Verneite, Na2Ca3Al2F14, a New Aluminum Fluoride Mineral from Icelandic and Vesuvius Fumaroles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Formula and Physical Properties
3.2. Crystal Structure Data
4. Discussion
4.1. Description of the Crystal Structure
4.2. NaF–CaF2–AlF3 System and the Natural Occurrences of Phases
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jakobsson, S.P.; Leonardsen, E.S.; Balić-Žunić, T.; Jónsson, S.S. Encrustations from three recent volcanic eruptions in Iceland: The 1963–1967 Surtsey, the 1973 Eldfell and the 1991 Hekla eruptions. Fjölrit Náttúrufraedistofnunar 2008, 52, 65. [Google Scholar]
- Balić-Žunić, T.; Garavelli, A.; Acquafredda, P.; Leonardsen, E.; Jakobsson, S.P. Eldfellite, NaFe(SO4)2, a new fumarolic mineral from Eldfell volcano, Iceland. Mineral. Mag. 2009, 73, 51–57. [Google Scholar] [CrossRef]
- Garavelli, A.; Balić-Žunić, T.; Mitolo, D.; Acquafredda, P.; Leonadsen, E.; Jakobsson, S.P. Heklaite, KNaSiF6, a new fumarolic mineral from Hekla volcano, Iceland. Mineral. Mag. 2010, 74, 147–157. [Google Scholar] [CrossRef]
- Balić-Žunić, T.; Garavelli, A.; Mitolo, D.; Acquafredda, P.; Leonardsen, E. Jakobssonite, CaAlF5, a new mineral from fumaroles at the Eldfell and Hekla volcanoes, Iceland. Mineral. Mag. 2012, 76, 751–760. [Google Scholar] [CrossRef]
- Mitolo, D.; Garavelli, A.; Balić-Žunić, T.; Acquafredda, P.; Jakobsson, S.P. Leonardsenite, MgAlF5(H2O)2, a new mineral species from Eldfell volcano, Heimaey Island, Iceland. Can. Mineral. 2013, 51, 377–386. [Google Scholar] [CrossRef]
- Jacobsen, M.J.; Balić-Žunić, T.; Mitolo, D.; Katerinopoulou, A.; Garavelli, A.; Jakobsson, S.P. Oskarssonite, AlF3, a new fumarolic mineral from Eldfell volcano, Heimaey, Iceland. Mineral. Mag. 2014, 78, 215–222. [Google Scholar] [CrossRef]
- Balić-Žunić, T.; Garavelli, A.; Mitolo, D. Topsøeite, FeF3(H2O)3, a new fumarolic mineral from the Hekla volcano, Iceland. Eur. J. Mineral. 2018, 30, 841–848. [Google Scholar] [CrossRef]
- Balić-Žunić, T.; University of Copenhagen, Copenhagen, Denmark; Jonasson, K.; Icelandic Institute of Natural History, Gardabaer, Iceland. Personal communication, 2013.
- Ruste, J. X-Ray spectrometry. In Microanalysis and Scanning Electron Microscopy; Maurice, F., Meny, L., Tixier, R., Eds.; Les Editions de Physique: Orsay, France, 1979; pp. 215–267. [Google Scholar]
- Acquafredda, P.; Paglionico, A. SEM-EDS microanalyses of microphenocrysts of Mediterranean obsidians: A preliminary approach to source discrimination. Eur. J. Mineral. 2004, 16, 419–429. [Google Scholar] [CrossRef]
- Balić Žunić, T.; Vicković, I. IVTON—Program for the Calculation of Geometrical Aspects of Crystal Structures and Some Crystal Chemical Applications. J. Appl. Cryst. 1996, 29, 305–306. [Google Scholar] [CrossRef]
- Mandarino, J.A. The Gladstone-Dale relationship. I. Derivation of new constants. Can. Mineral. 1976, 14, 498–502. [Google Scholar]
- Courbion, G.; Ferrey, G. Na2Ca3Al2F14: A new example of a structure with “independent F–”—A new method of comparison between fluorides and oxides of different formula. J. Solid State Chem. 1988, 76, 426–431. [Google Scholar] [CrossRef]
- Effenberger, H.; Kluger, F. Ralstonit: Ein Beitrag zur Kenntnis von Zusammensetzung und Kristallstruktur. N. Jahrb. Miner. Monat. 1984, 1984, 97–108. [Google Scholar]
- Sawada, H. An electron density residual study of alpha-ferric oxide. Mater. Res. Bull. 1996, 31, 141–146. [Google Scholar] [CrossRef]
- Balić Žunić, T.; Makovicky, E. Determination of the centroid or “the best centre” of a coordination polyhedron. Acta Cryst. 1996, B52, 78–81. [Google Scholar] [CrossRef]
- Makovicky, E.; Balić-Žunić, T. New measure of distortion for coordination polyhedra. Acta Cryst. 1998, B54, 766–773. [Google Scholar] [CrossRef]
- Balić-Žunić, T. Use of three-dimensional parameters in the analysis of crystal structures under compression. In Pressure-Induced Phase Transitions; Grzechnik, A., Ed.; Transworld Research Network: Kerala, India, 2007; pp. 157–184. ISBN 81-7895-272-6. [Google Scholar]
- Bolotina, N.B.; Maximov, B.A.; Simonov, V.I.; Derzhavin, S.I.; Uvarova, T.V.; Apollonov, V.V. Crystal structure and spectral characteristics of LiCaAlF6:Cr3+ single crystals. Crystallogr. Rep. 1993, 38, 446–450. [Google Scholar]
- Hemon, A.; Courbion, G. The NaF-CaF2-AlF3 system: Structures of beta-NaCaAlF6 and Na4Ca4Al7F33. J. Solid State Chem. 1990, 84, 153–164. [Google Scholar] [CrossRef]
- Hemon, A.; Le Bail, A.; Courbion, G. Crystal structure approach of KCaAl2F9. A new hexagonal tungsten-bronze related structure. Eur. J. Solid State Inor. Chem. 1993, 30, 415–426. [Google Scholar] [CrossRef]
- Hemon, A.; Courbion, G. Refinement of the room-temperature structure of alpha-CaAlF5. Acta Cryst. C 1991, 47, 1302–1303. [Google Scholar] [CrossRef]
- Domesle, R.; Hoppe, R. The crystal structure of Ca2AlF7. Z. Kristallogr. 1980, 153, 317–328. [Google Scholar] [CrossRef]
- Le Bail, A.; Hemon-Ribaud, A.; Courbion, G. Structure of alpha-(Na Ca Al F6) determined ab initio from conventional powder diffraction data. Eur. J. Solid State Inor. Chem. 1998, 35, 265–272. [Google Scholar] [CrossRef]
- Werner, F.; Weil, M. Alpha-(BaCaAlF7). Acta Cryst. E 2003, 59, 17–19. [Google Scholar] [CrossRef]
- Litvin, A.L.; Petrunina, A.A.; Ostapenko, S.S.; Povarennykh, A.S. The crystal structure of usovite. Dopov. Akad. Nauk Ukr. RSR Ser. B 1980, 3, 47–80. (In Ukrainian) [Google Scholar]
- Kampf, A.R.; Yang, H.; Downs, R.T.; Pinch, W.W. The crystal structures and Raman spectra of aravaipaite and calcioaravaipaite. Am. Mineral. 2011, 96, 402–407. [Google Scholar] [CrossRef]
- Mumme, W.G.; Grey, I.E.; Birch, W.D.; Pring, A.; Bougerol, C.; Wilson, N.C. Coulsellite, CaNa3AlMg3F14, a rhombohedral pyrochlore with 1:3 ordering in both A and B sites, from the Cleveland mine, Tasmania, Australia. Am. Mineral. 2010, 95, 736–740. [Google Scholar] [CrossRef]
- Swanson, H.E.; Tatge, E. Standard X-ray diffraction powder patterns. Nat. Bur. Stand. Circ. 1953, 539, 69–70. [Google Scholar]
- Bevan, D.J.M.; Straehle, J.; Greis, O. The crystal structure of tveitite, an ordered yttrofluorite mineral. J. Solid State Chem. 1982, 44, 75–81. [Google Scholar] [CrossRef]
- The American Mineralogist Crystal Structure Database. Available online: http://rruff.geo.arizona.edu/AMS/amcsd.php (accessed on 28 November 2018).
- Craig, D.F.; Brown, J.J. Phase equilibria in the system CaF2-AlF3-Na3AlF6 and part of the system CaF2-AlF3-Na3AlF6-Al2O3. J. Am. Ceram. Soc. 1977, 63, 254–261. [Google Scholar] [CrossRef]
hkl/Mineral | d (Å) 1 | I/I0 % 1 | d (Å) 2 | I/I0 % 2 |
---|---|---|---|---|
0 1 1 | 7.24 | 17.4 | 7.24 | 20 |
R | 5.72 | 39.0 | - | - |
0 0 2 | 5.11 | 17.6 | 5.11 | 14 |
2 1 1 | 4.18 | 76.2 | 4.18 | 91 |
? | 3.84 | 15.3 | - | - |
H | 3.67 | 25.6 | - | - |
0 2 2 | 3.62 | 54.7 | 3.62 | 55 |
HB | 3.54 | 22.4 | - | - |
? | 3.30 | 25.6 | - | - |
0 3 1 | 3.23 | 68.1 | 3.24 | 60 |
HB, J | 3.17 | 28.7 | - | - |
R | 2.99 | 56.9 | - | - |
2 2 2 | 2.95 | 100.0 | 2.96 | 85 |
R | 2.87 | 41.6 | - | - |
3 2 1 | 2.73 | 38.2 | 2.74 | 24 |
H | 2.70 | 74.6 | - | - |
H | 2.512 | 69.1 | - | - |
4 1 1 | 2.414 | 40.5 | 2.413 | 33 |
? | 2.349 | 20.0 | - | - |
4 0 2 | 2.288 | 40.5 | 2.289 | 21 |
H | 2.201 | 35.7 | - | - |
3 3 2 | 2.184 | 78.3 | 2.183 | 72 |
HB | 2.127 | 20.5 | - | - |
4 2 2 | 2.088 | 20.2 | 2.090 | 5 |
R, J | 2.042 | 22.1 | - | - |
3 4 1, 4 3 1 | 2.009 | 98.2 | 2.008 | 100 |
R | 1.915 | 37.1 | - | - |
2 5 1 | 1.871 | 75.1 | 1.877 | 72 |
H | 1.840 | 37.9 | - | - |
0 4 4 | 1.811 | 84.1 | 1.810 | 72 |
4 3 3 + R | 1.755 | 40.5 | 1.756 | 9 |
0 0 6 | - | - | 1.708 | 7 |
H | 1.697 | 51.3 | - | - |
6 1 1, 5 3 2, 3 5 2 | 1.663 | 66.2 | 1.661 | 55 |
0 6 2 | - | - | 1.620 | 1 |
H | 1.607 | 23.0 | - | - |
4 5 1 | 1.582 | 28.4 | 1.581 | 8 |
6 2 2 | 1.545 | 45.9 | 1.544 | 38 |
3 6 1 | 1.512 | 30.6 | 1.510 | 10 |
Verneite | Ralstonite | Hematite | Jakobssonite | |
---|---|---|---|---|
average crystallite size (nm) | 121(13) | 35(2) | 56(5) | fixed to 200 |
a (Å) | 10.264(1) | 9.963(2) | 5.035(1) | 8.63(3) |
b (Å) | - | - | - | 6.36(2) |
c (Å) | - | - | 13.824(4) | 7.25(2) |
β (°) | - | - | - | 114.4(5) |
atomic parameters | fixed [13] | fixed [14] | fixed [15] | fixed [4] |
R-Bragg | 4.7% | 6.5% | 5.8% | 7.2% |
Compound | Site | CN | <Ca–F> (Å) | υ | Asphericity | Eccentricity | Polyhedron | Ref. |
---|---|---|---|---|---|---|---|---|
CaLiAlF6 | Ca1 | 6 | 2.281 | 0.0038 | 0 | 0 | O. | [19] |
Na4Ca4Al7F33 | Ca1 | 6 | 2.246 | 0.0232 | 0 | 0 | O. | [20] |
β-NaCaAlF6 | Ca1 | 6 | 2.308 | 0.0439 | 0.0049 | 0.023 | O. | [20] |
KCaAl2F9 | Ca1 | 6 | 2.302 | 0.0703 | 0.0348 | 0.0165 | O. | [21] |
Ca2 | 6 | 2.292 | 0.0559 | 0.0426 | 0.017 | |||
CaAlF5 | Ca1 | 7 | 2.318 | 0.0265 | 0.0335 | 0.0521 | P.b. | [22] |
Ca2AlF7 | Ca1 | 7 | 2.316 | 0.0344 | 0.0217 | 0.0248 | P.b. | [23] |
Ca2 | 7 | 2.346 | 0.1391 | 0.0112 | 0.0404 | S.o. | ||
α-NaCaAlF6 | Ca1 | 7 | 2.351 | 0.0943 | 0.0331 | 0.054 | transitional P.b./S.o. | [24] |
Ca2 | 7 | 2.343 | 0.0869 | 0.0405 | 0.0467 | |||
Na2Ca3Al2F14 | Ca1 | 8 | 2.374 | 0.0234 | 0.0254 | 0.0286 | Bis. | [13] |
BaCaAlF7 | Ca1 | 8 | 2.372 | 0.0467 | 0.0309 | 0.0361 | S.a. | [25] |
Ca2 | 8 | 2.372 | 0.0569 | 0.0271 | 0.0362 | |||
Ba2CaMgAl2F14 | Ca1 | 8 | 2.371 | 0.0565 | 0.0453 | 0.0349 | S.a. | [26] |
Ca2PbAlF9 | Ca1 | 8 | 2.360 | 0.088 | 0.0181 | 0.0237 | transitional C./S.a. | [27] |
Ca2 | 8 | 2.361 | 0.0899 | 0.0234 | 0.0241 | |||
CaNa3Mg3AlF14 | Ca1 | 8 | 2.421 | 0.1136 | 0.0583 | 0 | distorted C. | [28] |
CaF2 | Ca1 | 8 | 2.365 | 0.1522 | 0 | 0 | C. | [29] |
Ca13Y6F43 | Ca3 | 8 | 2.341 | 0.1444 | 0.021 | 0.0142 | distorted C. | [30] |
Ca1* | 9 | 2.617 | 0.0296 | 0.0627 | 0.0628 | T.t.p. | ||
Ca2 | 10 | 2.491 | 0.0478 | 0.0407 | 0.0576 | T.c. |
Formula | Space Group | Crystal lattice Parameters | Structure Type | Aluminofluoride Part | Ref. |
---|---|---|---|---|---|
β-NaCaAlF6 | P321 | 8.9295(9), 5.0642(2) Å | Na2SiF6 | isolated [AlF6] | [20] |
α-NaCaAlF6 | P21/c | 8.7423(3), 5.1927(2), 20.3514(9) Å, 91.499(2)° | unique | isolated [AlF6] | [24] |
Na2Ca3Al2F14 | I213 | 10.257(1) Å | unique | isolated [AlF6] plus additional F | [13] |
Na4Ca4Al7F33 | Im3m | 10.781(3) Å | unique | [Al7F33] 3D framework | [20] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balić-Žunić, T.; Garavelli, A.; Pinto, D.; Mitolo, D. Verneite, Na2Ca3Al2F14, a New Aluminum Fluoride Mineral from Icelandic and Vesuvius Fumaroles. Minerals 2018, 8, 553. https://doi.org/10.3390/min8120553
Balić-Žunić T, Garavelli A, Pinto D, Mitolo D. Verneite, Na2Ca3Al2F14, a New Aluminum Fluoride Mineral from Icelandic and Vesuvius Fumaroles. Minerals. 2018; 8(12):553. https://doi.org/10.3390/min8120553
Chicago/Turabian StyleBalić-Žunić, Tonči, Anna Garavelli, Daniela Pinto, and Donatella Mitolo. 2018. "Verneite, Na2Ca3Al2F14, a New Aluminum Fluoride Mineral from Icelandic and Vesuvius Fumaroles" Minerals 8, no. 12: 553. https://doi.org/10.3390/min8120553
APA StyleBalić-Žunić, T., Garavelli, A., Pinto, D., & Mitolo, D. (2018). Verneite, Na2Ca3Al2F14, a New Aluminum Fluoride Mineral from Icelandic and Vesuvius Fumaroles. Minerals, 8(12), 553. https://doi.org/10.3390/min8120553