He–Ar–S Isotopic Compositions of Polymetallic Sulphides from Hydrothermal Vent Fields along the Ultraslow-Spreading Southwest Indian Ridge and Their Geological Implications
Abstract
:1. Introduction
2. Geologic Setting
3. Sampling Information
4. Analytical Methods
5. Results
5.1. Helium–Argon Concentrations and Isotopic Ratios
5.2. Sulphur Isotope Compositions
6. Discussion
6.1. Helium and Argon Sources
6.2. Sulphur Sources
6.3. He–Ar–S Isotopic Constraints on the Proportional Contribution of Mantle Sources
7. Conclusions
- (1)
- The S isotopic ratios of typical massive sulphide samples in SWIR fall in a narrow range, varying from 3.0‰ to 7.5‰. Seawater-derived and magmatic sulphur are dual sources of S during ore-forming processes, in which the contribution of magmatic sulphur plays a dominate role, approximately accounting for 65%–87% of total S sources, whereas the proportion of seawater-derived sulphur is about 13%–35%. Additional contribution of seawater to No. S25-TVG21 sulphide samples (45%–48%) indicates that the Tianzuo hydrothermal products had undergone extensive hydrothermal reworking, as well as post-depositional alteration by seawater. Sulphur sources in hydrothermal sulphides from the CIR are also characterised by the mixture of two end members dominated by magmatic sulphur.
- (2)
- The S isotopic ratios in the Longqi black smoker chimneys show that δ34S in the exterior wall is higher than that in the inner portion, suggesting that the contribution of seawater increases from inner to outer layer. The results of δ34S in most of the SWIR hydrothermal sulphides suggest that S isotope failed to reach equilibrium due to their rapid precipitation when hydrothermal fluid mixed with seawater after venting.
- (3)
- The ratios of 3He/4He in SWIR hydrothermal sulphides ranged from 9.67 Ra to 1.12 Ra, along with 40Ar/36Ar ratios varying from 303.4 Ra to 290.6 Ra. He isotopic compositions in three representative samples are the products of mixtures with variable amounts of seawater, and upper-mantle and lower-mantle components, among which, the upper mantle plays a dominant role. Ar isotopic analyses indicate that the majority of Ar in these SWIR samples is derived from seawater.
- (4)
- According to He–S isotopic compositions, the sources of ore-forming fluids trapped in different types of hydrothermal precipitates can be roughly estimated. Our results indicate that upper-mantle-derived fluid accounts for 63%–79% and 14%–27% from seawater, whereas 7%–13% of He is derived from the lower mantle related to the Marion and Crozet hotspot activities. These isotopic signatures can provide useful insights into the impact of geological control on hydrothermal mineralisation at the ultraslow-spreading SWIR.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hannington, M.; Herzig, P.; Scott, S.; Thompson, G.; Rona, P. Comparative mineralogy and geochemistry of gold-bearing deposits on the mid-ocean ridges. Mar. Geol. 1991, 101, 217–248. [Google Scholar] [CrossRef]
- Hannington, M.D.; Tivey, M.K.; Larocque, A.C.L.; Petersen, S.; Rona, P.A. The occurrence of gold in sulfide deposits of the TAG hydrothermal field, Mid-Atlantic Ridge. Can. Mineral. 1995, 33, 1285–1310. [Google Scholar]
- Fouquet, Y.; Wafik, A.; Cambon, P.; Mevel, C.; Meyer, G.; Gente, P. Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23° N). Econ. Geol. 1993, 88, 2018–2036. [Google Scholar] [CrossRef]
- Murphy, P.J.; Meyer, G. A gold-copper association in ultramafic-hosted hydrothermal sulfides from the Mid-Atlantic Ridge. Econ. Geol. 1998, 93, 1076–1083. [Google Scholar] [CrossRef]
- Törmänen, T.O.; Koski, R.A. Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba Trough, Southern Gorda Ridge. Econ. Geol. 2005, 100, 1135–1150. [Google Scholar] [CrossRef]
- Nayak, B.; Halbach, P.; Pracejus, B.; Münch, U. Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis. Ore Geol. Rev. 2014, 63, 115–128. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D.; Fouquet, Y.; von Stackelberg, U.; Petersen, S. Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Econ. Geol. 1993, 88, 2182–2209. [Google Scholar] [CrossRef]
- Binns, R.A.; Scott, S.D.; Bogdanov, Y.A.; Lisitzin, A.P.; Gordeev, V.V.; Gurvich, E.G.; Finlayson, E.J.; Boyd, T.; Dotter, L.E.; Wheller, G.E.; et al. Hydrothermal oxide and gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea. Econ. Geol. 1993, 88, 2122–2153. [Google Scholar] [CrossRef]
- Binns, R.A.; Parr, J.M.; Gemmell, J.B.; Whitford, D.J.; Dean, J.A. Precious metals in barite-silica chimneys from Franklin Seamount, Woodlark Basin, Papua New Guinea. Mar. Geol. 1997, 142, 119–141. [Google Scholar] [CrossRef]
- Moss, R.; Scott, S.D. Geochemistry and mineralogy of gold-rich hydrothermal precipitates from the eastern Manus Basin, Papua New Guinea. Can. Mineral. 2001, 39, 957–978. [Google Scholar] [CrossRef]
- Petersen, S.; Herzig, P.M.; Hannington, M.D.; Jonasson, I.R.; Arribas, A. Submarine gold mineralization near Lihir Island, New Ireland fore-arc, Papua New Guinea. Econ. Geol. 2002, 97, 1795–1813. [Google Scholar] [CrossRef]
- Hannington, M.D.; Peter, J.M.; Scott, S.D. Gold in sea-floor polymetallic sulfide deposits. Econ. Geol. 1986, 81, 1867–1883. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D. Polymetallic massive sulfides at the modern seafloor: A review. Ore Geol. Rev. 1995, 10, 95–115. [Google Scholar] [CrossRef]
- Hannington, M.D.; de Ronde, C.E.J.; Petersen, S. Sea-floor tectonics and submarine hydrothermal systems. Econ. Geol. 2005, 100, 111–141. [Google Scholar]
- Halbach, P.; Blum, N.; Münch, U.; Plüger, W.; Garbe-Schönberg, D.; Zimmer, M. Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner. Depos. 1998, 33, 302–309. [Google Scholar] [CrossRef]
- Münch, U.; Blum, N.; Halbach, P. Mineralogical and geochemical features of sulfide chimneys from the MESO zone, Central Indian Ridge. Chem. Geol. 1999, 155, 29–44. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Petersen, S.; Jin, X.; Qiu, Z.; Zhu, J. Mineralogy and geochemistry of hydrothermal precipitates from Kairei hydrothermal field, Central Indian Ridge. Mar. Geol. 2014, 354, 69–80. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, X.; Xu, H.; Konishi, H.; Wang, Y.; Wang, C.; Dai, Y.; Deng, X.; Yu, M. Occurrences and distribution of “invisible” precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge. Ore Geol. Rev. 2016, 79, 105–132. [Google Scholar] [CrossRef]
- German, C.R.; Baker, E.T.; Mevel, C.; Tamaki, K. Hydrothermal activity along the Southwest Indian Ridge. Nature 1998, 395, 490–493. [Google Scholar] [CrossRef]
- Münch, U.; Lalou, C.; Halbach, P.; Fujimoto, H. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′ E—Mineralogy, chemistry and chronology of sulfide samples. Chem. Geol. 2001, 177, 341–349. [Google Scholar] [CrossRef]
- Bach, W.; Banerjee, N.R.; Dick, H.J.B.; Baker, E.T. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°–16° E. Geochem. Geophys. Geosyst. 2002, 3, 1–15. [Google Scholar] [CrossRef]
- Baker, E.T.; Edmonds, H.N.; Michael, P.J.; Bach, W.; Dick, H.J.B.; Snow, J.E.; Walker, S.L.; Banerjee, N.R.; Langmuir, C.H. Hydrothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochem. Geophys. Geosyst. 2004, 5, 1–29. [Google Scholar] [CrossRef]
- Tao, C.; Lin, J.; Guo, S.; Chen, Y.J.; Wu, G.; Han, X.; German, C.R.; Yoerger, D.R.; Zhou, N.; Li, H.; et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 2012, 40, 47–50. [Google Scholar] [CrossRef]
- Tao, C.; Li, H.; Jin, X.; Zhou, J.; Wu, T.; He, Y.; Deng, X.; Gu, C.; Zhang, G.; Liu, W. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge. Chin. Sci. Bull. 2014, 59, 2266–2276. [Google Scholar] [CrossRef]
- Suo, Y.; Li, S.; Li, X.; Zhang, Z.; Ding, D. The potential hydrothermal systems unexplored in the Southwest Indian Ocean. Mar. Geophys. Res. 2017, 38, 61–70. [Google Scholar] [CrossRef]
- Tao, C.; Li, H.; Huang, W.; Han, X.; Wu, G.; Su, X.; Zhou, N.; Lin, J.; He, Y.; Zhou, J. Mineralogical and geochemical features of sulfide chimneys from the 49°39′ E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chin. Sci. Bull. 2011, 56, 2828–2838. [Google Scholar] [CrossRef]
- Ye, J.; Shi, X.; Yang, Y.; Li, N.; Liu, J.; Su, W. The occurrence of gold in hydrothermal sulfide at Southwest Indian Ridge 49.6° E. Acta Oceanol. Sin. 2012, 31, 72–82. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Wu, Z.; Deng, X.; Dai, Y.; Lin, Z. The enrichment characteristic and mechanism of gold-silver minerals in submarine hydrothermal sulfides from the ultraslow-spreading SWIR. Spectrosc. Spectr. Anal. 2014, 34, 3327–3332. [Google Scholar]
- Liao, S.; Tao, C.; Li, H.; Barriga, F.J.A.S.; Liang, J.; Yang, W.; Yu, J.; Zhu, C. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geol. Rev. 2018, 96, 13–27. [Google Scholar] [CrossRef]
- Yuan, B.; Yu, H.; Yang, Y.; Zhao, Y.; Yang, J.; Xu, Y.; Lin, Z.; Tang, X. Zone refinement related to the mineralization process as evidenced by mineralogy and element geochemistry in a chimney fragment from the Southwest Indian Ridge at 49.6° E. Chem. Geol. 2018, 482, 46–60. [Google Scholar] [CrossRef]
- Ji, F.; Zhou, H.; Yang, Q.; Gao, H.; Wang, H.; Lilley, M.D. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge. Deep-Sea Res. I 2017, 122, 41–47. [Google Scholar] [CrossRef]
- Lupton, J.E.; Weiss, R.F.; Craig, H. Mantle helium in the Red Sea brines. Nature 1977, 266, 244–246. [Google Scholar] [CrossRef]
- Turner, G.; Stuart, F. Helium/heat ratios and deposition temperatures of sulphides from the ocean floor. Nature 1992, 357, 581–583. [Google Scholar] [CrossRef]
- Winckler, G.; Aeschbach-Hertig, W.; Kipfer, R.; Botz, R.; Rübel, A.P.; Bayer, R.; Stoffers, P. Constraint on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet. Sci. Lett. 2001, 184, 671–683. [Google Scholar] [CrossRef]
- Graham, D.W. Noble gas isotope geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of mantle source reservoirs. Rev. Mineral. Geochem. 2002, 47, 247–317. [Google Scholar] [CrossRef]
- Zeng, Z.; Niedermann, S.; Chen, S.; Wang, X.; Li, Z. Noble gases in sulfide deposits of modern deep-sea hydrothermal systems: Implications for heat fluxes and hydrothermal fluid processes. Chem. Geol. 2015, 409, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lupton, J.E.; Craig, H. A major helium-3 source at 15° S on the East Pacific Rise. Science 1981, 214, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Lupton, J.E.; Baker, E.T.; Massoth, G.J. Variable 3He/heat ratios in submarine hydrothermal systems: Evidence from two plumes over the Juan de Fuca ridge. Nature 1989, 337, 161–164. [Google Scholar] [CrossRef]
- Baker, E.T.; Lupton, J.E. Changes in submarine hydrothermal 3He/heat ratios as an indicator of magmatic/tectonic activity. Nature 1990, 346, 556–558. [Google Scholar] [CrossRef]
- Stuart, F.M.; Turner, G.; Duckworth, R.C.; Fallick, A.E. Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology 1994, 22, 823–826. [Google Scholar] [CrossRef]
- Jean-Baptiste, P.; Fouquet, Y. Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13° N. Geochim. Cosmochim. Acta 1996, 60, 87–93. [Google Scholar] [CrossRef]
- Zeng, Z.; Qin, Y.; Zhai, S. He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge. Sci. China Ser. D Earth Sci. 2001, 44, 221–228. [Google Scholar] [CrossRef]
- Zeng, Z.; Qin, Y.; Zhai, S. Helium, neon and argon isotope compositions of fluid inclusions in massive sulfides from the Jade hydrothermal field, Okinawa Trough. Acta Oceanol. Sin. 2004, 23, 655–661. [Google Scholar]
- Lüders, V.; Niedermann, S. Helium isotope composition of fluid inclusions hosted in massive sulfides from modern submarine hydrothermal systems. Econ. Geol. 2010, 105, 443–449. [Google Scholar] [CrossRef]
- Webber, A.P.; Roberts, S.; Burgess, R.; Boyce, A.J. Fluid mixing and thermal regimes beneath the PACMANUS hydrothermal field, Papua New Guinea: Helium and oxygen isotope data. Earth Planet. Sci. Lett. 2011, 304, 93–102. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Qiu, Z. Source and nature of ore-forming fluids of the Edmond hydrothermal field, Central Indian Ridge: Evidence from He-Ar isotope composition and fluid inclusion study. Acta Oceanol. Sin. 2017, 36, 101–108. [Google Scholar] [CrossRef]
- Bluth, G.J.; Ohmoto, H. Sulfide-sulfate chimneys on the East Pacific Rise, 11° and 13° N latitudes. Part II: Sulfur isotopes. Can. Mineral. 1988, 26, 505–515. [Google Scholar]
- Herzig, P.M.; Hannington, M.D.; Arribas, A. Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: Implications for magmatic contributions to seafloor hydrothermal systems. Miner. Depos. 1998, 33, 226–237. [Google Scholar] [CrossRef]
- Herzig, P.M.; Petersen, S.; Hannington, M.D. Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26° N. Mar. Biogeol. 1998, 171, 47–70. [Google Scholar]
- Shanks, W.C. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev. Mineral. Geochem. 2001, 43, 469–525. [Google Scholar] [CrossRef]
- Seal, R.R. Sulfur isotope geochemistry of sulfide minerals. Rev. Mineral. Geochem. 2006, 61, 633–677. [Google Scholar] [CrossRef]
- Zeng, Z.; Ma, Y.; Chen, S.; Selby, D.; Wang, X.; Yin, X. Sulfur and lead isotopic compositions of massive sulfides from deep-sea hydrothermal systems: Implications for ore genesis and fluid circulation. Ore Geol. Rev. 2017, 87, 155–171. [Google Scholar] [CrossRef] [Green Version]
- Dick, H.J.B.; Lin, J.; Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef] [PubMed]
- DeMets, C.; Gordon, R.G.; Argus, D.F. Geologically current plate motions. Geophys. J. Int. 2010, 181, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chu, F.; Lei, J.; Zhao, J. Advances in Slow-ultraslow-spreading Southwest Indian Ridge. Adv. Earth Sci. 2008, 23, 595–603. [Google Scholar]
- Standish, J.J.; Sims, K.W.W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge. Nat. Geosci. 2010, 3, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Henry, J. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 2013, 494, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Dick, H.J.B.; Liu, Y.; Zhou, H. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise. Lithos 2016, 246–247, 48–60. [Google Scholar] [CrossRef]
- Grindlay, N.R.; Madsen, J.A.; Rommevaux-Jestin, C.; Sclater, J. A different pattern of ridge segmentation and mantle Bouguer gravity anomalies along the ultra-slow spreading Southwet Indian Ridge (15°30’ E to 25° E). Earth Planet. Sci. Lett. 1998, 161, 243–253. [Google Scholar] [CrossRef]
- Cannat, M.; Rommevaux-Jestin, C.; Sauter, D.; Deplus, C.; Mendel, V. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69° E). J. Geophys. Res. Solid Earth 1999, 104, 22825–22843. [Google Scholar] [CrossRef]
- Muller, M.R.; Minshull, T.A.; White, R.S. Segmentation and melt supply at the Southwest Indian Ridge. Geology 1999, 27, 867–870. [Google Scholar] [CrossRef]
- Georgen, J.E.; Kurz, M.D.; Dick, H.J.B.; Lin, J. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°–24° E). Earth Planet. Sci. Lett. 2003, 206, 509–528. [Google Scholar] [CrossRef]
- Meyzen, C.M.; Toplis, M.J.; Humler, E.; Ludden, J.N.; Mével, C. A discontinuity in mantle composition beneath the Southwest Indian Ridge. Nature 2003, 421, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Seyler, M.; Cannat, M.; Mével, C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68° E). Geochem. Geophys. Geosyst. 2003, 4, 1–33. [Google Scholar] [CrossRef]
- Cannat, M.; Sauter, D.; Mendel, V.; Ruellan, E.; Okino, K.; Escartin, J.; Combier, V.; Baala, M. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 2006, 34, 605–608. [Google Scholar] [CrossRef]
- Cannat, M.; Sauter, D.; Bezos, A.; Meyzen, C.; Humler, E.; Le Rigoleur, M. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2008, 9, 1–26. [Google Scholar] [CrossRef]
- Sauter, D.; Patriat, P.; Rommevaux-Jestin, C.; Cannat, M.; Briais, A. The Southwest Indian Ridge between 49°15′ E and 57° E: Focused accretion and magma redistribution. Earth Planet. Sci. Lett. 2001, 192, 303–317. [Google Scholar] [CrossRef]
- Sauter, D.; Carton, H.; Mendel, V.; Munschy, M.; Rommevaux-Jestin, C.; Schott, J.-J.; Whitechurch, H. Ridge segmentation and the magnetic structure of the Southwest Indian Ridge (at 50°30′ E, 55°30′ E and 66°20′ E): Implications for magmatic processes at ultraslow-spreading centers. Geochem. Geophys. Geosyst. 2004, 5, 1–25. [Google Scholar] [CrossRef]
- Font, L.; Murton, B.J.; Roberts, S.; Tindle, A.G. Variations in melt productivity and melting conditions along SWIR (70° E–49° E): Evidence from olivine-hosted and plagioclase-hosted melt inclusions. J. Petrol. 2007, 48, 1471–1494. [Google Scholar] [CrossRef]
- Jian, H.; Singh, S.C.; Chen, Y.J.; Li, J. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge. Geology 2017, 45, 143–146. [Google Scholar] [CrossRef]
- Georgen, J.E.; Lin, J.; Dick, H.J.B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth Planet. Sci. Lett. 2001, 187, 283–300. [Google Scholar] [CrossRef]
- Sauter, D.; Cannat, M.; Meyzen, C.; Bezos, A.; Patriat, P.; Humler, E.; Debayle, E. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46° E and 52°20’ E: Interaction with the Crozet hotspot? Geophys. J. Int. 2009, 179, 687–699. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, J.; Gao, J. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts. Sci. China Earth Sci. 2011, 54, 1177–1188. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, J.; Gao, J. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge. Sci. China Earth Sci. 2013, 56, 2186–2197. [Google Scholar] [CrossRef]
- Ren, M.; Chen, J.; Shao, K.; Zhang, S. Metallogenic information extraction and quantitative prediction process of seafloor massive sulfide resources in the Southwest Indian Ocean. Ore Geol. Rev. 2016, 76, 108–121. [Google Scholar] [CrossRef]
- Han, X.; Wu, G.; Cui, R.; Qiu, Z.; Deng, X.; Wang, Y. Discovery of a hydrothermal sulfide deposit on the Southwest Indian Ridge at 49.2° E. In Proceedings of the American Geophysical Union Fall Meeting 2010 Abstract #OS21C-1531, San Francisco, CA, USA, 13–17 December 2010. [Google Scholar]
- McCaig, A.M.; Cliff, R.A.; Escartin, J.; Fallick, A.E.; MacLeod, C.J. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 2007, 35, 935–938. [Google Scholar] [CrossRef]
- Zhao, M.; Qiu, X.; Li, J.; Sauter, D.; Ruan, A.; Chen, J.; Cannat, M.; Singh, S.; Zhang, J.; Wu, Z.; et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39′ E). Geochem. Geophys. Geosyst. 2013, 14, 4544–4563. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Tao, C.; Ruan, A.; Zhang, G.; Guo, Z.; Huang, E. The deep structure of the Duanqiao hydrothermal field at the Southwest Indian Ridge. Acta Oceanol. Sin. 2018, 37, 73–79. [Google Scholar] [CrossRef]
- Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.; Long, J.; Ma, Z.; Wang, L. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Mar. Geophys. Res. 2017, 38, 71–83. [Google Scholar] [CrossRef]
- Liang, Y.; Li, J.; Li, S.; Ruan, A.; Ni, J.; Yu, Z.; Zhu, L. The morphotectonics and its evolutionary dynamics of the central Southwest Indian Ridge (49° to 51° E). Acta Oceanol. Sin. 2013, 32, 87–95. [Google Scholar] [CrossRef]
- Van Dover, C.L.; Humphris, S.E.; Fornari, D.; Cavanaugh, C.M.; Collier, R.; Goffredi, S.K.; Hashimoto, J.; Lilley, M.D.; Reysenbach, A.L.; Shank, T.M.; et al. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 2001, 294, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, H.; Nakamura, K.; Toki, T.; Morishita, T.; Okino, K.; Ishibashi, J.-I.; Tsunogai, U.; Kawagucci, S.; Gamo, T.; Shibuya, T.; et al. Geological background of the Kairei and Edmond hydrothermal fields along the Central Indian Ridge: Implications of their vent fluids’ distinct chemistry. Geofluids 2008, 8, 239–251. [Google Scholar] [CrossRef]
- Tao, C.; Lin, J.; Wu, G.; German, C.R.; Yoerger, D.R.; Chen, Y.J.; Guo, S.; Zeng, Z.; Han, X.; Zhou, N.; et al. First active hydrothermal vent fields discovered at the equatorial southern East Pacific Rise. In Proceedings of the American Geophysical Union, Fall Meeting 2008, Abstract #V41B-2081, San Francisco, CA, USA, 15–19 December 2008. [Google Scholar]
- Zeng, Z.; Chen, D.; Yin, X.; Wang, X.; Zhang, G.; Wang, X. Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13° N. Sci. China Earth Sci. 2010, 53, 253–266. [Google Scholar] [CrossRef]
- Cao, H.; Sun, Z.; Liu, C.; Jiang, X.; He, Y.; Huang, W.; Shang, L.; Wang, L.; Zhang, X.; Geng, W.; et al. The metallogenic mechanism and enlightenment of hydrothermal sulfide from the ultramafic-hosted hydrothermal systems at ultra-slow spreading ridge. Acta Oceanol. Sin. 2018, 40, 61–75. [Google Scholar]
- Hu, R.; Bi, X.; Jiang, G.; Chen, H.; Peng, J.; Qi, Y.; Wu, L.; Wei, W. Mantle-derived noble gases in ore-forming fluids of the granite-related Yaogangxian tungsten deposit, Southeastern China. Miner. Depos. 2012, 47, 623–632. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Liu, H.; Zhang, J.; Jin, G.; Zhang, J.; Han, J. Helium isotope composition of inclusions in mineral grains using Helix SFT noble gas mass spectrometer. Acta Geol. Sin. 2015, 89, 1826–1831. [Google Scholar]
- Xie, G.; Mao, J.; Li, W.; Zhu, Q.; Liu, H.; Jia, G.; Li, Y.; Li, J.; Zhang, J. Different proportion of mantle-derived noble gases in the Cu-Fe and Fe skarn deposits: He-Ar isotopic constraint in the Edong district, Eastern China. Ore Geol. Rev. 2016, 72, 343–354. [Google Scholar] [CrossRef]
- Allègre, C.J.; Staudacher, T.; Sarda, P. Rare gas systematics: Formation of the atmosphere, evolution and structure of the earth’s mantle. Earth Planet. Sci. Lett. 1987, 81, 127–150. [Google Scholar] [CrossRef]
- Jin, G.; Liu, H.; Zhang, J.; Li, J.; Han, J.; Wang, Y.; Zhang, J. EA-IRMS system measurement of stable sulfur isotope in sulphide. Uranium Geol. 2014, 30, 187–192. [Google Scholar]
- Styrt, M.M.; Brackmann, A.J.; Holland, H.D.; Clark, B.C.; Pisutha-Arnond, V.; Eldridge, C.S.; Ohmoto, H. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude. Earth Planet. Sci. Lett. 1981, 53, 382–390. [Google Scholar] [CrossRef]
- Patterson, D.B.; Honda, M.; McDougall, I. Noble gases in mafic phenocrysts and xenoliths from New Zealand. Geochim. Cosmochim. Acta 1994, 58, 4411–4427. [Google Scholar] [CrossRef]
- Dunai, T.J.; Baur, H. Helium, neon and argon systematics of the European subcontinental mantle: Implications for its geochemical evolution. Geochim. Cosmochim. Acta 1995, 59, 2767–2783. [Google Scholar] [CrossRef]
- Reid, M.R.; Graham, D.W. Resolving lithospheric and sub-lithospheric contributions to helium isotope variations in basalts from the southwestern US. Earth Planet. Sci. Lett. 1996, 144, 213–222. [Google Scholar] [CrossRef]
- Andrews, J.N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 1985, 49, 339–351. [Google Scholar] [CrossRef]
- Burnard, P.G.; Hu, R.; Turner, G.; Bi, X. Mantle, crustal and atmospheric noble gases in Ailaoshan gold deposits, Yunnan Province, China. Geochim. Cosmochim. Acta 1999, 63, 1595–1604. [Google Scholar] [CrossRef]
- Staudacher, T.H.; Sarda, P.; Richardson, S.H.; Allègre, C.J.; Sagna, I.; Dmitriev, L.V. Noble gases in basalt glasses from a Mid-Atlantic Ridge topographic high at 14° N: Geodynamic consequences. Earth Planet. Sci. Lett. 1989, 96, 119–133. [Google Scholar] [CrossRef]
- O’Nions, R.K.; Tolstikhin, I.N. Behaviour and residence times of lithophile and rare gas tracers in the upper mantle. Earth Planet. Sci. Lett. 1994, 124, 131–138. [Google Scholar] [CrossRef]
- Stuart, F.M.; Turner, G. Mantle-derived 40Ar in mid-ocean ridge hydrothermal fluids: Implications for the source of volatiles and mantle degassing rates. Chem. Geol. 1998, 147, 77–88. [Google Scholar] [CrossRef]
- Hou, Z.; Zaw, K.; Li, Y.; Zhang, Q.; Zeng, Z.; Tetsuro, U. Contribution of magmatic fluid to the active hydrothermal system in the JADE field, Okinawa Trough: Evidence from fluid inclusions, oxygen and helium isotopes. Int. Geol. Rev. 2005, 47, 420–437. [Google Scholar]
- Li, X.; Chu, F.; Lei, J.; Zhao, H.; Yu, X. Discussion on sources of metallogenic materials of hydrothermal sulfide from Southwest Indian Ridge: Isotope evidences. J. Earth Sci. Environ. 2014, 36, 193–200. [Google Scholar]
- Zeng, Z.; Li, J.; Jiang, F.; Qin, Y.; Zhai, S. Sulfur isotopic composition of modern seafloor hydrothermal sediment and its geological significance. Acta Oceanol. Sin. 2002, 21, 519–528. [Google Scholar]
- Zeng, Z.; Li, J.; Jiang, F.; Zhai, S.; Qin, Y.; Hou, Z. Sulfur isotopic composition of seafloor hydrothermal sediment from the Jade hydrothermal field in the central Okinawa Trough and its geological significance. Acta Oceanol. Sin. 2002, 21, 395–405. [Google Scholar]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Rees, C.E.; Jenkins, W.J.; Monster, J. The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta 1978, 42, 377–381. [Google Scholar] [CrossRef]
- Sakai, H.; Des Marais, D.J.; Ueda, A.; Moore, J.G. Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim. Cosmochim. Acta 1984, 48, 2433–2441. [Google Scholar] [CrossRef]
- Arnold, M.; Sheppard, S.M.F. East Pacific Rise at latitude 21° N: Isotopic composition and origin of the hydrothermal sulphur. Earth Planet. Sci. Lett. 1981, 56, 148–156. [Google Scholar] [CrossRef]
- Li, X.; Chu, F.; Lei, J.; Zhao, J. Characterisitics of seafloor ultramafic-hosted hydrothermal systems and the implications. Mar. Geol. Quat. Geol. 2008, 28, 133–139. [Google Scholar]
- Xu, Y.; Shen, P.; Tao, M.; Liu, W. Geochemistry on mantle-derived volatiles in natural gases from eastern China oil/gas provinces (I) A novel helium resource—Commercial accumulation of mantle-derived helium in the sedimentary crust. Sci. China Ser. D Earth Sci. 1997, 40, 120–129. [Google Scholar] [CrossRef]
- Marty, B.; Pik, R.; Gezahegn, Y. Helium isotopic variations in Ethiopian plume lavas: Nature of magmatic sources and limit on lower mantle contribution. Earth Planet. Sci. Lett. 1996, 144, 223–237. [Google Scholar] [CrossRef]
- Hou, Z.; Li, Y.; Ai, Y.; Tang, S.; Zhang, Q. Helium isotopic compositions of the active hydrothermal system in the Okinawa trough: Evidence for the mantle-derived helium. Sci. China Ser. D Earth Sci. 1999, 29, 155–162. [Google Scholar]
- Kurz, M.D.; Roex, A.P.L.; Dick, H.J.B. Isotope geochemistry of the oceanic mantle near the Bouvet triple junction. Geochim. Cosmochim. Acta 1998, 62, 841–852. [Google Scholar] [CrossRef]
- Mahoney, J.; Le Roex, A.P.; Peng, Z.; Fisher, R.L.; Natland, J.H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt-isotope systematics of the central Southwest Indian Ridge (17°–50° E). J. Geophys. Res. 1992, 97, 19771–19790. [Google Scholar] [CrossRef]
Vent Field | Station No. | Latitude | Longitude | Depth (m) | Sample Description | Mineralogy * |
---|---|---|---|---|---|---|
Ultraslow-spreading Southwest Indian Ridge (SWIR) | ||||||
Longqi (49.6° E) | 19II-S6-TVG3 | 49.6494° E | 37.7833° S | 2777 | Metalliferous sediments | Opl + Gth + Hem + Mg |
19II-S7-TVG4A | 49.6495° E | 37.7833° S | 2755 | Fe-rich relict chimney debris | Py + Mrc + Ccp + Sp | |
19II-S7-TVG4B | 49.6496° E | 37.7834° S | 2781 | Zn-rich massive sulphide ores | Sp + Wur + Py + Ccp | |
20V-S7-TVG2 | 49.6494° E | 37.7843° S | 2795 | Si–Fe–Mn oxyhydroxides | Opl + Gth + Mg + Py | |
20V-S35-TVG17 | 49.6481° E | 37.7802° S | 2783 | Black smoker chimney fragment | Py + Po + Sp + Ccp | |
Duanqiao (50.5° E) | 20V-S17-TVG7 | 50.4672° E | 37.6586° S | 1740 | Silica-rich relict chimney debris | Opl + Gth + Mg + Py |
20V-S32-TVG14A | 50.4672° E | 37.6579° S | 1739 | Metalliferous sediments | Py/Mrc + Ccp + Sp + Opl | |
20V-S32-TVG14B | 50.4672° E | 37.6579° S | 1739 | Fe-rich relict sulphide talus | Py/Mrc + Ccp + Sp + Opl | |
20VII-S12-TVG10 | 50.468° E | 37.6594° S | 1772 | Si–Fe–Mn oxyhydroxides | Opl + Gth + Mg + Py | |
Yuhuang (49.2° E) | 21VII-S35-TVG22A | 49.2657° E | 37.9389° S | 1445 | Fe-rich massive sulphide ores | Py/Mrc + Po + Ccp + Sp |
21VII-S35-TVG22B | 49.2649° E | 37.9386° S | 1443 | Fe-rich massive sulphide talus | Py/Mrc + Po + Ccp + Sp | |
Tianzuo (63.5° E) | 20VII-S25-TVG21A | 63.5414° E | 27.9507° S | 3666 | Fe–Cu-rich relict sulphide talus | Mrc + Icb + Gth + Cv |
20VII-S25-TVG21B | 63.5414° E | 27.9507° S | 3666 | Fe–Cu-rich massive sulphides | Mrc + Icb + Gth + Cv | |
Intermediate-spreading Central Indian Ridge (CIR) | ||||||
Emond | 17A-IR-TVG12 | 69.5973° E | 23.8778° S | 3293 | Zn–Fe-rich chimney fragment | Sp + Py + Opl + Brt |
19III-S18-TVG9 | 69.5975° E | 23.8773° S | 3277 | Fe–Cu-rich massive sulphides | Py + Ccp + Mrc + Brt | |
Kairei | 19III-S12-TVG6 | 70.0407° E | 25.3205° S | 2443 | Cu-rich massive sulphide ores | Ccp + Bn + Dg + Cv |
19III-S13-TVG7 | 70.0402° E | 23.3203° S | 2440 | Cu-bearing siliceous breccias | Ccp + Qz + Tlc + Cal | |
Fast-spreading East Pacific Rise (EPR) | ||||||
EPR 13° N | EPR-TVG1 | 103.9071° W | 12.7115° N | 2628 | Fe-rich massive sulphide ores | Py/Mrc + Po + Ccp + Sp |
EPR-TVG2 | 103.9069° W | 12.7111° N | 2633 | Fe-rich massive sulphide ores | Py/Mrc + Po + Ccp + Sp | |
Superfast-spreading southern East Pacific Rise (SEPR) | ||||||
Niaochao | 20III-S4-TVG1A | 102.456° W | 1.3688° S | 2747 | Fe–Cu-rich massive sulphides | Py + Mrc + Ccp + Sp |
20III-S4-TVG1B | 102.456° W | 1.3688° S | 2747 | Fe–Cu-rich massive sulphides | Py + Ccp + Mrc + Sp |
Location | Sample No. | Mineral | 4He (10−8 cm3STP/g) | 3He (10−13 cm3STP/g) | 3He/4He (Ra) | 40Ar (10−6 cm3STP/g) | 36Ar (10−9 cm3STP/g) | 40Ar/36Ar |
---|---|---|---|---|---|---|---|---|
Longqi (SWIR 49.6° E) | 19II-S7-TVG4A * | Py + Ccp | 1.30 | 1.02 | 5.63 ± 0.07 | 1.49 | 5.14 | 290.6 ± 0.20 |
19II-S7-TVG4B | Sp + Wur | 1.74 ± 0.03 | 2.22 ± 0.07 | 9.10 ± 0.33 | 2.02 ± 0.01 | 6.78 ± 0.05 | 298.4 ± 2.65 | |
20V-S35-TVG17 | Py + Sp | 2.42 ± 0.04 | 3.28 ± 0.11 | 9.67 ± 0.36 | 4.38 ± 0.03 | 14.80 ± 0.10 | 296.0 ± 2.59 | |
Duanqiao (SWIR 50.5° E) | 20V-S32-TVG1 * | Py + Ccp | 2.20 | 2.62 | 8.56 ± 0.07 | 1.40 | 4.62 | 302.2 ± 0.45 |
Yuhuang (SWIR 49.2° E) | 21VII-S35-TVG22 | Py + Po | 1.83 ± 0.03 | 2.33 ± 0.11 | 9.11 ± 0.43 | 1.26 ± 0.01 | 4.26 ± 0.03 | 295.1 ± 2.87 |
Tianzuo (SWIR 63.5° E) | 20VII-S25-TVG21A | Mrc + Icb | 0.54 ± 0.01 | 0.084 ± 0.009 | 1.12 ± 0.12 | 5.26 ± 0.03 | 17.53 ± 0.14 | 300.2 ± 3.01 |
20VII-S25-TVG21B * | Mrc + Icb | 0.25 | 0.066 | 1.88 ± 0.02 | 2.59 | 8.54 | 303.4 ± 0.32 | |
Edmond (CIR 69.6° E) | 17A-IR-TVG12 * | Sp + Py | 0.81 | 0.94 | 8.35 ± 0.09 | 1.39 | 4.77 | 292.6 ± 0.16 |
19III-S18-TVG9 | Py + Ccp | 2.39 ± 0.04 | 2.69 ± 0.07 | 8.02 ± 0.24 | 1.11 ± 0.01 | 3.75 ± 0.02 | 294.8 ± 2.59 | |
Kairei (CIR 70° E) | 19III-S12-TVG6 | Ccp + Cv | 0.085 ± 0.002 | 0.055 ± 0.014 | 4.63 ± 1.20 | 0.28 ± 0.002 | 0.95 ± 0.02 | 294.4 ± 6.88 |
EPR 13° N | EPR-TVG1 * | Py + Po | 9.70 | 12.90 | 9.57 ± 0.08 | 0.95 | 3.29 | 287.4 ± 0.16 |
EPR-TVG2 * | Py + Po | 8.90 | 12.37 | 10.0 ± 0.12 | 1.49 | 5.12 | 291.6 ± 0.19 | |
Niaochao (SEPR 1-2° S) | 20III-S4-TVG1 * | Py + Mrc | 1.50 | 0.70 | 3.37 ± 0.03 | 0.36 | 1.25 | 287.6 ± 0.26 |
Sample No. | Measured Minerals | δ34SV-CDT (‰) | Average (‰) | Proportions of Sulphur Sources (%) | |
---|---|---|---|---|---|
Seawater-Derived | Magmatic Origin | ||||
MORB-hosted Longqi active vent field (SWIR 49.6° E) 5.1 (n = 16) | 13.1–35.0 | 65.0–86.9 | |||
19II-S6-TVG3-1 | Py | 7.5 | 6.85 (n = 3) | 35.0 | 65.0 |
19II-S6-TVG3-2 | Ccp | 7.4 | 34.5 | 65.5 | |
19II-S6-TVG3-3 | Bulk ore | 6.2 | 28.6 | 71.4 | |
19II-S7-TVG4A-1 | Py + Mrc | 5.5 | 5.47 (n = 3) | 25.2 | 74.8 |
19II-S7-TVG4A-2 | Ccp + Sp | 5.6 | 25.7 | 74.3 | |
19II-S7-TVG4A-3 | Bulk ore | 5.3 | 24.3 | 75.7 | |
19II-S7-TVG4B-1 | Sp + Wur | 3.3 | 3.23 (n = 4) | 14.6 | 85.4 |
19II-S7-TVG4B-2 | Wur | 3.0 | 13.1 | 86.9 | |
19II-S7-TVG4B-3 | Sp | 3.4 | 15.0 | 85.0 | |
19II-S7-TVG4B-4 | Py + Sp | 3.2 | 14.1 | 85.9 | |
20V-S7-TVG2 | Bulk ore | 5.2 | 23.8 | 76.2 | |
20V-S35-TVG17-1 | Py + Mrc | 7.0 | 5.24 (n = 5) | 32.5 | 67.5 |
20V-S35-TVG17-2 | Py + Po | 4.1 | 18.4 | 81.6 | |
20V-S35-TVG17-3 | Py | 6.1 | 28.2 | 71.8 | |
20V-S35-TVG17-4 | Sp | 4.3 | 19.4 | 80.6 | |
20V-S35-TVG17-5 | Py + Sp | 4.7 | 21.4 | 78.6 | |
MORB-hosted Duanqiao inactive field (SWIR 50.5° E) 6.6 (n = 8) | 24.8–49.5 | 50.5–75.2 | |||
20V-S17-TVG7 | Bulk ore | 6.8 | 31.6 | 68.4 | |
20V-S32-TVG14A-1 | Py + Mrc | 6.0 | 5.77 (n = 3) | 27.7 | 72.3 |
20V-S32-TVG14A-2 | Ccp | 5.9 | 27.2 | 72.8 | |
20V-S32-TVG14A-3 | Sp | 5.4 | 24.8 | 75.2 | |
20V-S32-TVG14B-1 | Py + Mrc | 5.8 | 6.07 (n = 3) | 26.7 | 73.3 |
20V-S32-TVG14B-2 | Sp | 6.1 | 28.2 | 71.8 | |
20V-S32-TVG14B-3 | Bulk ore | 6.3 | 29.1 | 70.9 | |
20VII-S12-TVG10 | Bulk ore | 10.5 | 49.5 | 50.5 | |
MORB-hosted Yuhuang inactive field (SWIR 49.2° E) 5.8 (n = 5) | 21.8–33.0 | 67.0–78.2 | |||
21VII-S35-TVG22-1 | Py + Po | 4.8 | 21.8 | 78.2 | |
21VII-S35-TVG22-2 | Py + Po | 4.9 | 22.3 | 77.7 | |
21VII-S35-TVG22-3 | Ccp | 6.4 | 29.6 | 70.4 | |
21VII-S35-TVG22-4 | Sp | 5.8 | 26.7 | 73.3 | |
21VII-S35-TVG22-5 | Py | 7.1 | 33.0 | 67.0 | |
Ultramafic-hosted Tianzuo inactive field (SWIR 63.5° E) 7.0 (n = 4) | 1.0–46.1 | 53.9–99.0 | |||
20VII-S25-TVG21-1 | Mrc | 9.3 | 43.7 | 56.3 | |
20VII-S25-TVG21-2 | Mrc + Cv | 9.8 | 46.1 | 53.9 | |
20VII-S25-TVG21-3 | Mrc + Icb | 8.4 | 39.3 | 60.7 | |
20VII-S25-TVG21-4 | Icb | 0.5 | 1.0 | 99.0 | |
MORB-hosted Edmond hydrothermal field (CIR 69.6° E) 6.4 (n = 8) | 24.3–36.4 | 63.6–75.7 | |||
17A-IR-TVG12-1 | Py | 5.3 | 5.63 (n = 4) | 24.3 | 75.7 |
17A-IR-TVG12-2 | Sp + Py | 5.9 | 27.2 | 72.8 | |
17A-IR-TVG12-3 | Py + Mrc | 5.8 | 26.7 | 73.3 | |
17A-IR-TVG12-4 | Sp | 5.5 | 25.2 | 74.8 | |
19III-S18-TVG9-1 | Py | 6.2 | 7.18 (n = 4) | 28.6 | 71.4 |
19III-S18-TVG9-2 | Py + Mrc | 7.3 | 34.0 | 66.0 | |
19III-S18-TVG9-3 | Ccp + Py | 7.4 | 34.5 | 65.5 | |
19III-S18-TVG9-4 | Bulk ore | 7.8 | 36.4 | 63.6 | |
Ultramafic-hosted Kairei hydrothermal field (CIR 70° E) 5.7 (n = 10) | 22.8–28.6 | 71.4–77.2 | |||
19III-S12-TVG6-1 | Ccp + Bn | 5.6 | 5.65 (n = 5) | 25.7 | 74.3 |
19III-S12-TVG6-2 | Ccp | 5.0 | 22.8 | 77.2 | |
19III-S12-TVG6-3 | Bn | 5.5 | 25.2 | 74.8 | |
19III-S12-TVG6-4 | Ccp + Cv | 6.2 | 28.6 | 71.4 | |
19III-S12-TVG6-5 | Bulk ore | 5.7 | 26.2 | 73.8 | |
19III-S13-TVG7-1 | Py | 5.2 | 5.72 (n = 5) | 23.8 | 76.2 |
19III-S13-TVG7-2 | Ccp | 5.8 | 26.7 | 73.3 | |
19III-S13-TVG7-3 | Ccp + Dg | 5.9 | 27.2 | 72.8 | |
19III-S13-TVG7-4 | Ccp + Cv | 6.1 | 28.2 | 71.8 | |
19III-S13-TVG7-5 | Bulk ore | 5.6 | 25.7 | 74.3 | |
MORB-hosted EPR 13°N active hydrothermal vent field 2.7 (n = 2) | 7.3–15.5 | 84.5–92.7 | |||
EPR-TVG1 | Py + Mrc | 3.5 | 15.5 | 84.5 | |
EPR-TVG2 | Py + Po | 1.8 | 7.3 | 92.7 | |
MORB-hosted Niaochao active vent field (SEPR 1–2° S) 4.7 (n = 2) | 17.0–25.2 | 74.8–83.0 | |||
20III-S4-TVG1A | Py | 5.5 | 25.2 | 74.8 | |
20III-S4-TVG1B | Py + Ccp | 3.8 | 17.0 | 83.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, Z.; Sun, X.; Deng, X.; Guan, Y.; Xu, L.; Huang, Y.; Cao, K. He–Ar–S Isotopic Compositions of Polymetallic Sulphides from Hydrothermal Vent Fields along the Ultraslow-Spreading Southwest Indian Ridge and Their Geological Implications. Minerals 2018, 8, 512. https://doi.org/10.3390/min8110512
Wang Y, Wu Z, Sun X, Deng X, Guan Y, Xu L, Huang Y, Cao K. He–Ar–S Isotopic Compositions of Polymetallic Sulphides from Hydrothermal Vent Fields along the Ultraslow-Spreading Southwest Indian Ridge and Their Geological Implications. Minerals. 2018; 8(11):512. https://doi.org/10.3390/min8110512
Chicago/Turabian StyleWang, Yan, Zhongwei Wu, Xiaoming Sun, Xiguang Deng, Yao Guan, Li Xu, Yi Huang, and Kaijun Cao. 2018. "He–Ar–S Isotopic Compositions of Polymetallic Sulphides from Hydrothermal Vent Fields along the Ultraslow-Spreading Southwest Indian Ridge and Their Geological Implications" Minerals 8, no. 11: 512. https://doi.org/10.3390/min8110512
APA StyleWang, Y., Wu, Z., Sun, X., Deng, X., Guan, Y., Xu, L., Huang, Y., & Cao, K. (2018). He–Ar–S Isotopic Compositions of Polymetallic Sulphides from Hydrothermal Vent Fields along the Ultraslow-Spreading Southwest Indian Ridge and Their Geological Implications. Minerals, 8(11), 512. https://doi.org/10.3390/min8110512