAL-HTP [53] was used to calibrate the Li/Ca. The external reproducibility was determined
by multiple measurements of the reference materials, and for, Li/Ca measurements, it was ±10%;
for Na/Ca, ±3%; and ±1.5% for Mg/Ca and Sr/Ca (1σ).

3. Results

3.1. Oxygen and Carbon Isotopic Compositions

The Valpareso and Jasus samples were measured by bulk techniques for their oxygen and carbon
isotopic compositions. The isotopic variability for Valpareso is 1.05‰ for δ18O (from 0.93‰ to 1.98‰)
and 2.75‰ for δ13C (from −2.13‰ to 0.62‰); for Jasus the range of δ18O values is 0.56‰ (from
1.71‰ to 2.28‰) and 0.81‰ for δ13C measurements (from −1.29‰ to −0.48‰) (Table S1). For both
samples, δ18O versus δ13C values present a strong linear relationship (R2 = 0.82 for Valpareso, and R2

= 0.69 for Jasus) (Figure 6). The slope and intercept are 0.374 ± 0.040 and 1.702 ± 0.026, respectively,
for Valpareso sample, and 0.518± 0.099 and 2.504± 0.084 for Jasus sample. These slopes and intercepts
are similar to previous observations from the literature not only for octocorallian corals (e.g., [22,54–58]),
but also for scleractinian corals (e.g., [7,9,25,48,59,60]) (Figure 6), likely pointing to a similar mechanism
of biomineralization.

Minerals 2017, 7, 154  8 of 22 

 

3. Results 

3.1. Oxygen and Carbon Isotopic Compositions 

The Valpareso and Jasus samples were measured by bulk techniques for their oxygen and 
carbon isotopic compositions. The isotopic variability for Valpareso is 1.05‰ for δ18O (from 0.93‰ 
to 1.98‰) and 2.75‰ for δ13C (from −2.13‰ to 0.62‰); for Jasus the range of δ18O values is 0.56‰ 
(from 1.71‰ to 2.28‰) and 0.81‰ for δ13C measurements (from −1.29‰ to −0.48‰) (Table S1). For 
both samples, δ18O versus δ13C values present a strong linear relationship (R2 = 0.82 for Valpareso, 
and R2 = 0.69 for Jasus) (Figure 6). The slope and intercept are 0.374 ± 0.040 and 1.702 ± 0.026, 
respectively, for Valpareso sample, and 0.518 ± 0.099 and 2.504 ± 0.084 for Jasus sample. These slopes 
and intercepts are similar to previous observations from the literature not only for octocorallian 
corals (e.g., [22,54–58]), but also for scleractinian corals (e.g., [7,9,25,48,59,60]) (Figure 6), likely 
pointing to a similar mechanism of biomineralization.  

 
Figure 6. Comparison of the δ18O and δ13C measurements expressed in per mil (V-PDB) in Valpareso 
(red diamonds) and Jasus (pink diamonds) samples with data from the literature. Square symbols 
represent the data for scleractinian corals (data from [7,9,25,48,59]); circle symbols are for 
octocorallian corals (data from [22,54–56]).  

SIMS oxygen isotopic measurements were also performed in Valpareso sample, and show a 
total range of 2.3‰, from 0.26‰ ± 0.14‰ to 2.57‰ ± 0.15‰ (Figure 7 and Table S2), with an average 
of 1.51‰ ± 0.48‰. This average is in agreement, within errors, with that obtained for the isotopic 
analyzes carried out on bulk samples (1.61‰ ± 0.25‰). As already seen for scleractinian corals [48] 
or octocorallian corals [58], the heterogeneity obtained by SIMS is higher than the overall range 
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Figure 6. Comparison of the δ18O and δ13C measurements expressed in per mil (V-PDB) in Valpareso
(red diamonds) and Jasus (pink diamonds) samples with data from the literature. Square symbols
represent the data for scleractinian corals (data from [7,9,25,48,59]); circle symbols are for octocorallian
corals (data from [22,54–56]).

SIMS oxygen isotopic measurements were also performed in Valpareso sample, and show a total
range of 2.3‰, from 0.26‰ ± 0.14‰ to 2.57‰ ± 0.15‰ (Figure 7 and Table S2), with an average
of 1.51‰ ± 0.48‰. This average is in agreement, within errors, with that obtained for the isotopic
analyzes carried out on bulk samples (1.61‰ ± 0.25‰). As already seen for scleractinian corals [48] or
octocorallian corals [58], the heterogeneity obtained by SIMS is higher than the overall range measured
by bulk, i.e., 2.3‰ compared to 1.05‰, respectively. This is due simply to the scale effects as explained
in details in [60]. This scale effect can also be apprehended by applying a moving average on the SIMS
data (Figure 7).
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Figure 7. δ18O values measured by SIMS in Valpareso coral. The red curve represents the moving
average (4 points). The grey area is the range of δ18O variation measured by bulk technique. Error bar
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3.2. Boron Isotopic Compositions

Ion microprobe δ11B analyses were performed in two profiles in Terrasses sample. The profiles
start in the inner part of the coral skeleton and proceed radially outward. Figure 8 illustrates the
δ11B data as a function of the relative distance to provide an easier comparison of the data, with 0%
being the innermost data point and 100% representing the border of the skeleton. The overall δ11B
variability is about 8‰ for profile 1 (from 14.3 ± 1.1‰ to 22.9 ± 1.3‰) and about 14‰ for profile 2
(from 14.2 ± 1.2‰ to 28.0 ± 1.4‰) (Table S3).
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Except for the first point of the profile 2, the two profiles both show the same general pattern of
initially with high δ11B values near the center of the skeleton, followed by a steep decrease to more
stable values in the part of the skeleton formed when the animal was older (Figure 8). These higher
δ11B values near the center of the skeleton were already observed in the study of Farmer et al. [22] and
were attributed to higher growth rate in the juvenile stage of bamboo corals [22]. However, no evidence
of precipitation rate effect on δ11B was observed in inorganic calcite experiments [61,62].



Minerals 2017, 7, 154 10 of 22

3.3. Trace Element Compositions

All the trace element (TE) ratios measured in this study are reported in Tables S4 and S5,
and plotted in Figure 9 relative to the distance for Valpareso sample.
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there is a small discrepency between SIMS and bulk Sr/Ca values. This could be due to the 
heterogeneity in Sr/Ca from grain to grain of the standard OKA-C used to correct the ion microprobe 
data [69]. The SIMS Na/Ca ratios range from 13.9 to 19.7 mmol/mol, and bulk Na/Ca ratios are from 
12.96 to 18.86 mmol/mol. These Na/Ca ratios are in agreement with data of [67]. The ion microprobe 
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Figure 9. Elemental ratios measured by SIMS relative to the distance (µm) from the center to the
outermost part of Valpareso sample. (a) The primary y-axis represents Mg/Ca (mmol/mol) and the
secondary y-axis Na/Ca (mmol/mol) and Li/Ca (µmol/mol). (b) Sr/Ca (mmol/mol) versus the
distance (µm). In the two panels, the grey area stands for the range of bulk measurements (note that
Li/Ca ratios were not measured in bulk). Error bars are ±2σ.

The Mg/Ca ratio in Valpareso sample ranges from 77.1 to 93.6 mmol/mol for SIMS measurements
and from 81.6 to 89.7 mmol/mol for bulk analyses. These values are in agreement with previously
reported data in octocorallian corals [18,63–66]. The Sr/Ca ratios show a varition between 2.88 and
3.18 mmol/mol for SIMS measurements and between 3.10 and 3.26 mmol/mol for bulk analyses. This is
also in agreement with literature data [21,63,66–68]. It should be noted that there is a small discrepency
between SIMS and bulk Sr/Ca values. This could be due to the heterogeneity in Sr/Ca from grain to
grain of the standard OKA-C used to correct the ion microprobe data [69]. The SIMS Na/Ca ratios
range from 13.9 to 19.7 mmol/mol, and bulk Na/Ca ratios are from 12.96 to 18.86 mmol/mol. These
Na/Ca ratios are in agreement with data of [67]. The ion microprobe Li/Ca ratios are from 23.3
to 54.1 µmol/mol. To our knowledge, no literature data are available for lithium content in DSOC.
Figure 10 represents a box plot of the TE/Ca measured by SIMS and bulk techniques and shows that
overall there is good agreement within error between the two techniques.
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calcite. On the other hand, no significant relationship exists between Mg/Ca and Sr/Ca ratios (R2 = 
0.11 for SIMS measurements and R2 = 0.40 for bulk analyses—not shown here). 

 

Figure 10. Box plots of Na/Ca, Mg/Ca and Sr/Ca ratios (mmol/mol) measured in Valpareso coral
sample by bulk and SIMS techniques. The lower and upper levels of boxes are at the 25th and 75th
percentiles, respectively. The center horizontal line is the median value. Whiskers represent the
maximum and minimum values.

Strong positive relationships are observed between Mg/Ca, Li/Ca and Na/Ca ratios, with
a coefficient of correlation of 0.65 for Li/Ca (µmol/mol) versus Mg/Ca (mmol/mol), of 0.52 for
Na/Ca (mmol/mol) function of Mg/Ca (mmol/mol) and of 0.86 for Li/Ca (µmol/mol) and Na/Ca
(mmol/mol) plot (Figure 11). These relationships were also observed in scleractinian aragonitic
corals [30,70–73]. It should be noted that, even if the relationships are the same, the slopes and
intercepts of the correlations are not identical due to the different partition coefficients for aragonite
and high-Mg calcite. On the other hand, no significant relationship exists between Mg/Ca and Sr/Ca
ratios (R2 = 0.11 for SIMS measurements and R2 = 0.40 for bulk analyses—not shown here).
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the pH at the sites of calcification (e.g., [27,49]). This assumption has been further confirmed by 
direct measurements of pH by microelectrode [74] or fluorescent dye [75–77]. The use of boron 
isotopic compositions as a pH proxy is based on: (1) the distribution of the two major dissolved 
boron species, B(OH)3 and B(OH)4−, which is pH dependent; and (2) a large B isotopic fractionation 
existing in solution between these species, with B(OH)3 being enriched in 11B by 27.2‰ relative to 
B(OH)4− at 25 °C [78]. The δ11B value of carbonate is related to pH because B incorporation seems to 
occur predominantly from seawater B(OH)4− [79], even if the presence of B(OH)3 was observed for 
corals [15,80,81] and coralline algae [82]. If the presence of B(OH)3 is documented in the coral 
skeleton, the question of whether its originating from the medium or corresponds to a by-product of 
a boron species remains for the moment still under discussion (see [62,80] for a more detailed 
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4. Discussion

4.1. What Can We Learn from the Geochemical Signatures?

4.1.1. Boron Isotopic Composition as Proxy of Calcification pH

For a decade, it has been suggested that the δ11B values measured in biogenic carbonates reflect
the pH at the sites of calcification (e.g., [27,49]). This assumption has been further confirmed by
direct measurements of pH by microelectrode [74] or fluorescent dye [75–77]. The use of boron
isotopic compositions as a pH proxy is based on: (1) the distribution of the two major dissolved
boron species, B(OH)3 and B(OH)4

−, which is pH dependent; and (2) a large B isotopic fractionation
existing in solution between these species, with B(OH)3 being enriched in 11B by 27.2‰ relative to
B(OH)4

− at 25 ◦C [78]. The δ11B value of carbonate is related to pH because B incorporation seems to
occur predominantly from seawater B(OH)4

− [79], even if the presence of B(OH)3 was observed for
corals [15,80,81] and coralline algae [82]. If the presence of B(OH)3 is documented in the coral skeleton,
the question of whether its originating from the medium or corresponds to a by-product of a boron
species remains for the moment still under discussion (see [62,80] for a more detailed discussion of the
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mechanisms). In the following, we assume that only borate ions are incorporated into the carbonate.
With this assumption, it is then possible to calculate the pH of the solution from the δ11B value of the
coral according to:

pH = pKB − log

 δ11Bsw − δ11Bc

α−1
3−4δ

11Bc − δ11Bsw + 1000×
(
α−1

3−4 − 1
)
 (1)

where δ11Bc represents the measured boron isotopic composition of the carbonate, δ11Bsw is the boron
isotopic composition of modern seawater (δ11Bsw = 39.61 ± 0.20‰, [83]), pKB is the dissociation
constant of boric acid and is function of temperature and salinity [84], and α3-4 is the isotopic
fractionation factor between B(OH)3 and B(OH)4

− [78].
Figure 12 shows that there is a clear difference in strategy regarding the increase of pH at the

sites of calcification between DSSC and DSOC. Whereas the calculation based on the δ11B values
of the scleractinian corals and Equation (1) shows a significant increase of up to pH ≈ 9 at the
sites of calcification, it seems that this strategy is not adopted by the octocorallian corals, as it
was already suggested by Farmer et al. [22]. This so-called “biologically pH up-regulation” [85]
of scleractinian corals is thought to be achieved by Ca-ATPase enzymes that exchange Ca2+ ions with
two protons [28,74,86]. As this enzyme activity was also detected in octocorallian corals [87], it is then
surprising that the pH at the sites of calcification of DSOC broadly reflects the pH of the surrounding
seawater (Figure 12) even if findings from Farmer et al. [22] and Saenger et al. [58] suggested a pH
increase of up to 0.4 for some DSOC specimens.
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oceanic data (pH = 8.11 ± 0.05). 

In summary, DSSC seems to increase their pH at the sites of calcification by ≈ 1 unit, whereas 
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Figure 12. The δ11B values of scleractinian and octocorallian coral as a function of seawater pH.
The black line represents the boron isotopic composition of borate ion calculated with the isotopic
fractionation factor of Klochko et al. [78]. The circles represent literature data for octocorallian
coral [22,58,85] and squares are for data of scleractinian deep-sea corals [27,85,88]. Note that the
data from [27] were corrected with a revisited value of the standard (i.e., δ11B = 17.8‰). The diamond
is the average δ11B value of this study for Terrasses sample. The pH value for Terrasses sampling
location is from IFREMER oceanic data (pH = 8.11 ± 0.05).
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In summary, DSSC seems to increase their pH at the sites of calcification by ≈ 1 unit, whereas
the pH at the sites of calcification of the DSOC is elevated up to 0.4-pH unit relative to the pH of the
surrounding seawater. Through the perspective of geochemical proxies, the use of DSOC appears to
be more adapted since the deviation of pHcf from seawater pH is smaller than for DSSC, indicating
limited vital effects.

4.1.2. Geochemical Signatures as Temperature Proxies

• The “line method”

Based on the analyses of 32 specimens of deep-sea scleractinian corals, Smith et al. [7] proposed a
method to extract the temperature based on the regression between δ18O and δ13C values, the so-called
“line method”. For each δ13Ccoral = δ13C(DIC)seawater, they determined the corresponding δ18ODSSC

value. This value, when corrected for the δ18O of seawater (defined as δ18Ointercept), is dependent on
the temperature, following:

T(◦C) = −4.49 (δ18Ointercept) + 20.48 (2)

Based on this study, and on the observation that octocorallian corals also show strong relationships
between their δ18O and δ13C values (see Figure 6), Kimball et al. [54] and Hill et al. [55] tested this
method on deep-sea bamboo corals and established the following relationship:

T(◦C) = −4.12 ± 0.38 (δ18Ointercept) + 12.33 ± 0.75 (3)

The slopes of Equations (2) and (3) are identical within errors, but the intercepts are different due
to the different type of calcium carbonate polymorphs [54]. If Equation (3) is applied to our data, with
δ18Oseawater = 0‰, and δ13CDIC = 0‰, we obtained a temperature of 2.0 ◦C for Jasus sample and of
5.3 ◦C for Valpareso sample. The temperature for Jasus sample is in agreement, even if a little too cold,
with the estimates of the Levitus Atlas (between ≈3.5 ◦C at 1500 m water depth, and ≈2.5 ◦C at 2100 m
water depth).

• TE/Ca as temperature proxy

It was suggested that Mg/Ca ratios in DSOC could be used as temperature proxy [63,64,68,89],
and the following equation was proposed for Isidids [63]:

T(◦C) = −0.505 + 0.048 Mg/Ca (mmol/mol) (calibrated between 3 and 6 ◦C) (4)

Considering an average bulk value for Mg/Ca ratio in Valpareso sample of 85.01± 2.15 mmol/mol,
it gives a seawater temperature of 3.6 ± 0.1 ◦C. This temperature is different from the temperature
found using the “line method”, i.e., 5.3 ◦C. This discrepancy could be due to our application of the
“line method” because: (1) we did not know the exact values of δ18O and δ13C of seawater at the
sampling location; and (2) the precision of this method is not better than ±1 ◦C [60]. The variation
recorded by SIMS measurements gives a total temperature range of 0.8 ◦C, between 3.2 and 4.0 ◦C.

As Li/Ca and Na/Ca correlate with Mg/Ca, if we assume the Mg/Ca ratio variations are
only due to temperature change, then we could postulate that Li/Ca and Na/Ca could also be
used as temperature proxies. With temperature calculated from Mg/Ca (TMg/Ca), we propose the
following equations:

TMg/Ca(◦C) = 2.129 (±0.111) + 0.089 (±0.007) Na/Ca (mmol/mol) (R2 = 0.52) (5)

TMg/Ca(◦C) = 3.080 (±0.040) + 0.014 (±0.001) Li/Ca (µmol/mol) (R2 = 0.65) (6)

As also observed in [63], Sr/Ca ratios do not seem to be a temperature proxy since no significant
correlation exists with Mg/Ca. Nevertheless, as the temperature variation is quite small (i.e., 0.8 ◦C
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calculated from SIMS Mg/Ca measurements), it is difficult to judge whether a temperature dependence
on Sr incorporation is present in the DSOC.

If the Mg/Ca ratio is assumed to be a temperature proxy, then the Mg/Ca-temperature sensitivity
is about 21 mmol/mol/◦C (from Equation (4)). This sensitivity is much higher than that for inorganic
calcite [90], suggesting an efficient physiological control on the uptake of magnesium into the
DSOC skeleton.

4.1.3. Common Mechanism of Biomineralization between Scleractinian and Octocorallian
Deep-Sea Corals

One of the striking features of the geochemical signatures is that both δ18O vs. δ13C and
TE/Ca relationships show the same behavior between scleractinian and octocorallian deep-sea corals
(Figures 6 and 11) despite their different mineralogy, i.e., aragonite vs. high-Mg calcite, respectively
and their different microstructures. Based on this similarity, the model of Adkins et al. [25] was also
employed to explain the oxygen and carbon behaviors in DSOC. In this model, the authors propose
that the correlation between δ18O and δ13C values is best explained by a mixing between seawater
Dissolved Inorganic Carbon (DIC) and a passive flux of CO2, this mixing being driven by a pH gradient
due to the activity of the Ca-ATPase. One of the main problems in transposing this model to DSOC is
the amplitude of the pH gradient. Indeed, in the model of Adkins et al. [25], the required pH gradient
is between the surrounding seawater pH and values of pH higher than the secondary dissociation
constant of carbonate, pKa2 (see Figure 9 in [25]), i.e., ≈ 10. As in DSOC, the pH increase measured is
only up to 0.4 relative to seawater. Hence, it appears difficult to explain the δ18O-δ13C relationships and
the amplitude of variation of these two isotopic systems. It is then noteworthy that the relationships
between δ18O and δ13C as well as the amplitude of variations (Figure 6) are identical between DSOC
and DSSC. As a result, the validity of Adkins et al. [25] model needs to be questioned.

The best explanation so far for both δ18O vs. δ13C and TE/Ca relationships might be kinetic
effects linked to different precipitation rates of the coral skeleton. In the case of oxygen and carbon
isotopic compositions, these kinetic effects are due to the incomplete equilibration of HCO3

− with
H2O in the calcification zone [28,29,49]. This kinetic effect was also recently proposed by Chabaane
et al. [57] to explain the δ18O data in Corallium rubrum. On the other hand, kinetic effects were also
proposed as the main factor controlling the TE/Ca relationships in DSSC [30].

Such a similarity of the geochemical features between DSOC and DSSC despite their mineralogical
and microstructural differences appears to be quite an unexpected conclusion. To reconcile these two
aspects, it seems necessary to call upon a common entity, the nanograins, from which the geochemical
inheritance could be derived.

4.2. The Biomineralization Mechanisms Inferred from the Similarity between Calcitic and Aragonitic
Ca-Biocarbonates Observed at the Nanometer Scale

Figure 6 has made obvious the striking similarity between the sensitivity of calcite and aragonite
skeletons to variations in the environmental parameters. Such a result drives the attention to another
type of unexpected resemblance between these calcite and aragonite materials that are observed when
examined at the infra-micrometer scale.

Extensive investigations in Cuif et al. [91] have revealed that, whatever their taxonomic position
and related complexity, the crystal-like skeleton units are built through a remarkably common mode
of biomineralization. In the Scleractinia for instance, the crystal-like unit fibers that were considered
for decades as “single crystal of orthorhombic aragonite” [35] are actually built by superimposition of
micrometer thick growth layers, which are synchronous amongst adjacent fibers (Figure 13a,b). As a
result, the model based on “spherulitic crystallization” in which mineral fibers are independently
growing within a liquid compartment is an inappropriate way to describe formation of the coral
fibers. The basal ectoderm of the polyp determines the three-dimensional arrangement of fibers
in the underlying corallite through a strict control of their growth exerted at the micrometer scale.
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This layered growth and crystallization mode has been illustrated in so many coral species from
various places and geological ages that little doubt exists as to whether this mechanism is ubiquitous
throughout the whole phylum [92,93].

Deficiency of the “liquid layer model” is strongly reinforced by the chemical and isotopic
differences measured between the fibrous areas of the skeleton and the adjacent and simultaneously
growing initial mineralization areas (see Figure 5 in [29]). This is also a permanent pattern of the
skeletons built by the polyps, with the intensity varying according to species. None of the current
geochemical models is able to explain how two adjacent and simultaneously deposited aragonite
materials can differ all along the repeatedly produced growth layers. This well-established fact
that isotope fractionation and trace element partitioning differ despite aragonite being present in
both skeletal areas obviously indicates that mineralogy is not the leading factor in fractionation and
partitioning mechanisms.

These paradoxical results become more understandable when taking into account the currently
developing concept of a biomineralization mechanism running as a sequential process that associates
an intracellular preparative phase followed by an extracellular crystallization step. During the two last
decades, two distinct approaches provided the structural and biological data supporting the emergence
of this unifying model. Essential to this concept of a two-phase mineralization process is the physical
evidence that an intracellular amorphous mineralization phase predates formation of the crystallized
materials that build the growth layers [94]. During this intracellular phase, amorphous Ca-carbonate
stabilized by organic components is prepared. Thus, the repeatedly produced growth layers may
have basically an intracellular origin, as they result from the synchronic exocytosis of this amorphous
material that crystallizes only outside the mineralizing cell layer.
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Figure 13. Layered growth of fibers (a–d); and nano-scaled granular structure of the growth layers
in DSSC and DSOC (e–g). (a) The crystal-like fibers observed on a surface fracture of a Sleractinia
skeleton (Caryophyllia sp.); (b) polished and etched section showing the layered growth mode of
fibers (same species); (c,d) examples of layered growth mode in the skeleton for Favia (c) and Diploria
(d); (e) nanometer-scaled grains in fibers of recent Scleractinia; and (f,g) permian fossil coral ((f)
Calophyllum); and Bamboo coral ((g) Isididae).

This major conceptual change found a structural correspondence in the infra-micrometric
observations of the crystallized layers carried out by using atomic force microscopy. This investigation
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revealed that the mineral layers were not purely crystalline but made of densely packed round grains
50–100 nanometer in diameter covered by an irregular organic coating (Figure 13e,g). To explain the
quite general structure of these biologically produced Ca-carbonate (no exception has been found to
date [95]), it can be hypothesized that during the crystallization step the physical link between the
just exocytosed amorphous Ca-carbonate with its stabilizing organic compounds is disrupted. Thus,
crystallization of the calcite or aragonite grains occurs within an organic medium whose composition
is species-specific. Formation of each crystallized grain leads to the segregation of the organic and
mineral components and rejection of the residual organic material at the periphery of the crystallized
grains where their irregular coating is produced.

With respect to isotopic fractionation and minor element partitioning, the preparative intracellular
phase is well compatible with the coexistence of two juxtaposed but distinct geochemical areas in the
DSSC (e.g., [29,96]). With a much simpler microstructure, measurements can be more easily carried
out at the solid axes of the DSOC, but regarding the behaviors of calcite and aragonite skeletons as it
results from this study, the hypothesis emerges that in both cases the environmental conditions may
have their major influences during the preparative phase of the skeletogenesis. This could explain both
the specific responses of distinct mineralizing areas in a given specimen and the global species-specific
responses to environmental variations (vital effect).

As a result, it appears that the chemical properties of the coral skeletons could be better explained
by focusing on the molecular and nanometer scaled processes that are running at the growth layer
level because, in spite of their crystalline appearance, crystallization and resulting properties of fibers
considered as a whole are all but thermodynamically predictable.

5. Conclusions

The aragonitic scleractinian corals show the characteristic to have a significant geochemical
difference between the centers of calcification and the fibers (for a review [8,15]). The high-Mg calcitic
octocorallian corals offer the possibility to test the hypothesis of the strong relationship between
microstructure and geochemical signature, since they do not present any COC structure. Conclusively,
the biomineralization processes of both DSSC and DSOC corals appear to be identical to those of
other calcifying invertebrates. In this study, we showed that δ18O and δ13C relationships are similar
between DSSC and DSOC, as are the relationships between Li/Ca, Mg/Ca and Na/Ca ratios. These
observations favor a geochemical organization on a scale lower than the centers of calcification,
probably on the scale of layers of nanograins, the micrometer-thick elementary growth layer whose
crystallization is the actual environment recording unit [97]. For example, it is surprising that the
δ11B values of the biominerals seems to mainly depend on the calcium carbonate polymorph, rather
than the organisms (see Figure 8 in [62]) with the δ11B values being higher for aragonitic than calcitic
biominerals. To our knowledge, the only exception is the boron isotopic compositions of coralline
algae [79,98]. However, it is worth noting that, in this case, the calcareous structure is not used by the
organisms as a part of its living architecture because mineralization of the wall leads to the death of
its cells.
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Bulk elemental ratios (Na/Ca, Mg/Ca, Sr/Ca) of Valpareso sample. Table S5: SIMS trace element ratios (Li/Ca,
Na/Ca, Mg/Ca, Sr/Ca) of Valpareso sample.
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