Is Cr-Spinel Geochemistry Enough for Solving the Provenance Dilemma? Case Study from the Palaeogene Sandstones of the Western Carpathians (Eastern Slovakia)
Abstract
:1. Introduction
2. Geological Background
3. Analytical Methods
4. Results
4.1. Spinel Morphology
4.2. Internal Texture and Alteration of Spinels
4.3. Spinel Geochemistry
4.4. Garnet Morphology and Geochemistry
5. Discussion
6. Conclusions
- Detrital spinel chemistry suggests that the sedimentary rocks of both studied formations were partially derived from supra-subduction zone peridotites and also from volcanic rocks; however, the volcanic spinels from the Proč Fm. were formed under an OIB and partially a BABB setting, whereas those from the Strihovce Fm. suggest a predominantly MORB origin.
- The geochemistry of altered Cr-spinels from the Proč and Strihovce fms deposits points to their parent rocks being subjected to metamorphism of up to the greenschist facies prior to erosion.
- The similar peridotitic Cr-spinels and garnet geochemistry, and especially the presence of spessartine in both studied formations, may indicate either re-deposition of detrital material from the Upper Palaeocene–Middle? Eocene Proč Fm. to the Middle–Upper Eocene Strihovce Fm., or its supply from the longitudinal (axial) entrance to the basins.
- In addition to partial recycling of spinel detritus from the Pieniny Klippen Belt units, here it is necessary to consider the further source that has predominantly supplied the volcanic spinels. These spinels evolved during the seafloor spreading, and there is no coincidence with progressive closure the Magura ocean basin. The question of their origin still remains open.
- Even though Cr-spinels of volcanic origin may indicate different sources for the studied formations, this is not enough to make a clear provenance distinction between them. Similar peridotitic spinel and garnet compositions suggest the relative relationship between the Proč and Strihovce fms, and this preliminarily alludes to the adherence of the Proč Fm. to the Magura Unit in the easternmost part of the Flysch Belt, rather than to the Pieniny Klippen Belt.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mange, M.A.; Wright, D.T. Heavy Minerals in Use. Developments in Sedimentology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 1–1271. [Google Scholar]
- von Eynatten, H.; Dunkl, I. Assessing the sediment factory: The role of single grain analysis. Earth Sci. Rev. 2012, 115, 97–120. [Google Scholar] [CrossRef]
- Dill, H.G.; Klosa, D. Heavy mineral-based provenance analysis of Mesozoic continental-marine sediments at the western edge of the Bohemian Massif, SE Germany: With special reference to Fe–Ti minerals and the crystal morphology of heavy minerals. Int. J. Earth Sci. 2011, 100, 1497–1513. [Google Scholar] [CrossRef]
- Garzanti, E. From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sediment. Geol. 2016, 336, 3–13. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Morton, A.C. A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology 1985, 32, 553–566. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kawai, M.; Matsuzawa, N. Detrital garnet and chromian spinel chemistry of Permian clastics in the Renge area, central Japan: Implications for the paleogeography of the East Asian continental margin. Sediment. Geol. 2008, 212, 25–39. [Google Scholar] [CrossRef]
- Mange, M.A.; Morton, A.C. Geochemistry of heavy minerals. In Heavy Minerals in Use. Developments in Sedimentology, 1st ed.; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 345–391. [Google Scholar]
- Krippner, A.; Meinhold, G.; Morton, A.C.; von Eynatten, H. Evaluation of garnet discrimination diagrams using geochemical data of garnets derived from various host rocks. Sediment. Geol. 2014, 306, 36–52. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 1985, 70, 1–15. [Google Scholar]
- Zack, T.; von Eynatten, H.; Kronz, A. Rutile geochemistry and its potential use in quantitative provenance studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Hiscott, R.N. Ophiolitic source rocks for Taconic-age flysch: Trace-element evidence. J. Geol. Soc. Am. Bull. 1984, 95, 1261–1267. [Google Scholar] [CrossRef]
- Lenaz, D.; Kamenetsky, V.S.; Crawford, A.J.; Princivalle, F. Melt inclusion in detrital spinel from the SE Alps (Italy-Slovenia): A new approach to provenance studies of sedimentary basins. Contrib. Mineral. Petrol. 2000, 139, 748–758. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusion from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 2nd ed.; Longman: London, UK, 1992; pp. 1–696. [Google Scholar]
- Lee, Y.I. Geotectonic significance of detrital chromian spinel: A review. Geosci. J. 1999, 3, 23–29. [Google Scholar] [CrossRef]
- Lužar-Oberiter, B.; Mikes, T.; von Eynatten, H.; Babic, L. Ophiolitic detritus in Cretaceous clastic formations of the Dinarides (NW Croatia): Evidence from Cr-spinel chemistry. Int. J. Earth Sci. 2008, 98, 1097–1108. [Google Scholar] [CrossRef]
- Pober, E.; Faupl, P. The chemistry of detrital chromian spinels and its implications for the geodynamic evolution of the Eastern Alps. Geol. Rundsch. 1988, 77, 641–670. [Google Scholar] [CrossRef]
- Asiedu, D.K.; Suzuki, S.; Shibata, T. Compositions of detrital spinels from Lower Cretaceous Sasayama Group, Hyogo Prefecture, Japan: Constraints on source lithology and tectonic setting. J. Min. Petr. Econ. Geol. 1998, 93, 27–41. [Google Scholar] [CrossRef]
- Jablonský, J.; Sýkora, M.; Aubrecht, R. Detritic Cr-spinels in Mesozoic sedimentary rocks of the Western Carpathians (overview of the latest knowledge). Miner. Slovaca 2001, 33, 487–498, (In Slovak with English summary). [Google Scholar]
- Mikes, T.; Christ, D.; Petri, R.; Dunkl, I.; Frei, D.; Báldi-Beke, M.; Reitner, J.; Wemmer, K.; Hrvatović, H.; von Eynatten, H. Provenance of the bosnian Flysch. Swiss J. Geosci. 2008, 101, 31–54. [Google Scholar] [CrossRef]
- Abre, P.; Cingolani, C.; Zimmermann, U.; Cairncross, B. Detrital chromian spinels from Upper Ordovician deposits in the Pre-cordillera terrane, Argentina: A mafic crust input. J. S. Am. Earth Sci. 2009, 28, 407–418. [Google Scholar] [CrossRef]
- Lenaz, D.; Mazzoli, C.; Spišiak, J.; Princivalle, F.; Maritan, L. Detrital Cr-spinel in the Šambron-Kamenica Zone (Slovakia): Evidence for an ocean-spreading zone in the Northern Vardar suture? Int. J. Earth Sci. 2009, 98, 345–355. [Google Scholar] [CrossRef]
- Lužar-Oberiter, B.; Mikes, T.; Dunkl, I.; Babić, L.; von Eynatten, H. Provenance of Cretaceous synorogenic sediments from the NW Dinarides (Croatia). Swiss J. Geosci. 2012, 105, 377–399. [Google Scholar] [CrossRef]
- Hu, X.; An, W.; Wang, J.; Garzanti, E.; Guo, R. Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion. Tectonophysics 2014, 621, 60–68. [Google Scholar] [CrossRef]
- Stankovič, J.; Jančula, D. Preliminary report on the occurence of chromian spinel and Ni minerals on the Jasenie-Kyslá locality, Nízke Tatry Mts. Miner. Slovaca 1982, 14, 131–138, (In Slovak with English abstract). [Google Scholar]
- Spišiak, J.; Pitoňák, P.; Petro, M. Metaultramafity z oblasti Jasenie-Kyslá, Nízke Tatry. Miner. Slovaca 1988, 20, 143–148. (In Slovak) [Google Scholar]
- Rojkovič, I.; Hovorka, D.; Krištín, J. Spinel group minerals in the West Carpathian ultrabasic rocks. Geol. Zbor. Geol. Carpath 1978, 29, 253–274. [Google Scholar]
- Mikuš, T.; Spišiak, J. Chemical composition and alteration of Cr-spinels from Meliata and Penninic serpentinized peridotites (Western Carpathians and Eastern Alps). Geol. Q. 2007, 51, 257–270. [Google Scholar]
- Aubrecht, R.; Sýkora, M.; Uher, P.; Li, X.-H.; Yang, Y.-H.; Putiš, M.; Plašienka, D. Provenance of the Lunz Formation (Carnian) in the Western Carpathians, Slovakia: Heavy mineral study and in situ LA–ICP–MS U–Pb detrital zircon dating. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 471, 233–253. [Google Scholar] [CrossRef]
- Starobová, M. Těžké minerály východoslovenského magurského flyše a vnitřního bradlového pásma. Geol. Pr. Zoš. 1962, 63, 47–52. (In Czech) [Google Scholar]
- Mišík, M.; Jablonský, J.; Fejdi, P.; Sýkora, M. Chromian and ferrian spinels from Cretaceous sediments of the Western Carpathians. Miner. Slovaca 1980, 42, 101–112. [Google Scholar]
- Mišík, M.; Jablonský, J.; Fejdi, P.; Sýkora, M. Spinely z kriedových sedimentov Západných Karpát. Folia Fac. Sci. Nat. Univ. Purkynianae Brun. 1981, 22, 95–99. (In Slovak) [Google Scholar]
- Mišík, M.; Sýkora, M.; Jablonský, J. Strihovce conglomerates and South-Magura Exotic Ridge (West Carpathians). Západn. Karp. Sér. Geol. 1991, 14, 7–72, (In Slovak with English summary). [Google Scholar]
- Aubrecht, R.; Méres, Š.; Sýkora, M.; Mikuš, T. Provenance of the detrital garnets and spinels from the Albian sediments of the Czorstyn Unit (Pieniny Klippen Belt, Western Carpathians, Slovakia). Geol. Carpathica 2009, 60, 463–483. [Google Scholar] [CrossRef]
- Mikuš, T.; Spišiak, J.; Sýkora, M.; Demko, R. Chemical composition of spinels from Mesozoic alkali basalts of the Western Carpathians: Implications for sources of detrital spinels in flysch sediments. Geol. Carpathica 2006, 57, 447–460. [Google Scholar]
- Bellová, S.; Aubrecht, R.; Mikuš, T. First results of systematic provenance analysis of the heavy mineral assemblages from the Albian to Cenomanian exotic flysch deposits of the Klape Unit, Tatricum, Fatricum and some adjacent units. Acta Geol. Slovaca 2018, 10, 45–64. [Google Scholar]
- Spišiak, J.; Soták, J.; Biroň, A.; Mikuš, T. Cr-spinels from serpentinitic sandstone of the Šambron Zone (Eastern Slovakia). Miner. Slovaca 2001, 33, 499–504, (In Slovak with English abstract). [Google Scholar]
- Stern, G.; Wagreich, M. Provenance of the Upper Cretaceous to Eocene Gosau Group around and beneath the Vienna Basin (Austria and Slovakia). Swiss J. Geosci. 2013, 106, 505–527. [Google Scholar] [CrossRef]
- Lenaz, D.; Winkler, W.; Reusser, E.; Princivalle, F. Preliminary chemical data of detrital Cr spinels from Polish Western Carpathians Flysch. In Proceedings of the 21st Meeting IAS 2001, Davos, Switzerland, 3–5 September 2001; p. 127. [Google Scholar]
- Oszczypko, N.; Salata, D. Provenance analyses of the Late Cretaceous—Paleocene deposits of the Magura basin (Polish Western Carpathians)—Evidence from a study of the heavy minerals. Acta Geol. Pol. 2005, 55, 237–267. [Google Scholar]
- Bónová, K.; Spišiak, J.; Bóna, J.; Kováčik, M. Chromian spinels from the Magura Unit (Western Carpathians, Eastern Slovakia)—Their petrogenetic and palaeogeographic implications. Geol. Q. 2017, 61, 3–17. [Google Scholar] [CrossRef]
- Mišík, M.; Sýkora, M.; Mock, R.; Jablonský, J. Paleogene Proč Conglomerates of the Klippen Belt in the West Carpathians, material from Neopieninic exotic ridge. Acta Geol. Geogr. Univ. Comen. Geol. 1991, 46, 9–101. [Google Scholar]
- Soták, J.; Bebej, J. Serpentinitic sandstone from the Šambron-Kamenica zone in Eastern Slovakia: Evidence of deposition in a Tertiary collisional belt. Geol. Carpathica 1996, 47, 227–238. [Google Scholar]
- Soták, J.; Biroň, A.; Spišiak, J. The blocky accumulation of ophicalcites in front of the Magura Unit (Moravia): Their fabrics and possible origin from the sea-floor oceanization. Geol. Carpathica 2002, 53, 48. [Google Scholar]
- Marschalko, R.; Mišík, M.; Kamenický, L. Petrographie der Flysch-Konglomerate und Rekonstruktion ihrer Ursprungszonen (Paläogen der Klippenzone und der angrenzenden tektonischen Einkeiten der Ostslowakej). Západn. Karp. Sér. Geol. 1976, 1, 7–124. [Google Scholar]
- Bónová, K.; Bóna, J.; Kováčik, M.; Mikuš, T. Heavy minerals and exotic pebbles from the Eocene flysch deposits of the Magura Nappe (Outer Western Carpathians, Eastern Slovakia): Their composition and implications on the provenance. Turk. J. Earth Sci. 2018, 27, 64–88. [Google Scholar] [CrossRef]
- Winkler, W.; Ślączka, A. Sediment dispersal and provenance in the Silesian, Dukla and Magura flysch nappes (Outer Carpathians, Poland). Geol. Rundsch. 1992, 81, 371–382. [Google Scholar] [CrossRef]
- Winkler, W.; Ślączka, A. A Late Cretaceous to Paleogene geodynamical model for the Western Carpathians in Poland. Geol. Carpathica 1994, 45, 71–82. [Google Scholar]
- Mišík, M.; Reháková, D. Psefitické Horniny (Štrky, Brekcie, Zlepence) Západných Karpát, 1st ed.; Veda: Bratislava, Slovakia, 2004; pp. 1–132. (In Slovak) [Google Scholar]
- Plašienka, D.; Grecula, P.; Putiš, M.; Hovorka, D.; Kováč, M. Evolution and structure of the Western Carpathians: An overview. In Geological Evolution of the Western Carpathians, 1st ed.; Grecula, P., Hovorka, D., Putiš, M., Eds.; SGIDS: Bratislava, Slovakia, 1997; pp. 1–24. [Google Scholar]
- Oszczypko, N. Late Cretaceous through Paleogene evolution of Magura basin. Geol. Carpathica 1992, 43, 333–338. [Google Scholar]
- Kováčik, M.; Bóna, J.; Gazdačko, Ľ.; Kobulský, J.; Maglay, J.; Žecová, K.; Derco, J.; Zlinská, A.; Siráňová, Z.; Boorová, D.; et al. Explanation to the Geological Map of the Nízke Beskydy Mts.—Western Part at Scale 1:50 000, 1st ed.; SGIDS: Bratislava, Slovakia, 2012; pp. 1–180, (In Slovak with English summary). [Google Scholar]
- Cieszkowski, M. Marine Miocene deposits near Nowy Targ, Magura Nappe, Flysch Carpathians (South Poland). Geol. Carpathica 1992, 46, 339–346. [Google Scholar]
- Plašienka, D. Dynamics of Mesozoic pre-orogenic rifting in the Western Carpathians. Mitt. Österr. Geol. Ges 2003, 94, 79–98. [Google Scholar]
- Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef] [Green Version]
- Plašienka, D. Cretaceous tectonochronology of the Central Western Carpathians (Slovakia). Geol. Carpathica 1997, 48, 99–111. [Google Scholar]
- Kováč, M.; Plašienka, D.; Soták, J.; Vojtko, R.; Oszczypko, N.; Less, G.; Ćosović, V.; Fügenschuh, B.; Králiková, S. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet. Change 2016, 140, 9–27. [Google Scholar] [CrossRef]
- Žec, B.; Gazdačko, Ľ.; Kováčik, M.; Kobulský, J.; Bóna, J.; Pristaš, J.; Potfaj, M. Geologická Mapa Nízkych Beskýd –Stredná Časť (1:50 000); MŽP SR, ŠGÚDŠ: Bratislava, Slovakia, 2006. (In Slovak) [Google Scholar]
- Žec, B.; Gazdačko, Ľ.; Kováčik, M.; Kobulský, J.; Bóna, J.; Pristaš, J.; Potfaj, M. Vysvetlivky ku Geologickej Mape Nízke Beskydy–Stredná Časť (1:50 000), 1st ed.; MŽP SR, ŠGÚDŠ: Bratislava, Slovakia, 2011; pp. 1–188, (In Slovak with English summary). [Google Scholar]
- Žec, B.; Kaličiak, M.; Konečný, V.; Lexa, J.; Jacko, S.M.; Baňacký, V.; Karoli, S.; Potfaj, M.; Rakús, M.; Petro, Ľ.; et al. Vysvetlivky ku Geologickej Mape Vihorlatských a Humenských Vrchov M 1:50 000, 1st ed.; GS SR: Bratislava, Slovakia, 1997; pp. 1–254, (In Slovak with English summary). [Google Scholar]
- Geological map of Slovakia at scale 1:50,000 [online], 2013. SGIDS: Bratislava, Slovakia. Available online: http://mapserver.geology.sk/gm50js (accessed on 1 April 2008).
- Leško, B.; Samuel, O. Geológia Východoslovenského Flyšu, 1st ed.; Veda: Bratislava, Slovakia, 1968; pp. 1–245, (In Slovak with English summary). [Google Scholar]
- Leško, B. Paleogén bradlového pásma na východnom Slovensku. Geol. Sborník 1960, 11, 95–103, (In Slovak with German summary). [Google Scholar]
- Leško, B.; Began, A.; Franko, O.; Kvitkovič, J.; Kuthan, M.; Seneš, J.; Zorkovský, B. Vysvetlivky k Prehľadnej Geologickej Mape ČSSR 1:200 000, List M-34-XXIX Snina, 1st ed.; Ústr. Úst. geol.: Bratislava, Czechoslovakia, 1964; pp. 1–132. (In Slovak) [Google Scholar]
- Nemčok, J.; Zakovič, M.; Gašparíková, V.; Ďurkovič, T.; Snopková, P.; Vrána, K.; Hanzel, V. Vysvetlivky ku Geologickej Mape Pienin, Čergova, Ľubovnianskej a Ondavskej Vrchoviny v Mierke 1:50 000, 1st ed.; GÚDŠ: Bratislava, Slovakia, 1990; pp. 1–131, (In Slovak with English summary). [Google Scholar]
- Potfaj, M.; Teťák, F.; Kováčik, M.; Bóna, J. Neoalpínske tektonické jednotky Vonkajších Karpát—Flyšové pásmo. In Vysvetlivky k Prehľadnej Geologickej Mape Slovenskej Republiky 1:200 000, 1st ed.; Bezák, V., Ed.; ŠGÚDŠ: Bratislava, Slovakia, 2009; pp. 314–333, (In Slovak with English summary). [Google Scholar]
- Plašienka, D.; Mikuš, V. Geological setting of the Pieniny and Šariš sectors of the Klippen Belt between Litmanová and Drienica villages in the eastern Slovakia. Miner. Slovaca 2010, 42, 155–178, (In Slovak with English Summary). [Google Scholar]
- Plašienka, D.; Soták, J.; Jamrichová, M.; Halászová, E.; Pivko, D.; Józsa, Š.; Madzin, J.; Mikuš, V. Structure and evolution of the Pieniny Klippen Belt demonstrated along a section between Jarabina and Litmanová villages in Eastern Slovakia. Miner. Slovaca 2012, 44, 17–38. [Google Scholar]
- Potfaj, M. Skupina bielokarpatských príkrovov. In Vysvetlivky ku Geologickej Mape Stredného Považia M 1:50,000, 1st ed.; Mello, J., Ed.; ŠGÚDŠ: Bratislava, Slovakia, 2011; pp. 139–142, (In Slovak with English summary). [Google Scholar]
- Kretz, R. Symbols for rock-forming minerals. Am. Mineral. 1983, 68, 277–279. [Google Scholar]
- Locock, A.J. An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput. Geosci. 2008, 34, 1769–1780. [Google Scholar] [CrossRef]
- Turner, G.; Morton, A.C. The effects of burial diagenesis on detrital heavy mineral grain surface textures. In Heavy Minerals in Use. Developments in Sedimentology, 1st ed.; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 393–412. [Google Scholar]
- Kozhoukharova, E. Gr-lherzolites into narrow shear zones of serpentinites from Rhodope Massif, Bulgaria. Ofioliti 1999, 24, 121–122. [Google Scholar]
- Roeder, P.L.; Campbell, I.H.; Jameison, H.E. A re-evaluation of the olivine-spinel geothermometer. Contrib. Mineral. Petrol. 1979, 68, 325–334. [Google Scholar] [CrossRef]
- Barnes, S.J. Chromite in komatiites, II. Modification during green schist to mid amphibolite facies metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef]
- Kimball, K.L. Effects of hydrothermal alteration on the composition of chromian spinels. Contrib. Mineral. Petrol. 1990, 105, 337–346. [Google Scholar] [CrossRef]
- Burkhard, D.J.M. Accessory chromium spinels: Their coexistence and alteration in serpentinites. Geochim. Cosmochim. Acta 1993, 57, 1297–1306. [Google Scholar] [CrossRef]
- Farahat, E.S. Chrome-spinels in serpentinites and talc carbonates of the El Ideid-El Sodmein District, central Eastern Desert, Egypt: Their metamorphism and petrogenetic implications. Chem. Der Erde—Geochem. 2008, 68, 193–205. [Google Scholar] [CrossRef]
- Soták, J.; Križáni, I.; Spišiak, J. On position and material composition of the Merník conglomerates. Acta Geol. Geogr. Univ. Comen. 1990, 45, 55–69. [Google Scholar]
- Soták, J.; Biroň, A.; Čverčko, J.; Rudinec, J.; Spišiak, J. Petrology, litostratigraphy and tectonometamorphosis of rock complexes of the Pozdišovce-Iňačovce unit. In III Geologické dni Jána Slávika; Kaličiak, M., Ed.; Geol. Surv. Slovak Rep. Dionýz Štúr Publ.: Bratislava, Slovakia, 1995; pp. 23–31. [Google Scholar]
- Bilyk, N.T.; Generalova, L.V.; Yatsenko, I.G.; Stepanov, V.B. Mineralogical and geodynamical conditions of transformation of peridotites from ophiolites in the Marmarosh zone rocks (Ukrainian Carpathians). Geodynamics 2016, 21, 71–83, (In Ukrainian with English summary). [Google Scholar] [CrossRef]
- Andò, S.; Garzanti, E.; Padoan, M.; Limonta, M. Corrosion of heavy minerals during weathering and diagenesis: A catalogue for optical analysis. Sediment. Geol. 2012, 280, 165–178. [Google Scholar] [CrossRef]
- Faryad, S.W. Petrology and phase relations of low-grade high-pressure metasediments from the Meliata unit, West Carpathians, Slovakia. Eur. J. Miner. 1995, 7, 71–87. [Google Scholar] [CrossRef]
- Faryad, S.W.; Frank, W. Textural and age relations of polymetamorphic rocks in the HP Meliata Unit (Western Carpathians). J. Asian Earth Sci. 2011, 42, 111–122. [Google Scholar] [CrossRef]
- Faryad, S.W. Mineralogy of Mn-rich rocks from greenschist facies sequences of the Gemericum, West Carpathians, Slovakia. Neues Jahrb. Miner. Monatshefte 1994, 10, 464–480. [Google Scholar]
- Mellini, M.; Rumori, C.; Viti, C. Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and chlorite aureoles. Contrib. Mineral. Petrol. 2005, 149, 266–275. [Google Scholar] [CrossRef]
- González-Jiménez, J.M.; Kerestedjian, T.; Profenza, J.A.; Gervilla, F. Metamorphism on chromite ores from the Dobromirtsi Ultramafic Massif, Rhodope Mountains (SE Bulgaria). Geol. Acta 2009, 7, 413–429. [Google Scholar]
- Melcher, F.; Grum, W.; Simon, G.; Thalhammer, T.V.; Stumpfl, E.F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. J. Petrol. 1997, 38, 1419–1458. [Google Scholar] [CrossRef]
- Merlini, A.; Grieco, G.; Diella, V. Ferritchromite and chromian-chlorite formation in mélange hosted Kalkan chromitite (Southern Urals, Russia). Am. Mineral. 2009, 94, 1459–1467. [Google Scholar] [CrossRef]
- Power, M.R.; Pirrie, D.; Andersen, J.C.; Wheeler, P.D. Testing the validity of chrome spinel chemistry as a provenance and petrogenetic indicator. Geology 2000, 28, 1027–1030. [Google Scholar] [CrossRef]
- Allan, J.F.; Sack, R.O.; Batiza, R. Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the Lamont seamount chain, eastern Pacific. Am. Mineral. 1988, 73, 741–753. [Google Scholar]
- Zhu, B.; Kidd, W.S.F.; Rowley, D.B.; Currie, B.S. Chemical compositions and tectonic significance of chrome-rich spinels in the Tianba Flysch, southern Tibet. J. Geol. 2004, 112, 417–434. [Google Scholar] [CrossRef]
- Zhu, B.; Delano, J.W.; Kidd, W.S.F. Magmatic compositions and source terranes estimated from melt inclusions in detrital Cr-rich spinels: An example from mid-Cretaceous sandstones in the eastern Tethys Himalaya. Earth Planet. Sci. Lett. 2005, 233, 295–309. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Arai, S.; Okamura, H.; Kadoshima, K.; Tanaka, C.; Suzuki, K.; Ishimaru, S. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Island Arc 2011, 20, 125–137. [Google Scholar] [CrossRef]
- Choi, S.H.; Shervais, J.W.; Mukasa, S.B. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib. Mineral. Petrol. 2008, 156, 551–576. [Google Scholar] [CrossRef]
- Plašienka, D. Jurassic syn-rift and Cretaceous syn-orogenic, coarse-grained deposits related to opening and closure of the Vahic (South Penninic) Ocean in the Western Carpathians–an overview. Geol. Q. 2012, 56, 601–628. [Google Scholar] [CrossRef]
- Plašienka, D.; Soták, J. Evolution of Late Cretaceous–Palaeogene synorogenic basins in the Pieniny Klippen Belt and adjacent zones (Western Carpathians, Slovakia): Tectonic controls over a growing orogenic wedge. Ann. Soc. Geol. Pol. 2015, 43–76. [Google Scholar] [CrossRef]
- Wagreich, M. A 400-km-long piggyback basin (Upper Aptian ± Lower Cenomanian) in the Eastern Alps. Terra Nova 2001, 13, 401–406. [Google Scholar] [CrossRef]
- Wagreich, M. A slope-apron succession filling a mid-Cretaceous piggyback basin: The Tannheim and Losenstein Formations of the eastern part of the Northern Calcareous Alps (Austria). Mitt. Österr. Geol. Ges. 2003, 93, 31–54. [Google Scholar]
- von Eynatten, H.; Gaupp, R. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: Constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 1999, 124, 81–111. [Google Scholar] [CrossRef]
- Ivan, P.; Sýkora, M. Finding of glaucophane-bearing rocks in Cretaceous conglomerates from the Jasenov (Krizna nappe, Eastern Slovakia). Miner. Slovaca 1993, 25, 29–33. [Google Scholar]
- Faryad, S.W.; Schreyer, W. Petrology and geological significance of high-pressure metamorphic rocks occurring as pebbles in the Cretaceous conglomerates of the Klippen Belt (Western Carpathians, Slovakia). Eur. J. Miner. 1997, 547–562. [Google Scholar] [CrossRef]
- Faryad, S.W. Petrological model for blueschist facies metamorphism in the Pieniny Klippen Belt. In Geological Evolution of the Western Carpathians, 1st ed.; Grecula, P., Hovorka, D., Putiš, M., Eds.; SGIDS: Bratislava, Slovakia, 1997; pp. 155–162. [Google Scholar]
- Faryad, S.W.; Henjes-Kunst, F. Petrological and K–Ar and 40Ar–39Ar age constraints for the tectonothermal evolution of the high-pressure Meliata Unit, Western Carpathians (Slovakia). Tectonophysics 1997, 280, 141–156. [Google Scholar] [CrossRef]
- Dal Piaz, G.V.; Martin, S.; Villa, I.M.; Gosso, G.; Marschalko, R. Late Jurassic blueschist facies pebbles from the Western Carpathian orogenic wedge and paleostructural implications for Western Tethys evolution. Tectonics 1995, 14, 874–885. [Google Scholar] [CrossRef]
- Ivan, P.; Sýkora, M.; Demko, R. Blueschists in the Cretaceous exotic conglomerates of the Klape unit (Pieniny Klippen Belt, Western Carpathians): Their genetic types and implications for source area. Kwart. AGH Geol. 2006, 32, 47–64. [Google Scholar]
- Plašienka, D.; Méres, Š.; Ivan, P.; Sýkora, M.; Soták, J.; Lačný, A.; Aubrecht, R.; Bellová, S.; Potočný, S. Metiatic blueschists and their detritus in Cretaceous sediments: New data constraining tectonic evolution of the Western Carpathians. Swiss J. Geosci. 2018. (submitted). [Google Scholar]
- Kissová, D.; Dunkl, I.; Plašienka, D.; Frisch, W.; Marschalko, R. The Pieninic exotic cordillera (Andrusov Ridge) revisited: New zircon FT ages of granite pebbles from Cretaceous flysch conglomerates of the Pieniny Klippen Belt (Western Carpathians, Slovakia). Slovak Geol. Mag. 2005, 11, 17–28. [Google Scholar]
- Jeřábek, P.; Lexa, O.; Schulmann, K.; Plašienka, D. Inverse ductile thinning via lower crustal flow and fold-induced doming in the West Carpathian Eo-Alpine collisional wedge. Tectonics 2012, 31, 1–26. [Google Scholar] [CrossRef]
- Ivan, P. Relics of the Meliata ocean crust: Geodynamic implications of mineralogical, petrological and geochemical proxies. Geol. Carpathica 2002, 53, 245–256. [Google Scholar]
- Faupl, P.; Wagreich, M. Cretaceous flysch and pelagic sequences of the Eastern Alps: Correlations, heavy minerals, and palaeogeographic implications. Cretac. Res. 1992, 13, 387–403. [Google Scholar] [CrossRef]
- Schnabel, W. New data on the Flysch zone of the Eastern Alps in the Austrian sector and new aspects concerning the transition to the Flysch Zone of the Carpathians. Cretac. Res. 1992, 13, 405–419. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Maheľ, M. Geological structure of the Czechoslovak Carpathians. Paleoalpine Units, 1st ed.; Veda: Bratislava, Czechoslovakia, 1986; pp. 1–496. [Google Scholar]
- Plašienka, D. Mid-Cretaceous (120–80 Ma) orogenic processes in the central Western Carpathians: Brief review and interpretation of data. Slovak Geol. Mag. 1996, 3, 319–324. [Google Scholar]
- Soták, J.; Rudinec, R.; Spišiak, J. The Penninic “pull-apart” dome in the pre-Neogene basement of the Transcarpathian Depression (Eastern Slovakia). Geol. Carpathica 1993, 44, 11–16. [Google Scholar]
- Soták, J.; Spišiak, J.; Biroň, A. Metamorphic sequences with “Bündnerschiefer” lithology in the pre-Neogene basement of the East Slovakian Basin. Mitt. Österr. Geol. Ges. 1994, 86, 111–120. [Google Scholar]
- Soták, J.; Križáni, I.; Spišiak, J. Position and sedimentology of Mernik conglomerates. Geol. Pr. Správy. 1991, 92, 53–69. (In Slovak) [Google Scholar]
- Koráb, T.; Nemčok, J.; Ďurkovič, T.; Marschalko, R. Prehľadný výskum orientovaných sedimentárních textúr vo flyši východného Slovenska. Geol. Sb. 1962, 13, 257–274, (In Slovak with English summary). [Google Scholar]
- Bóna, J.; Gazdačko, Ľ.; Kobulský, J.; Maglay, J.; Kučera, M. Geological map of the Nízke Beskydy Mts.—Western Part at Scale 1:50 000; Kováčik, M., Ed.; SGIDS: Bratislava, Slovakia, 2011. [Google Scholar]
- Stráník, Z. Geology of the Magura Flysch of the Čergov Mts. and western part of the Ondavská vrchovina hills. Sbor. Geol. Vied Západ. Karp. 1965, 3, 125–173. [Google Scholar]
- Ďurkovič, T. Sedimentárno-petrografický výskum pročských vrstiev beňatínskeho flyšu na východnom Slovensku. Geol. Pr. Správy 1972, 58, 119–124. (In Slovak) [Google Scholar]
- Nemčok, J. Magurský príkrov a bradlové pásmo na východnom Slovensku. Geol. Pr. Správy 1984, 81, 119–129. (In Slovak) [Google Scholar]
- Morton, A.C.; Hallsworth, C. Stability of detrital heavy minerals during burial diagenesis. In Heavy Minerals in Use. Developments in Sedimentology, 1st ed.; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 215–245. [Google Scholar]
- Morton, A.C. Influences of provenance and diagenesis on detrital garnet suites in the Paleocene Forties Sandstone, Central North Sea. J. Sediment. Res. 1987, 57, 1027–1032. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals, Orthosilicates, 2nd ed.; Geol. Soc.: London, UK, 1997; pp. 1–919. [Google Scholar]
- Broska, I.; Petrík, I.; Uher, P. Akcesorické minerály granitoidných hornín Západných Karpát; Veda: Bratislava, Slovakia, 2012; pp. 1–235, (In Slovak with English summary). [Google Scholar]
- Faryad, S.W.; Dianiška, I. Garnets from granitoids of the Spišsko–gemerské Rudohorie Mts. Geol. Zb. Geol. Carpathica 1989, 40, 715–734. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R.; Chalton, B. Garnet compositions in Scottish and Norwegian basement terrains: A framework for interpretation of North Sea sandstone provenance. Mar. Petrol. Geol. 2004, 21, 393–410. [Google Scholar] [CrossRef]
- Méres, Š. Garnets–important information resource about source area and parental rocks of the siliciclastic sedimentary rocks. In Cambelove Dni; Abstract book; Jurkovič, Ľ., Ed.; Comenius University: Bratislava, Slovakia, 2008; pp. 37–43, (In Slovak with English abstract). [Google Scholar]
- Spišiak, J.; Hovorka, D.; Rybka, R.; Turan, J. Spessartine and piemontite in Lower Palaeozoic metasediments of the Inner West Carpathians. Čas. Miner. Geol. 1989, 34, 17–32, (In Slovak with English summary). [Google Scholar]
- Faryad, S.W. Lithology and metamorphism of the Meliata unit high-pressure rocks. In Geological Evolution of the Western Carpathians, 1st ed.; Grecula, P., Hovorka, D., Putiš, M., Eds.; SGIDS: Bratislava, Slovakia, 1997; pp. 131–144. [Google Scholar]
- Golonka, J.; Gahagan, L.; Krobicki, M.; Marko, F.; Oszczypko, N.; Ślączka, A. Plate Tectonic Evolution and Paleogeography of the Circum-Carpathian Region. In The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, 1st ed.; Golonka, J., Picha, F., Eds.; American Association of Petroleum Geologists Memoir: Tulsa, OK, USA, 2006; Volume 84, pp. 11–46. [Google Scholar]
- Márton, E.; Grabowski, J.; Plašienka, D.; Túnyi, I.; Krobicki, M.; Haas, J.; Pethe, M. New paleomagnetic results from the Upper Cretaceous red marls of the Pieniny Klippen Belt, Western Carpathians: Evidence for general CCW rotation and implications for the origin of the structural arc formation. Tectonophysics 2013, 592, 1–13. [Google Scholar] [CrossRef]
- Márton, E.; Grabowski, J.; Tokarski, A.; Túnyi, I. Palaeomagnetic results from the fold and thrust belt of the Western Carpathians: An overview. In Palaeomagnetism in Fold and Thrust Belts: New Perspectives, Spec. Publ., 1st ed.; Pueyo, E.L., Cifelli, F., Sussman, A.J., Oliva-Urcia, B., Eds.; Geological Society: London, UK, 2015; Volume 425, pp. 7–36. [Google Scholar]
- Saccani, E.; Seghedi, A.; Nicolae, I. Evidence of rift magmatism from preliminary petrological data on lower Triassic mafic rocks from the North Dobrogea orogeny (Romania). Ofioliti 2004, 29, 231–241. [Google Scholar]
- Bónová, K. Ťažké minerály v pieskovcových súvrstviach magurského pásma na východnom Slovensku—Proveniencia a paleogeografické implikácie, 1st ed.; UPJŠ: Košice, Slovakia, 2018; pp. 1–186, (In Slovak with English summary). [Google Scholar]
Sample | Locality | Lithostratigraphy | GPS N° GPS E° | Note | ||
---|---|---|---|---|---|---|
1 | BB-8 | Žalobín—nameless stream | Proč Fm. | 48°58′36.7″ | 21°44′39.1″ | Panned concentrate |
2 | BB-9 | Žalobín—Žalobínsky potok stream | Proč Fm. | 48°58′35.6″ | 21°45′16.4″ | Panned concentrate |
3 | BB-14 | Lieskovec—nameless stream | Proč Fm. | 48°57′55.3″ | 21°49′20.0″ | Panned concentrate |
4 | BB-15 | Myslina—Poliaková (stream) | Proč Fm. | 48°57′19.5″ | 21°50′47.6″ | Panned concentrate |
5 | BB-19 | Podhoroď—Paprtný vrch hill | Proč Fm. | 48°49′26.0″ | 22°18′37.3″ | HM from compact rock |
6 | BB-10 | Giglovce—quarry | Strihovce Fm. | 48°59′54.5″ | 21°44′11.1″ | HM from compact rock |
7 | BB-12 | Ohradzany—quarry | Strihovce Fm. | 49°0′2.7″ | 21°50′47.5″ | HM from compact rock |
8 | BB-13 | Sopkovce | Strihovce Fm. | 49°0′45.5″ | 21°52′4.2″ | HM from compact rock |
9 | BB-16 | Strihovce | Strihovce Fm. | 48°53′49.1″ | 22°16′9.6″ | HM from compact rock |
10 | BB-17 | Šmigovec—nameless stream | Strihovce Fm. | 48°53′12.0″ | 22°19′24.2″ | Panned concentrate |
11 | BB-18 | Hrabová Roztoka—stream | Strihovce Fm. | 48°52′20.1″ | 22°18′59.5″ | Panned concentrate |
Fm. | Proč Fm. | Strihovce Fm. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sample | BB-8 | BB-9 | BB-14 | BB-15 | BB-19 | BB-10 | BB-12 | BB-13 | BB-16 | BB-17 | BB-18 |
Rt | 12.8 | 8.5 | 9.4 | 11.7 | 8.8 | 15.4 | 10.5 | 10.6 | 9.7 | 4.3 | 11.0 |
Zrn | 47.1 | 44.7 | 38.8 | 42.9 | 40.9 | 34.6 | 18.5 | 25.7 | 59.1 | 33.5 | 30.7 |
Tur | 4.5 | 1.4 | 1.1 | 0.4 | 1.4 | 2.1 | 2.6 | 1.3 | 1.9 | 1.4 | 0.9 |
Ap | 6.4 | 9.6 | 15.3 | 7.4 | 20.7 | 3.5 | 3.0 | 2.2 | 1.6 | 3.2 | 4.5 |
Grt | 26.0 | 31.6 | 30.7 | 35.8 | 22.1 | 39.9 | 60.5 | 58.4 | 24.1 | 53.8 | 51.0 |
Ep | 0.3 | tr. | 1.5 | 1.7 | 0.3 | 1.0 | 0.4 | 0.8 | 0.6 | ||
Sta | 0.3 | 1.1 | 1.1 | 2.2 | 1.4 | 2.3 | 0.2 | 0.8 | 1.2 | 0.3 | |
Mnz | tr. | tr. | tr. | tr. | 0.6 | ||||||
Spl | 2.6 | 2.8 | 1.5 | 0.7 | 1.9 | 2.1 | 1.6 | 1.1 | 1.9 | 1.4 | 1.5 |
Brt | 1.4 | 0.7 | 0.3 | 0.7 | |||||||
Amp | tr. | tr. | tr. | ||||||||
Au | tr. | tr. |
Chromian Spinel | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fm. | Proč Fm. | Strihovce Fm. | ||||||||||
Sample | 2 c | 2 r | 4 c | 4 r | 4 c | 4 r | 9 c | 9 r | 7 c | 7 o | 6 c | 6 c2 |
SiO2 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
TiO2 | 0.12 | 0.21 | 0.00 | 0.08 | 0.63 | 0.91 | 0.16 | 0.09 | 0.95 | 0.84 | 0.09 | 0.01 |
Al2O3 | 20.94 | 20.93 | 16.52 | 16.46 | 15.36 | 15.85 | 19.62 | 20.83 | 33.44 | 33.15 | 6.69 | 26.47 |
Fe2O3 | 1.50 | 0.94 | 1.38 | 0.88 | 7.85 | 9.19 | 1.16 | 1.77 | 7.11 | 7.36 | 1.31 | 3.90 |
FeO | 16.68 | 16.85 | 14.39 | 14.61 | 18.90 | 20.19 | 18.23 | 18.42 | 13.06 | 13.22 | 22.42 | 16.79 |
MnO | 0.26 | 0.27 | 0.24 | 0.26 | 0.34 | 0.36 | 0.35 | 0.31 | 0.19 | 0.23 | 0.46 | 0.27 |
MgO | 11.72 | 11.45 | 13.01 | 12.75 | 9.55 | 8.75 | 10.41 | 10.45 | 15.19 | 15.06 | 6.44 | 11.99 |
Cr2O3 | 48.24 | 48.02 | 54.84 | 54.85 | 46.82 | 44.44 | 48.99 | 47.30 | 28.54 | 28.75 | 62.04 | 39.20 |
NiO | 0.08 | 0.06 | 0.08 | 0.12 | 0.14 | 0.17 | 0.01 | 0.06 | 0.16 | 0.15 | 0.00 | 0.14 |
ZnO | 0.25 | 0.25 | 0.12 | 0.06 | 0.14 | 0.16 | 0.20 | 0.25 | 0.05 | 0.03 | 0.18 | 0.19 |
V2O5 | 0.19 | 0.18 | 0.23 | 0.23 | 0.30 | 0.34 | 0.32 | 0.30 | 0.18 | 0.20 | 0.19 | 0.25 |
total | 99.98 | 99.15 | 100.81 | 100.32 | 100.03 | 100.35 | 99.44 | 99.78 | 98.87 | 99.00 | 99.82 | 99.21 |
Formulae calculated on 3 cations | ||||||||||||
Si | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Ti | 0.003 | 0.005 | 0.000 | 0.002 | 0.016 | 0.022 | 0.004 | 0.002 | 0.021 | 0.018 | 0.002 | 0.000 |
Al | 0.771 | 0.777 | 0.610 | 0.611 | 0.588 | 0.608 | 0.736 | 0.775 | 1.158 | 1.150 | 0.272 | 0.958 |
Fe3+ | 0.035 | 0.022 | 0.032 | 0.021 | 0.192 | 0.225 | 0.028 | 0.042 | 0.157 | 0.163 | 0.034 | 0.090 |
Fe2+ | 0.436 | 0.444 | 0.377 | 0.385 | 0.514 | 0.550 | 0.485 | 0.486 | 0.321 | 0.325 | 0.647 | 0.431 |
Mn | 0.007 | 0.007 | 0.006 | 0.007 | 0.009 | 0.010 | 0.009 | 0.008 | 0.005 | 0.006 | 0.014 | 0.007 |
Mg | 0.546 | 0.538 | 0.607 | 0.599 | 0.463 | 0.425 | 0.494 | 0.492 | 0.666 | 0.661 | 0.331 | 0.549 |
Ca | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
K | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Na | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Cr | 1.191 | 1.196 | 1.358 | 1.366 | 1.204 | 1.144 | 1.233 | 1.181 | 0.663 | 0.669 | 1.692 | 0.952 |
Ni | 0.002 | 0.002 | 0.002 | 0.003 | 0.004 | 0.004 | 0.000 | 0.001 | 0.004 | 0.004 | 0.000 | 0.003 |
Zn | 0.006 | 0.006 | 0.003 | 0.001 | 0.003 | 0.004 | 0.005 | 0.006 | 0.001 | 0.001 | 0.005 | 0.004 |
V | 0.004 | 0.004 | 0.005 | 0.005 | 0.006 | 0.007 | 0.007 | 0.006 | 0.003 | 0.004 | 0.004 | 0.005 |
total | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 | 3.000 |
Mg# | 0.56 | 0.55 | 0.62 | 0.61 | 0.47 | 0.44 | 0.50 | 0.50 | 0.67 | 0.67 | 0.34 | 0.56 |
Cr# | 0.61 | 0.61 | 0.69 | 0.69 | 0.67 | 0.65 | 0.63 | 0.60 | 0.36 | 0.37 | 0.86 | 0.50 |
Garnet | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fm. | Proč Fm. | Strihovce Fm. | ||||||||||
Sample | 5 c | 5 r | 4 c | 4 r | 1 c | 1 r | 11 c | 11 r | 6 c | 6 r | 10 c | 10 r |
SiO2 | 36.94 | 37.71 | 37.35 | 37.64 | 37.00 | 37.39 | 36.76 | 36.81 | 37.72 | 37.95 | 38.46 | 38.29 |
TiO2 | 0.29 | 0.00 | 0.02 | 0.25 | 0.03 | 0.07 | 0.26 | 0.15 | 0.15 | 0.09 | 0.12 | 0.00 |
ZrO2 | 0.00 | 0.00 | 0.00 | 0.01 | 0.06 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 |
P2O5 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.03 | 0.04 | 0.03 |
Y2O3 | 0.03 | 0.00 | 0.02 | 0.02 | 0.00 | 0.04 | 0.03 | 0.00 | 0.01 | 0.04 | 0.04 | 0.03 |
Al2O3 | 20.69 | 21.07 | 20.92 | 21.23 | 19.68 | 20.12 | 19.43 | 19.67 | 21.01 | 21.13 | 21.41 | 21.50 |
Cr2O3 | 0.05 | 0.06 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.03 | 0.06 | 0.01 | 0.01 |
V2O3 | 0.02 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.07 |
FeO | 5.31 | 7.41 | 16.05 | 23.98 | 16.34 | 18.61 | 10.72 | 9.87 | 23.17 | 23.34 | 28.99 | 28.46 |
ZnO | 0.00 | 0.04 | 0.00 | 0.08 | 0.00 | 0.11 | 0.03 | 0.00 | 0.05 | 0.00 | 0.17 | 0.03 |
MnO | 32.03 | 27.82 | 18.51 | 8.86 | 11.63 | 7.00 | 29.56 | 31.51 | 13.82 | 14.56 | 0.54 | 0.65 |
MgO | 0.12 | 0.44 | 0.22 | 0.35 | 0.70 | 0.71 | 0.09 | 0.11 | 3.63 | 3.22 | 5.70 | 5.76 |
CaO | 5.32 | 6.26 | 7.38 | 8.60 | 13.74 | 15.60 | 4.06 | 3.52 | 1.76 | 2.04 | 5.25 | 4.90 |
NaO | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 | 0.00 | 0.03 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 |
total | 100.81 | 100.93 | 100.48 | 101.03 | 99.19 | 99.68 | 100.94 | 101.68 | 101.37 | 102.49 | 100.71 | 99.73 |
Formulae based on 8 cations, 12 O | ||||||||||||
Si | 2.983 | 3.016 | 3.007 | 2.999 | 2.972 | 2.975 | 2.987 | 2.973 | 2.986 | 2.978 | 2.994 | 3.004 |
Ti | 0.017 | 0.000 | 0.001 | 0.015 | 0.002 | 0.004 | 0.016 | 0.009 | 0.009 | 0.005 | 0.007 | 0.000 |
Zr | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 |
P | 0.002 | 0.002 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.002 | 0.003 | 0.002 |
Y | 0.001 | 0.000 | 0.001 | 0.001 | 0.000 | 0.002 | 0.001 | 0.000 | 0.001 | 0.002 | 0.001 | 0.001 |
Al | 1.969 | 1.986 | 1.985 | 1.994 | 1.863 | 1.886 | 1.861 | 1.872 | 1.960 | 1.954 | 1.964 | 1.988 |
Cr | 0.003 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.002 | 0.004 | 0.000 | 0.000 |
V | 0.002 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.000 | 0.004 |
Fe2+ | 0.338 | 0.495 | 1.081 | 1.598 | 0.909 | 1.088 | 0.595 | 0.506 | 1.492 | 1.465 | 1.863 | 1.867 |
Fe3+ | 0.020 | 0.000 | 0.000 | 0.000 | 0.188 | 0.150 | 0.133 | 0.161 | 0.042 | 0.067 | 0.025 | 0.000 |
Zn | 0.000 | 0.002 | 0.000 | 0.005 | 0.000 | 0.006 | 0.002 | 0.000 | 0.003 | 0.000 | 0.010 | 0.002 |
Mn | 2.191 | 1.884 | 1.262 | 0.598 | 0.791 | 0.472 | 2.034 | 2.156 | 0.927 | 0.968 | 0.035 | 0.043 |
Mg | 0.014 | 0.053 | 0.026 | 0.042 | 0.084 | 0.084 | 0.011 | 0.013 | 0.428 | 0.376 | 0.661 | 0.674 |
Ca | 0.460 | 0.536 | 0.637 | 0.735 | 1.183 | 1.330 | 0.353 | 0.304 | 0.149 | 0.171 | 0.438 | 0.412 |
Na | 0.000 | 0.000 | 0.000 | 0.002 | 0.005 | 0.001 | 0.005 | 0.002 | 0.000 | 0.004 | 0.000 | 0.000 |
Sps | 73.04 | 62.97 | 42.07 | 19.97 | 26.37 | 15.74 | 67.82 | 71.85 | 30.90 | 32.27 | 1.18 | 1.43 |
Prp | 0.48 | 1.77 | 0.12 | 1.39 | 2.80 | 2.81 | 0.36 | 0.45 | 14.28 | 12.55 | 22.06 | 22.48 |
Alm | 11.10 | 16.56 | 36.03 | 53.38 | 30.29 | 36.43 | 19.82 | 16.83 | 49.77 | 48.71 | 62.10 | 62.29 |
Grs | 12.96 | 17.42 | 21.04 | 24.48 | 32.30 | 38.24 | 4.37 | 3.14 | 2.46 | 3.11 | 12.89 | 13.27 |
Adr | 1.18 | 6.89 | 5.90 | 6.68 | 6.38 | 1.92 | 1.97 | 1.02 | ||||
Other | 0.00 | 0.80 | 0.09 | 0.64 | 1.12 | 0.59 | 0.00 | 0.72 | 0.06 | 0.70 | 0.01 | 0.30 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bónová, K.; Mikuš, T.; Bóna, J. Is Cr-Spinel Geochemistry Enough for Solving the Provenance Dilemma? Case Study from the Palaeogene Sandstones of the Western Carpathians (Eastern Slovakia). Minerals 2018, 8, 543. https://doi.org/10.3390/min8120543
Bónová K, Mikuš T, Bóna J. Is Cr-Spinel Geochemistry Enough for Solving the Provenance Dilemma? Case Study from the Palaeogene Sandstones of the Western Carpathians (Eastern Slovakia). Minerals. 2018; 8(12):543. https://doi.org/10.3390/min8120543
Chicago/Turabian StyleBónová, Katarína, Tomáš Mikuš, and Ján Bóna. 2018. "Is Cr-Spinel Geochemistry Enough for Solving the Provenance Dilemma? Case Study from the Palaeogene Sandstones of the Western Carpathians (Eastern Slovakia)" Minerals 8, no. 12: 543. https://doi.org/10.3390/min8120543
APA StyleBónová, K., Mikuš, T., & Bóna, J. (2018). Is Cr-Spinel Geochemistry Enough for Solving the Provenance Dilemma? Case Study from the Palaeogene Sandstones of the Western Carpathians (Eastern Slovakia). Minerals, 8(12), 543. https://doi.org/10.3390/min8120543