Depositional Architecture and Facies of a Complete Reef Complex Succession: A Case Study of the Permian Jiantianba Reefs, Western Hubei, South China
Abstract
:1. Introduction
2. Geological Setting and Methods
3. Results
3.1. Lithofacies Analysis
3.1.1. Bioclastic Limestone
3.1.2. Filled-Skeleton Sponge Framestone
3.1.3. Filled-Skeleton Sponge Bafflestone
3.1.4. Open-Skeleton Sponge Framestone
3.1.5. Binding-Skeleton Sponge Framestone
3.1.6. Eroded-Skeleton Sponge Framestone
3.1.7. Binding-Skeleton Sponge Bafflestone
3.1.8. Benthic Organism Bindstone
3.1.9. Bioclastic Dolomite
3.1.10. Reef-Bank Shell Limestone
3.1.11. Bioclastic Rudstone
3.1.12. Microfauna Packstone
3.2. Lithofacies Association
3.2.1. Heterozoan Reef Core Association
3.2.2. Photozoan Reef Core Association
3.2.3. Tide-Controlled Reef Crest Association
3.2.4. Reef-Bank Association
4. Discussion
4.1. Sedimentary Interpretation of the Lithofacies
4.2. Relative Sea Level Change and Oceanographic Environment
4.3. Dynamic Development Model of the Jiantianba Reef Complex
4.4. Implications for Comparative Analysis
5. Conclusions
- Twelve lithofacies have been distinguished according to their sedimentary components and growth fabrics. Each lithofacies indicates a specific depositional environment. From the bottom to the top, three major upward-shallowing cycles are shown, with lithofacies changing from carbonate sedimentary system to clastic rock sedimentary system.
- The Jiantianba reef is divided into four different but coherent lithologic associations: the heterozoan reef core association, the photozoan reef core association, the tidal-control reef crest association and a reef-bank system association. All these lithological association can be correlated to different stage of the reef development.
- Dynamic development model of the Jiantianba reef complex can be subdivided into four phases. Water depth, illumination, and temperature determine the difference between the heterozoan reef core association and photozoan reef core association, while the different hydrodynamic condition between the wave zone and tidal zone determine the lithologic characteristic between the reef crest and reef-bank association.
- This study provides detailed reefal architectures. The lithofacies description combined with the microscopic and macroscopic observation contributes to restoring the information of the paleogeographic and paleoceanographic condition. The Jiantianba reef can be used as an analogy object for comparative studies of the development of the reefs during the different geological periods.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riding, R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Sci. Rev. 2002, 58, 163–231. [Google Scholar] [CrossRef]
- Insalaco, E. The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs. Sediment. Geol. 1998, 118, 159–186. [Google Scholar] [CrossRef]
- James, N.P. The cool-water carbonate depositional realm. Cool-Water Carbonate 1997, 56. [Google Scholar] [CrossRef]
- Reid, C.M. Faunal turnover and changing oceanography: Late Palaeozoic warm-to-cool water carbonates, Sverdrup Basin, Canadian Arctic Archipelago. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 249, 128–159. [Google Scholar] [CrossRef]
- Westphal, H.; Halfar, J.; Freiwald, A. Heterozoan carbonates in subtropical to tropical settings in the present and past. Int. J. Earth Sci. 2010, 99, 153–169. [Google Scholar] [CrossRef] [Green Version]
- Halfar, J.; Godinez-Orta, L.; Mutti, M.; Valdez-Holguín, J.E.; Borges, J.M. Nutrient and temperature controls on modern carbonate production: An example from the Gulf of California, Mexico. Geology 2004, 32, 213–216. [Google Scholar] [CrossRef]
- Mutti, M.; Hallock, P. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints. Int. J. Earth Sci. 2003, 92, 465–475. [Google Scholar] [CrossRef]
- Hong, J.; Choh, S.J.; Lee, D.J. Untangling intricate microbial–sponge frameworks: The contributions of sponges to Early Ordovician reefs. Sediment. Geol. 2015, 318, 75–84. [Google Scholar] [CrossRef]
- Richter, D.K.; Neuser, R.D.; Schreuer, J.; Gies, H.; Immenhauser, A. Radiaxial-fibrous calcites: A new look at an old problem. Sediment. Geol. 2011, 239, 23–36. [Google Scholar] [CrossRef]
- Reijmer, J.J.G.; Bauch, T.; Schäfer, P. Carbonate facies patterns in surface sediments of upwelling and non-upwelling shelf environments (Panama, East Pacific). Sedimentology 2012, 59, 32–56. [Google Scholar] [CrossRef]
- He, Y.B.; Luo, J.X.; Wen, Z.; Liu, M.; Wang, Y. Lithofacies palaeogeography of the Upper Permian Changxing Stage in the Middle and Upper Yangtze Region, China. J. Palaeogeogr. 2013, 2, 139–162. [Google Scholar]
- Fan, J.S.; Zhang, W. Sphinctozoana from Late Permian Reefs of Uchuan, West Hubei, China. Facies 1985, 13, 1–43. [Google Scholar]
- Rigby, J.K.; Fan, J.S.; Zhang, W. Sphinctozoan sponges from the Permian reefs of South China. J. Paleontol. 1989, 63, 404–439. [Google Scholar] [CrossRef]
- Senowbari-Daryan, B.; Hamedani, A.; Rashidi, K. Sponges from the Permian of Hambast Mountains, south of Abadeh, central Iran. Facies 2007, 53, 575–614. [Google Scholar] [CrossRef]
- Nakazawa, T.; Igawa, T.; Ueno, K.; Fujikawa, M. Middle Permian sponge–microencruster reefal facies in the mid-Panthalassan Akiyoshi atoll carbonates: Observations on a limestone slab. Facies 2015, 61, 15. [Google Scholar] [CrossRef]
- Fan, J.S. The upper Permian reefs in Lichuan district, west Hubei. Chin. J. Geol. 1982, 274–282, (In Chinese, with English abstract). [Google Scholar]
- Guo, L.; Riding, R. Microbial micritic carbonates in uppermost Permian reefs, Sichuan Basin, southern China: Some similarities with Recent travertines. Sedimentology 1992, 39, 37–53. [Google Scholar] [CrossRef]
- Liu, H.; Rigby, J.K. Diagenesis of the Upper Permian Jiantianba Reef, West Hubei, China. J. Sediment. Res. 1992, 62. [Google Scholar] [CrossRef]
- Hu, M.Y.; Wei, H.; Qiu, X.S.; Zhao, E.Z. Reef composition and their forming models of Changxing Formation in Jiantianba Section of Lichuan, Western Hubei. Acta Sedimentol. Sin. 2012, 30, 33–42. [Google Scholar]
- Ma, Y.; Guo, X.; Guo, T.; Huang, R.; Cai, X.; Li, G. The Puguang gas field: New giant discovery in the mature Sichuan Basin, southwest China. AAPG Bull. 2007, 91, 627–643. [Google Scholar] [CrossRef]
- Sremac, J.; Jurkovšek, B.; Aljinović, D.; Kolar-Jurkovšek, T. Equatorial Palaeotethys as the last sanctuary for late Permian metazoan reef-builders: New evidence from the Bellerophon Formation of Slovenia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 454, 91–100. [Google Scholar] [CrossRef]
- Aubrecht, R.; Schlögl, J.; Krobicki, M.; Wierzbowski, H.; Matyja, B.A.; Wierzbowski, A. Middle Jurassic stromatactis mud-mounds in the Pieniny Klippen Belt (Carpathians)—A possible clue to the origin of stromatactis. Sediment. Geol. 2009, 213, 97–112. [Google Scholar] [CrossRef]
- Bathurst, R.G.C. Genesis of stromatactis cavities between submarine crusts in Palaeozoic carbonate mud buildups. J. Geol. Soc. 1982, 139, 165–181. [Google Scholar] [CrossRef]
- Bourque, P.A.; Raymond, L. Diagenetic alteration of early marine cements of Upper Silurian stromatactis. Sedimentology 1994, 41, 255–269. [Google Scholar] [CrossRef]
- Hu, M.Y. Platform edge reef and bank structure and depositional model of Changxing formation in Panlongdong section, Xuanhan, northeastern Sichuan. J. Earth Sci. 2012, 23, 431–441. [Google Scholar] [CrossRef]
- Blomeier, D.; Dustira, A.; Forke, H.; Scheibner, C. Environmental change in the Early Permian of NE Svalbard: From a warm-water carbonate platform (Gipshuken Formation) to a temperate, mixed siliciclastic-carbonate ramp (Kapp Starostin Formation). Facies 2011, 57, 493–523. [Google Scholar] [CrossRef]
- Boulvain, F. Frasnian Carbonate Mounds from Belgium: Sedimentology and Palaeoceanography; Geological Society: London, UK, 2007; pp. 125–142. [Google Scholar]
- Álvaro, J.J. (Ed.) Palaeozoic Reefs and Bioaccumulations: Climatic and Evolutionary Controls; Geological Society of London: London, UK, 2007. [Google Scholar]
- Kendall, C.G.S.C.; Schlager, W. Carbonates and relative changes in sea level. Mar. Geol. 1981, 44, 181–212. [Google Scholar] [CrossRef]
- Goldhammer, R.K.; Dunn, P.A.; Hardie, L.A. Depositional cycles, composite sea-level changes, cycle stacking patterns, and the hierarchy of stratigraphic forcing: Examples from Alpine Triassic platform carbonates. Geol. Soc. Am. Bull. 1990, 102, 535–562. [Google Scholar] [CrossRef]
- Wilson, M.E.J. Equatorial carbonates: An earth systems approach. Sedimentology 2012, 59, 1–31. [Google Scholar] [CrossRef]
- Pomar, L. Reef geometries, erosion surfaces and high-frequency sea-level changes, upper Miocene Reef Complex, Mallorca, Spain. Sedimentology 1991, 38, 243–269. [Google Scholar] [CrossRef]
- Shen, J.W.; Kawamura, T.; Yang, W.R. Upper Permian coral reef and colonial rugose corals in northwest Hunan, South China. Facies 1998, 39, 35–65. [Google Scholar]
- Wu, L.; Jiao, Y.; Rong, H.; Wang, R.; Li, R. Reef types and sedimentation characteristics of Changxing formation in Manyue-Honghua Section of Kaixian, Northeastern Sichuan Basin. J. Earth Sci. 2012, 23, 490–505. [Google Scholar] [CrossRef]
- Shen, J.; Xu, H. Microbial carbonates as contributors to Upper Permian (Guadalupian–Lopingian) biostromes and reefs in carbonate platform margin setting, Ziyun County, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 218, 217–238. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Xu, C.; Wang, T.; Wang, H.; Wang, Z.; Bian, C.; Li, X. Comparative study of gas accumulations in the Permian Changxing reefs and Triassic Feixianguan oolitic reservoirs between Longgang and Luojiazhai-Puguang in the Sichuan Basin. Chin. Sci. Bull. 2011, 56, 3310–3320. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Fu, X.; Xing, F.; Wang, C.; Luo, C. Oolitic shoal complexes characterization of the Lower Triassic Feixianguan Formation in the Yuanba Gas Field, Northeast Sichuan Basin, China. Mar. Pet. Geol. 2017, 83, 35–49. [Google Scholar] [CrossRef]
- Guo, C.; Li, G.; Wei, H.; Xia, F.; Xie, F. Stratigraphic architecture and platform evolution of the Changxing Formation (Upper Permian) in the Yuanba Gas Field, northeastern Sichuan Basin, China. Arabian J. Geosci. 2016, 9, 359. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.C.; Guo, T.L.; Deng, L.S. Growth characteristics of Changhsingian (Late Permian) carbonate platform margin reef complexes in Yuanba Gas Field, northeastern Sichuan Basin, China. Geol. J. 2012, 47, 524–536. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Xie, X.; Al-Aasm, I.S.; Feng, W.; Zhou, M. Depositional Architecture and Facies of a Complete Reef Complex Succession: A Case Study of the Permian Jiantianba Reefs, Western Hubei, South China. Minerals 2018, 8, 533. https://doi.org/10.3390/min8110533
Chen B, Xie X, Al-Aasm IS, Feng W, Zhou M. Depositional Architecture and Facies of a Complete Reef Complex Succession: A Case Study of the Permian Jiantianba Reefs, Western Hubei, South China. Minerals. 2018; 8(11):533. https://doi.org/10.3390/min8110533
Chicago/Turabian StyleChen, Beichen, Xinong Xie, Ihsan S. Al-Aasm, Wu Feng, and Mo Zhou. 2018. "Depositional Architecture and Facies of a Complete Reef Complex Succession: A Case Study of the Permian Jiantianba Reefs, Western Hubei, South China" Minerals 8, no. 11: 533. https://doi.org/10.3390/min8110533
APA StyleChen, B., Xie, X., Al-Aasm, I. S., Feng, W., & Zhou, M. (2018). Depositional Architecture and Facies of a Complete Reef Complex Succession: A Case Study of the Permian Jiantianba Reefs, Western Hubei, South China. Minerals, 8(11), 533. https://doi.org/10.3390/min8110533