Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Computed Tomography
2.3. SEM-EDS
2.4. Micro-X-ray Fluorescence (µ-XRF)
3. Results
3.1. Morphology of Nodules
3.2. Texture and X-ray Absorbance
3.3. Chemical Composition across the Nodules
4. Discussion
4.1. Geochemistry, Texture, and X-ray Absorbance of Laminae
4.2. The Role of the Oxic-Suboxic Front (OSF)
5. Conclusions
- The proportion of hydrogenetic and diagenetic processes in mixed-type nodules is reflected by their geochemistry, texture, and X-ray absorbance. High-absorbance areas correspond to massive Mn-rich laminae, while low-absorbance areas correspond to dendritic Mn-depleted laminae. The ratio of these laminae types ultimately reflects changes in the location of the OSF within the sediment, which in turn reflects variations in surface-water productivity.
- Mixed-type eastern CCZ nodules show a higher suboxic diagenetic influence than mixed-type CIB nodules;
- The micro-rhythmic distribution of Mn, Fe, Ni, Cu, and Co in the mixed-type nodules show micrometer- to millimeter-thick laminae that are chemically and texturally heterogeneous compared to their uniform bulk chemistry. In contrast, oxic hydrogenetic nodules are compositionally homogeneous, which reflects comparable seawater and pore-water compositions;
- Changes in oceanographic conditions such as fluctuation of surface-water primary productivity, changes in sediment accumulation-erosion rates, and fluctuation of deep-ocean ventilation are possible drivers of depth variations in the sediment of the OSF, which controls the availability of Mn, Ni, and Cu to nodule growth. This process ultimately results in micro-rhythmic alternation in chemical composition and textures in mixed-type nodules.
- Fluctuations of surface-water primary productivity probably occurred more frequently in the CCZ compared to the CIB, driving the formation of massive up to 3-mm thick, strongly Mn-enriched laminae (Mn/Fe up to 40) in the CCZ nodules; whereas detrital accumulation rates were higher and more varied as reflected in CIB nodule laminae.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cronan, D.S. Deep-sea nodules: Distribution and geochemistry. In Marine Manganese Deposits; Glasby, G.P., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 11–44. [Google Scholar]
- Glasby, G.P. Marine Manganese Deposits; Glasby, G.P., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 1–524. [Google Scholar]
- Mero, J.L. The Mineral Resources of the Sea; Elsevier: Amsterdam, The Netherlands, 1965; pp. 1–312. ISBN 0444403949. [Google Scholar]
- Halbach, P.; Scherhag, C.; Hebisch, U.; Marchig, V. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean. Miner. Depos. 1981, 16, 59–84. [Google Scholar] [CrossRef]
- Hein, J.R.; Petersen, S. The geology of manganese nodules. In Deep Sea Minerals: A physical, Biological, Environmental, and Technical Review; Baker, E., Beaudoin, Y., Eds.; Secretariat of the Pacific Community: Noumea, New Caledonia, 2013; pp. 7–18. ISBN 978-82-7701-119-6. [Google Scholar]
- Halbach, P.; Friedrich, G.; Von Stackelberg, U. The Manganese Nodule Belt of the Pacific Ocean: Geological Environment, Nodule Formation and Mining Aspects; Halbach, P., Friedrich, G., Von Stackelberg, U., Eds.; Ferdinand Enke: Stuttgart, Germany, 1988; pp. 1–254. ISBN 3432963815. [Google Scholar]
- Pattan, J.N.; Parthiban, G. Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin. J. Asian Earth Sci. 2011, 40, 569–580. [Google Scholar] [CrossRef]
- Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.; Kuhn, T.; Usui, A. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 2014, 381, 1–9. [Google Scholar] [CrossRef]
- Hein, J.R.; Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. In Treatise on Geochemistry; Scott, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 273–291. ISBN 9780080983004. [Google Scholar]
- Nath, B.N.; Roelandts, I.; Sudhakar, M.; Pluger, W.L.; Balaram, V. Cerium anomaly variations in ferromanganese nodules and crusts from the Indian Ocean. Mar. Geol. 1994, 120, 385–400. [Google Scholar] [CrossRef]
- Glasby, G.P. Manganese: Predominant role of nodules and crusts. Mar. Geochem. 2006, 371–427. [Google Scholar] [CrossRef]
- Cronan, D.S.; Hodkinson, R.A.; Mineral, M.; Programme, R. An evaluation of manganese nodules and cobalt-rich crusts in south pacific exclusive economic zones. Part III. Nodules and crusts in the EEZ of Tuvalu (Ellice Islands). Mar. Geores. Geotechnol. 2008, 11, 153–174. [Google Scholar] [CrossRef]
- Glasby, G.P. Deep seabed mining: Past failures and future prospects. Mar. Geores. Geotechnol. 2002, 20, 161–176. [Google Scholar] [CrossRef]
- Hein, J.R.; Spinardi, F.; Okamoto, N.; Mizell, K. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions. Ore Geol. Rev. 2015, 68, 97–116. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Murton, B. Seafloor mining: the future or just another pipe dream? Underw. Technol. 2013, 31, 53–54. [Google Scholar] [CrossRef]
- Murton, B.J. A global review of non-living resources on the extended continental shelf. Braz. J. Geophys. 2001, 18, 281–306. [Google Scholar] [CrossRef]
- Randhawa, N.S.; Hait, J.; Jana, R.K. A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario. Hydrometallurgy 2015, 165, 166–181. [Google Scholar] [CrossRef]
- Dymond, J.; Lyle, M.; Finney, B.; Piper, D.Z.; Murphy, K.; Conard, R.; Pisias, N. Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes. Geochim. Cosmochim. Acta 1984, 48, 931–949. [Google Scholar] [CrossRef]
- Lyle, M.; Heath, G.R.; Robbins, J.M. Transport and release of transition elements during early diagenesis: Sequential leaching of sediments from MANOP Sites M and H.Part I.pH 5 acetic acid leach. Geochim. Cosmochim. Acta 1984, 45, 1705–1715. [Google Scholar] [CrossRef]
- Nath, B.N.; Roelandts, I.; Sudhakar, M.; Pluger, W.L. Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Geophys. Res. Lett. 1992, 38, 185–208. [Google Scholar] [CrossRef]
- Pattan, J.N.; Parthiban, G.; Amonkar, A.; Shaikh, S.A.; Jai Sankar, S. Trace elements in ferromanganese nodules from the central indian ocean basin. Mar. Geores. Geotechnol. 2017. [Google Scholar] [CrossRef]
- Takematsu, N.; Sato, Y.; Okabe, S. Factors controlling the chemical composition of marine manganese nodules and crusts: A review and synthesis. Mar. Chem. 1989, 26, 41–56. [Google Scholar] [CrossRef]
- Wegorzewski, A.V.; Kuhn, T. The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean. Mar. Geol. 2014, 357, 123–138. [Google Scholar] [CrossRef]
- Kuhn, T.; Wegorzewski, A.; Rühlemann, C.; Vink, A. Composition, formation, and occurrence of polymetallic nodules. In Deep-Sea Mining; Sharma, R., Ed.; Springer International Publishing: Basel, Switzerland, 2017; pp. 23–63. ISBN 9783319525570. [Google Scholar]
- Bonatti, E.; Kraemer, T.; Rydell, H. Classification and genesis of submarine iron-manganese deposits. In Ferromanganese Deposits on the Ocean Floor; Horn, D.R., Ed.; NSF: Alexandria, VA, USA, 1972; pp. 149–166. [Google Scholar]
- Josso, P.; Pelleter, E.; Pourret, O.; Fouquet, Y.; Etoubleau, J.; Cheron, S.; Bollinger, C. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geol. Rev. 2017, 87, 3–15. [Google Scholar] [CrossRef]
- González, F.J.; Somoza, L.; Hein, J.R.; Medialdea, T.; León, R.; Urgorri, V.; Reyes, J.; Martín-Rubí, J.A. Phosphorites, Co-rich Mn nodules, and Fe–Mn crusts from Galicia Bank, NE Atlantic: Reflections of Cenozoic tectonics and paleoceanography. Geochem. Geophys. Geosyst. 2016, 17, 346–374. [Google Scholar] [CrossRef]
- Mayumy Amparo, C.-R.; Arturo, C.; Marlene, O.; Rez Mayumy Amparo, C.; Arturo, C.; Marlene, O. Morphology and texture of polymetallic nodules and their association with sediments of the Mexican Pacific. Mar. Georesour. Geotechnol. 2013, 31, 154–175. [Google Scholar] [CrossRef]
- Sarkar, C.; Iyer, S.D.; Hazra, S. Inter-relationship between nuclei and gross characteristics of manganese nodules, Central Indian Ocean Basin. Mar. Georesour. Geotechnol. 2008, 26, 259–289. [Google Scholar] [CrossRef]
- Vineesh, T.; Nagender Nath, B.; Banerjee, R.; Jaisankar, S.; Lekshmi, V. Manganese nodule morphology as indicators for oceanic processes in the Central Indian Basin. Int. Geol. Rev. 2009, 51, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Cronan, D.S.; Tooms, J.S. The geochemistry of manganese nodules and associated pelagic deposits from the Pacific and Indian Oceans. Deep Sea Res. Oceanogr. Abstr. 1969, 16, 335–359. [Google Scholar] [CrossRef]
- Verlaan, P.A.; Cronan, D.S.; Morgan, C.L. A comparative analysis of compositional variations in and between marine ferromanganese nodules and crusts in the South Pacific and their environmental controls. Prog. Oceanogr. 2004, 63, 125–158. [Google Scholar] [CrossRef]
- Bonatti, E.; Fisher, D.E.; Joensuu, O.; Rydell, H.S. Postdepositional mobility of some transition elements, phosphorus, uranium and thorium in deep sea sediments. Geochim. Cosmochim. Acta 1971, 35, 189–201. [Google Scholar] [CrossRef]
- Mewes, K.; Mogollón, J.M.; Picard, A.; Rühlemann, C.; Kuhn, T.; Nothen, K.; Kasten, S. Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone. Deep. Res. Part I 2014, 91, 125–141. [Google Scholar] [CrossRef]
- Thomson, J.; Higgs, N.C.; Croudace, I.W.; Colley, S.; Hydes, D.J. Redox zonation of elements at an oxic/post-oxic boundary in deep-sea sediments. Geochim. Cosmochim. Acta 1993, 57, 579–595. [Google Scholar] [CrossRef]
- Manceau, A.; Lanson, M.; Takahashi, Y. Mineralogy and crystal chemistry of Mn, Fe, Co, Ni, and Cu in a deep-sea Pacific polymetallic nodule. Am. Mineral. 2014, 99, 2068–2083. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, X.; Jiang, X.; Sa, R.; Zhou, L.; Huang, Y.; Liu, Y.; Li, X.; Lu, R.; Wang, C. The effect of Fe–Mn minerals and seawater interface and enrich- ment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea. Acta Oceanol. 2017, 36, 34–46. [Google Scholar] [CrossRef]
- Kuhn, T.; Ruhlemann, C.; Wiedicke-Hombach, M. Developing a strategy for the exploration of vast seafloor areas for prospective manganese nodule fields. In Marine Minerals: Finding the Right Balance of Sustainable Development and Environmental Protection; Zhou, H., Morgan, C.L., Eds.; The Underwater Mining Institute: Shangai, China, 2012; pp. 1–9. [Google Scholar]
- Ruhlemann, C.; Kuhn, T.; Wiedicke, M.; Kasten, S.; Mewes, K.; Picard, A. Current status of manganese nodule exploration in the German license area. In Isope Ocean Mining Symposium; International Society of Offshore and Polar Engineers: Maui, HI, USA, 2011; pp. 168–179. [Google Scholar]
- Nath, B.N.; Prasad, M.S. Manganese nodules in the Exclusive Economic Zone of Mauritius. Mar. Min. 1991, 10, 303–355. [Google Scholar]
- PyMca. Available online: http://pymca.sourceforge.net/download.html (accessed on 22 October 2018).
- Reyss, J.L.; Marchig, V.; Ku, T.L. Rapid growth of a deep-sea manganese nodule. Nature 1982, 295, 401–403. [Google Scholar] [CrossRef]
- Von Stackelberg, U.; Beiersdorf, H. The formation of manganese nodules between the Clarion and Clipperton fracture zones southeast of Hawaii. Mar. Geol. 1991, 98, 411–423. [Google Scholar] [CrossRef]
- Dillard, J.G.; Crowther, D.L.; Murray, J.W. The oxidation states of cobalt and selected metals in Pacific ferromanganese nodules. Geochim. Cosmochim. Acta 1982, 46, 755–759. [Google Scholar] [CrossRef]
- Nath, B.N.; Rao, V.P.; Becker, K.P. Geochemical evidence of terrigenous influence in deep-sea sediments up to 8° S in the Central Indian Basin. Mar. Geol. 1989, 87, 301–313. [Google Scholar] [CrossRef]
- Von Stackelberg, U. Growth history of manganese nodules and crusts of the Peru Basin. In Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits; Nicholson, K., Hein, J.R., Buhn, B., Dasgupta, S., Eds.; The Geological Society of London: London, UK, 1997; pp. 153–176. [Google Scholar]
- Halbach, P.; Marchig, V.; Scherhag, C. Regional variations in Mn, Ni, Cu and Co of ferromanganese nodules from a basin in the southeast Pacific. Mar. Geol. 1980, 38, 1–9. [Google Scholar] [CrossRef]
- Asavin, A.M.; Daryin, A.V; Melnikov, M.E. Microrhythmic distribution of Co, Mn, Ni, and La Contents in Cobalt Rich Ferromanganese Crusts from the Magellan Seamounts. Geochem. Int. 2015, 53, 19–38. [Google Scholar] [CrossRef]
- Shiraishi, F.; Mitsunobu, S.; Suzuki, K.; Hoshino, T. Dense microbial community on a ferromanganese nodule from the ultra-oligotrophic South Pacific Gyre: Implications for biogeochemical cycles. Earth Planet. Sci. Lett. 2016, 447, 10–20. [Google Scholar] [CrossRef]
- Finney, B.P.; Lyle, M.W.; Heath, G.R. Sedimentation at MANOP site H (Eastern Equatorial Pacific) over the past 400,000 years: Climatically induced redox variations and their effects on transition metal cycling. Paleoceanography 1988, 3, 169–189. [Google Scholar] [CrossRef]
- Konig, I.; Haeckel, M.; Lougear, A.; Suess, E.; Trautwein, A.X. A geochemical model of the Peru Basin deep-sea floor—And the response of the system to technical impacts. Deep. Res. Part II 2001, 48, 3737–3756. [Google Scholar] [CrossRef]
Samples ID | Latitude | Longitude | Depth (m) | Genetic Type | Characteristics | References | ||
---|---|---|---|---|---|---|---|---|
Clarion-Clippertone Zone | ||||||||
JC120-104A | 13° | 30.700′ | −116° | 35.166′ | 4130 | Mixed-type | Discoidal shape with rim marking the water-sediment interface. | [39,40] |
JC120-104B | 13° | 30.700′ | −116° | 35.166′ | 4130 | |||
JC120-104C | 13° | 30.700′ | −116° | 35.166′ | 4130 | |||
JC120-104D | 13° | 30.700′ | −116° | 35.166′ | 4130 | |||
Central Indian Basin | ||||||||
AAS40-308 | −12° | 03.642′ | 74° | 29.844′ | 5060 | Mixed-type | Nodules from the CIB vary from diagenetic to hydrogenetic depending on type of sediments (red clays, carbonate ooze, siliceous ooze, etc.). | [7,21] |
AAS21-17 | −12° | 30.204′ | 75° | 54.936′ | 5410 | |||
AAS21-19 | −12° | 25.098′ | 75° | 50.178′ | 5350 | |||
SS4-280 | −12° | 00.000′ | 76° | 30.540′ | 5400 | |||
F8-398A | −15° | 29.040′ | 75° | 59.460′ | 5150 | |||
Mascarene Basin | ||||||||
SK35-24 | −15° | 02.400′ | 55° | 04.000′ | 4420 | Hydrogenetic | Spheroidal to sub-spheroidal shape, 2–4 cm in size, smooth surface, Fe-Co-REE-enriched. | [41] |
SK35-27 | −17° | 00.400′ | 56° | 01.500′ | 4528 | |||
SK35-26 | −16° | 00.000′ | 55° | 59.500′ | 4130 | |||
Rio Grande Rise | ||||||||
RGR | - | - | - | - | - | Hydrogenetic | - | (This paper) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benites, M.; Millo, C.; Hein, J.; Nath, B.N.; Murton, B.; Galante, D.; Jovane, L. Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules. Minerals 2018, 8, 488. https://doi.org/10.3390/min8110488
Benites M, Millo C, Hein J, Nath BN, Murton B, Galante D, Jovane L. Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules. Minerals. 2018; 8(11):488. https://doi.org/10.3390/min8110488
Chicago/Turabian StyleBenites, Mariana, Christian Millo, James Hein, Bejugam Nagender Nath, Bramley Murton, Douglas Galante, and Luigi Jovane. 2018. "Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules" Minerals 8, no. 11: 488. https://doi.org/10.3390/min8110488
APA StyleBenites, M., Millo, C., Hein, J., Nath, B. N., Murton, B., Galante, D., & Jovane, L. (2018). Integrated Geochemical and Morphological Data Provide Insights into the Genesis of Ferromanganese Nodules. Minerals, 8(11), 488. https://doi.org/10.3390/min8110488