A New Concept on High-Calcium Flotation Wastewater Reuse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Flotation Experiments
2.3. Powder Contact Angle Measurements
3. Results and Discussion
3.1. Bench-Scale Flotation Tests
3.2. Contact Angle Measurements
3.3. Industrial-Scale Tests
4. Conclusions
- (1)
- When XLM consists of 96 wt % DO and 4 wt % PAHs, XLM has better adaptability than DO in different Ca2+ concentrations of flotation water.
- (2)
- PAHs, as synergistic components of the composite collector, could adsorb on the edges of molybdenite in the presence of a Ca2+ by forming PAHs-Ca2+-MoO42− structure to increase the contact angle of fine molybdenite particle and reduce the deleterious effect of Ca2+ on the flotation of molybdenite.
- (3)
- The industrial-scale tests showed that XLM can improve the molybdenite roughing recovery and grade by 1.8% and 3.46% compared with DO in HCFW, respectively. It is feasible and effective to replace high-cost wastewater treatment for molybdenum plants.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Udaiyappan, A.F.M.; Hasan, H.A.; Takriff, M.S.; Abdullah, S.R.S. A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J. Water Process Eng. 2017, 20, 8–21. [Google Scholar] [CrossRef]
- Mohsen, M.S.; Jaber, J.O. Potential of industrial wastewater reuse. Desalination 2003, 152, 281–289. [Google Scholar] [CrossRef]
- Muzinda, I.; Schreithofer, N. Water quality effects on flotation: Impacts and control of residual xanthates. Miner. Eng. 2018, 125, 34–41. [Google Scholar] [CrossRef]
- Rabieh, A.; Albijanic, B.; Eksteen, J.J. Influence of grinding media and water quality on flotation performance of gold bearing pyrite. Miner. Eng. 2017, 112, 68–76. [Google Scholar] [CrossRef]
- Shengo, L.M.; Gaydardzhiev, S.; Kalenga, N.M. Assessment of water quality effects on flotation of copper-cobalt oxide ore. Miner. Eng. 2014, 65, 145–148. [Google Scholar] [CrossRef]
- Levay, G.; Smart, R.S.C.; Skinner, W.M. The impact of water quality on flotation performance. J. S. Afr. Inst. Min. Metall. 2001, 101, 69–75. [Google Scholar]
- Chen, J.M.; Liu, R.Q.; Sun, W.; Qiu, G.Z. Effect of mineral processing wastewater on flotation of sulfide mineral. Trans. Nonferr. Met. Soc. China 2009, 19, 454–457. [Google Scholar] [CrossRef]
- Muzenda, E. An investigation into the effect of water quality on flotation performance. World Acad. Sci. Eng. Technol. 2010, 69, 237–241. [Google Scholar]
- Liu, W.; Moran, C.J.; Vink, S. A review of the effect of water quality on flotation. Miner. Eng. 2013, 53, 91–100. [Google Scholar] [CrossRef]
- Bicak, O.; Ekmekci, Z.; Can, M.; Ozturk, Y. The effect of water chemistry on froth stability and surface chemistry of the flotation of a Cu-Zn sulfide ore. Int. J. Miner. Process. 2012, 102, 32–37. [Google Scholar] [CrossRef]
- Kang, J.H.; Chen, C.; Sun, W.; Tang, H.H.; Yin, Z.G.; Liu, R.Q.; Hu, Y.H.; Nguyen, A.V. A significant improvement of scheelite recovery using recycled flotation wastewater treated by hydrometallurgical waste acid. J. Clean. Prod. 2017, 151, 419–426. [Google Scholar] [CrossRef]
- Shirley, J.F. By-product molybdenum recovery. In International Molybdenum Encyclopaedia; Intermet Publications: Santiago, Chile, 1979; pp. 37–56. [Google Scholar]
- Chander, S.; Fuerstenau, D.W. On the natural floatability of molybdenite. Trans. Am. Inst. Min. Metall. Eng. 1972, 252, 62–69. [Google Scholar]
- Raghavan, S.; Hsu, L.L. Factors affecting the flotation recovery of molybdenite from porphyry copper ore. Int. J. Miner. Process. 1984, 12, 145–162. [Google Scholar] [CrossRef]
- Wan, H.; Yang, W.; Cao, W.C.; He, T.S.; Liu, Y.Y.; Yang, J.B.; Guo, L.; Peng, Y.J. The interaction between Ca2+ and molybdenite edges and its effect on molybdenum flotation. Minerals 2017, 7, 141. [Google Scholar] [CrossRef]
- Lucay, F.; Cisternas, L.A.; Gálvez, E.D.; López-Valdivieso, A. Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation. Metall. Process. 2015, 32, 203–208. [Google Scholar] [CrossRef]
- Zanin, M.; Ametov, I.; Grano, S.; Zhou, L.; Skinner, W. A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit. Int. J. Miner. Process. 2009, 93, 256–266. [Google Scholar] [CrossRef]
- Castro, S.; Laskowski, J.S. The effect of hydrophilic and hydrophobic polymers on molybdenite flotation. In Proceedings of the 5th Southern Hemisphere Meeting on Mineral Technology, Buenos Aires, Argentine, 8 May 1997; Intemin-Segemar: Buenos Aires, Argentine, 1997; pp. 117–120. [Google Scholar]
- Castro, S.; Laskowski, J.S. Molybdenite depression by shear degraded polyacrilamide solutions. In Particle Size Enlargement in Mineral Proceedings of the Fifth UBC-McGill Bi-Annual International Symposium on Fundamentals of Mineral Processing; Laskowski, J.S., Ed.; Metallurgical Society: Hamilton, OH, USA, 2004; pp. 169–178. [Google Scholar]
- Castro, S.; Laskowski, J.S. The effect of flocculants and their degradation products on molybdenite flotation. In Proceedings of the Copper 2013 Conference, Santiago, Chile, 27 April 2013. [Google Scholar]
- Castro, S.; Laskowski, J.S. Depressing effect of flocculants on molybdenite flotation. Miner. Eng. 2015, 74, 13–19. [Google Scholar] [CrossRef]
- Celik, M.S.; Somasundaran, P. The effect of multivalent ions on the flotation of coal. Sep. Sci. Technol. 1986, 21, 393–402. [Google Scholar] [CrossRef]
- Somasundaran, P.; Zhang, L.; Fuerstenau, D.W. The effect of environment, oxidation and dissolved metal species on the chemistry of coal flotation. Int. J. Miner. Process. 2000, 58, 85–97. [Google Scholar] [CrossRef]
- Hoover, M.R. Water chemistry effects in the flotation of sulphide ores—A review and discussion for molybdenite. In Complex Sulphide Ores; Jones, M.J., Ed.; IMM: London, UK, 1980; pp. 100–112. [Google Scholar]
- Jeldres, R.I.; Arancibia-Bravo, M.P.; Reyes, A.; Aguirre, C.E.; Cortes, L.; Cisternas, L.A. The impact of seawater with calcium and magnesium removal for the flotation of copper-molybdenum sulphide ores. Miner. Eng. 2017, 111, 198–200. [Google Scholar] [CrossRef]
- Ozdemir, O.; Karaguzel, C.; Nguyen, A.V.; Celik, M.S.; Miller, J.D. Contact angle and bubble attachment studies in the flotation of trona and other soluble carbonate salts. Miner. Eng. 2009, 22, 168–175. [Google Scholar] [CrossRef]
- Huang, X.F.; Gong, F.Z. Measurement of contact angles of solid powder by washburn osmotic pressure method. Res. Explor. Lab. 2003, 22, 48–50. (In Chinese) [Google Scholar]
- Nanotachnology of Standardization Administration of China. Nanotechnology-Determination of Contact Angles of Nanopowders-Washburn Dynamic Pressure Method; China Standard Press: Beijing, China, 2018; pp. 1–20, GB/T 36086-2018. (In Chinese)
- Wei, H.; Xu, C.T.; Han, Q.P.; Chen, B.L. Measuring surface free enthalpy change of sediment of Changjiang river with contact angle method. Water Purify. Technol. 2005, 24, 1–3. (In Chinese) [Google Scholar]
- Gontijo, C.D.F.; Fornasiero, D.; Ralston, J. The limits of fine and coarse particle flotation. Can. J. Chem. Eng. 2007, 85, 739–747. [Google Scholar] [CrossRef]
- Tabares, J.O.; Ortega, I.M.; Bahena, J.L.R.; López, A.A.S.; Pérez, D.V.; Valdivieso, A.L. Surface properties and floatability of molybdenite. In Proceedings of the 2006 China-Mexico Workshop on Minerals Particle Technology, San Luis Potosí, Mexico, 5–7 December 2006; pp. 115–124. [Google Scholar]
- Hirajim, T.; Suyantar, G.P.W.; Ichikaw, O.; Elmahdy, A.M.; Miki, H.; Sasaki, K. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Miner. Eng. 2016, 96, 83–93. [Google Scholar] [CrossRef]
- Wan, H.; Yang, W.; He, T.S.; Yang, J.B.; Guo, L.; Peng, Y.J. The influence of Ca2+ and pH on the interaction between PAHs and molybdenite edges. Minerals 2017, 7, 104. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Pathak, B.; King, R.B.; Schaefer, H.F., III. Bond length and bond multiplicity: σ-bond prevents short π-bonds. Chem. Commun. 2006, 20, 2164–2166. [Google Scholar] [CrossRef] [PubMed]
- Balan, A.; Santacruz-Pérez, C.; Moutran, A.; Ferreira, L.C.S.; Neshich, G.; Barbosa, J.A.R.G. Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri. Biochim. Biophys. Acta 2008, 1784, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Balan, A.; Santacruz-Pérez, C.; Moutran, A.; Ferreira, R.C.C.; Medrano, F.J.; Pérez, C.A.; Ramos, C.H.I.; Ferreira, L.C.S. The molybdate-binding protein (ModA) of the plant pathogen Xanthomonas axonopodis pv. citri. Protein Expre. Purif. 2006, 50, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.G.; Luo, X.M.; Yan, X.H.; Li, Z.; Tang, Y.; Jiang, H.L.; Zhu, W.L. Research progress in cation-π interactions. Sci. China Ser. B Chem. 2008, 51, 709–717. [Google Scholar] [CrossRef]
Serial Number | Collector | Mo Rough Concentrate | (%) | (%) | |
---|---|---|---|---|---|
Average Grade (%) | Average Recovery (%) | ||||
1 | XLM | 11.94 | 87.9 | 3.46 | 1.8 |
2 | DO | 8.48 | 86.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, H.; Qu, J.; He, T.; Bu, X.; Yang, W.; Li, H. A New Concept on High-Calcium Flotation Wastewater Reuse. Minerals 2018, 8, 496. https://doi.org/10.3390/min8110496
Wan H, Qu J, He T, Bu X, Yang W, Li H. A New Concept on High-Calcium Flotation Wastewater Reuse. Minerals. 2018; 8(11):496. https://doi.org/10.3390/min8110496
Chicago/Turabian StyleWan, He, Juanping Qu, Tingshu He, Xianzhong Bu, Wei Yang, and Hui Li. 2018. "A New Concept on High-Calcium Flotation Wastewater Reuse" Minerals 8, no. 11: 496. https://doi.org/10.3390/min8110496
APA StyleWan, H., Qu, J., He, T., Bu, X., Yang, W., & Li, H. (2018). A New Concept on High-Calcium Flotation Wastewater Reuse. Minerals, 8(11), 496. https://doi.org/10.3390/min8110496