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Abstract: A novel method to limit the adverse effect of fine serpentine on the flotation of pyrite was
investigated in this paper. The flotation results showed that coarser serpentine possessed a weaker
depression effect on the pyrite flotation process, and the use of KAl(SO4)2·12H2O could efficiently
limit the detrimental effect of fine serpentine on pyrite with a maximum increase of pyrite recovery
from 14% to 86% at pH 9.0. The results of particle size measurements and rheological measurements
exhibited that the addition of KAl(SO4)2·12H2O increased the particle size of serpentine buta hrdly
affected the particle size of pyrite, then limited the formation of serpentine-pyrite aggregates.
Adsorption test results showed that the adsorption density of potassium butyl xanthate (PBX) onto
pyrite regained with the addition of KAl(SO4)2·12H2O, thereby achieving good flotation improvement.
It can be concluded that KAl(SO4)2·12H2O is likely to be an effective pyrite flotation reagent, especially
in the presence of fine serpentine.

Keywords: pyrite; fine serpentine; aluminum potassium sulfate dodecahydrate; flotation separation;
particle size

1. Introduction

Serpentine, as a typical magnesium silicate, often associates with many sulfide ore deposits [1].
Plenty of studies have demonstrated that serpentine can adsorb on the surface of sulfide minerals
as “slime coatings” through electrostatic attraction in the flotation process of sulfide ores [2–4].
The coatings of serpentine can reduce the adsorption of collectors and increase the hydrophilicity of
valuable minerals [5,6].

In order to eliminate the adverse influence of serpentine on sulfide minerals flotation, chemical
additives such as sodium silicate, sodium hexametaphosphate, carboxymethyl cellulose (CMC),
and N-carboxymethyl chitosan have been used to prevent the formation of “slime coatings” on valuable
mineral surfaces by changing the surface potential of serpentine [7–10]. However, in practice, the results
are not so satisfactory due to the high dosage and the lack of selectivity of the dispersant. In addition,
physical methods such as ultrasonic treatment and high-intensity conditioning have been usually
employed to remove the slime coatings from valuable mineral surfaces [11–13]. However, it appears
that ultrasonic treatment and high-intensity conditioning are not efficiently economical methods.

Previous studies have shown that the formation of slime coatings on sulfide mineral surfaces is
closely related to the particle size of serpentine: Finer serpentine obtained a greater depressant effect on
the flotation of sulphide minerals [14]. Thus, changing the apparent particle size of fine serpentine by
adding coagulants may be a possible method to improve the flotation performance of sulfide minerals.
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Aluminum potassium sulfate dodecahydrate (KAl(SO4)2·12H2O), which is commonly known
as potassium alum, has been most commonly used as an inorganic coagulant for decades due to its
characteristics of nontoxicity, cheapness, and wide sources [15,16]. KAl(SO4)2·12H2O hydrolyzes to
form an amorphous floc of Al(OH)3(s) to coagulate small particles into large flocs by its high adsorption
affinity in aqueous solution [17,18]. However, the utilization of KAl(SO4)2·12H2O to remove the
depressant of fine serpentine on the flotation of sulphide minerals has not been studied previously,
and thus it was chosen as a potential coagulant in removing slime coatings of fine serpentine from
sulphide minerals in this study. Pyrite is the most widespread and abundant of naturally occurring
metal sulphides, and is always associated with magnesium silicate minerals [19,20]. Therefore, it was
chosen as the valuable mineral in this paper. The effect of KAl(SO4)2·12H2O on the flotation process
was evaluated through single mineral flotation, particle size measurements, rheology measurements,
and adsorption measurements.

2. Materials and Methods

2.1. Samples and Reagents

The serpentine and pyrite minerals used for all the experiments were obtained from Donghai,
Jiangsu Province, and Yunfu, Guangdong Province of China, respectively. Serpentine and pyrite
samples were crushed to −1 mm in a laboratory roll crusher and grounded using an agate mortar
and pestle to the designed fraction. Here, −150 + 74 µm, −74 + 38 µm, and −10 µm serpentine and
−150 + 74 µm pyrite particles were used for the flotation tests; the −10 µm serpentine and −150 + 74 µm
pyrite particles were used for particle size measurements and rheology measurements; and the −10 µm
serpentine and −38 µm pyrite particles were used for the adsorption measurements. According to the
results of X-ray diffraction (XRD), shown in Figure 1, the serpentine sample constituted 98% serpentine
and 2% chlorite, and the purity of pyrite was higher than 98%.
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Figure 1. XRD patterns of the (a) pyrite and (b) serpentine. 

Potassium butyl xanthate (PBX, purchased from Macklin Biochemical Co., Ltd., Shanghai, 
China) with 98% purity and methyl isobutyl carbinol (MIBC, obtained from Tianzhuo Flotation 
Reagent Co., Ltd., JiAn, Jiangxi, China) were used as the collector and frother, respectiTvely. he 
coagulant of KAl(SO4)2·12H2O with 99.5% purity was obtained from Fuchen Chemical Reagents 
Factory, Tianjin, China. Hydrochloric acid (HCl) and sodium hydroxide (NaOH) were used as pH 
regulators, and both of them were obtained from Zhuzhou Flotation Reagent Co., Ltd., Hunan 
province of China. All of the above reagents were of analytical grade, and deionized water with a 

Figure 1. XRD patterns of the (a) pyrite and (b) serpentine.

Potassium butyl xanthate (PBX, purchased from Macklin Biochemical Co., Ltd., Shanghai, China)
with 98% purity and methyl isobutyl carbinol (MIBC, obtained from Tianzhuo Flotation Reagent Co.,
Ltd., JiAn, Jiangxi, China) were used as the collector and frother, respectively. The coagulant
of KAl(SO4)2·12H2O with 99.5% purity was obtained from Fuchen Chemical Reagents Factory,
Tianjin, China. Hydrochloric acid (HCl) and sodium hydroxide (NaOH) were used as pH regulators,
and both of them were obtained from Zhuzhou Flotation Reagent Co., Ltd., Hunan province of China.
All of the above reagents were of analytical grade, and deionized water with a resistivity of 18.2 MΩ·cm
at 25 ◦C obtained from a Laboratory Water Purification System (Smart-s15, Hitech Instruments Co.,
Ltd., Shanghai, China) was used for all the experiments.



Minerals 2018, 8, 582 3 of 11

2.2. Flotation

The single mineral flotation was carried out in an XFG-type mechanical agitation flotation machine
with a 40 mL cell [21]. The pyrite suspension was prepared by adding 2.0 g of pyrites, which was
treated by 5 min ultrasonic pretreatment to 35 mL solutions. When needed, 0.2 g serpentine was added
at the beginning of the conditioning period. The pH regulator, KAl(SO4)2·12H2O, and collector were
added into the pulp in sequence, and a 3 min conditioning period was conducted for each reagent.
Then frother was added to the pulp and conditioned for 1 min before the commencement of flotation,
and the flotation process was conducted for 3 min. Following this, the concentrates and tailings were
collected, filtered, dried, and weighed, and the flotation recovery was calculated based on solid weight
distributions between the two products. Each microflotation test was duplicated three times, and the
average value and the standard deviation bar were presented in the results of flotation tests.

2.3. Particle Size Measurements

Particle size measurements were carried out in a Malvern Mastersizer 2000 (Malvern Instruments
Ltd., England) by light scattering. The pulp samples for measurements were prepared by adding pH
regulator, KAl(SO4)2·12H2O. Each pulp sample as wsubsampled twice, the particle size distribution of
each pulp sample was measured three times, and the average of six resulting measurements was used
for a particle size distribution curve.

The apparent size of serpentine and pyrite samples that were added with a certain amount of
KAl(SO4)2·12H2O were evaluated by the particle size distribution D50 (value of the particle diameter
at 50% of the sample volume that existed) and particle size distribution D90 (value of the particle
diameter at 90% of the sample volume that existed), which were directly offered by a Mastersizer
instrument [22].

2.4. Rheology Measurements

The rheological properties of flotation pulp were measured in apparent viscosity by control shear rate
(0–400 s−1) mode, whereas the shear yield stress was measured by control shear stress (0.02–20 Pa) mode.
For each rheology test, 40 mL of slurry sample with a designed concentration was prepared in an agitating
flotation cell. Then the pH regulator and KAl(SO4)2·12H2O were added in sequence as a flotation scheme,
and 3 min of conditioning was conducted before adding the next reagent. The pulp prepared was poured
into a sample cup for rheology measurements. Rheological measurements were conducted in an Anton
Paar MCR102 rheometer (Anton Paar, Shanghai, China) with a vane impeller probe. A 38 cm3 sample cup
(diameter = 27 mm) and an impeller (diameter = 24 mm) with six outer blades were used. All rheological
measurements were performed at an ambient temperature of around 25 ◦C.

2.5. Adsorption Measurements

For adsorption measurements, 1 g of pyrite powder was added into the PBX solution with
a desired concentration in the presence and absence of serpentine in a 250 mL Erlenmeyer flask.
When needed, KAl(SO4)2·12H2O was added into the mixed pyrite and serpentine suspension. The total
volume of the suspension was 100 mL, and the pulp pH was adjusted to a desired value by adding
NaOH and HCl. Then the suspension was conditioned for 30 min, ensuring that the adsorption process
reached equilibrium. After that, the suspensions were centrifuged and filtered, and the filter liquor was
collected for adsorption measurements. The adsorption measurements were conducted on a UV-2001
ultraviolet spectrophotometer (Rayleigh, Beijing, China) with the absorbance at 300 nm. The amount
of PBX adsorbed on pyrite was calculated though the PBX initial concentration (C0) and residual
concentration (C1), and the computational formula was shown as:

ε =
C0 − C1

C0
× 100% (1)



Minerals 2018, 8, 582 4 of 11

3. Results and Discussions

3.1. Flotation

Single mineral flotation experiments were first conducted to evaluate the effect of the particle size
of serpentine and KAl(SO4)2·12H2O on the flotation process of the pyrite-serpentine system.

Figure 2 exhibits the effect of serpentine with different particle sizes on the flotation of pyrite as a
function of pulp pH. It is evident from Figure 2 that at pH 3–9, PBX had excellent collecting ability
for bare pyrite. When above pH 9, the flotation recovery of pyrite decreased due to the formation
of Fe(OH)3 species on the pyrite surface [19,23]. Compared to the flotation recovery of bare pyrite,
the pyrite recovery decreased in the presence of serpentine due to the formation of serpentine slimes
onto pyrite. It also can be seen that the flotation recovery of pyrite was related to the particle size
of serpentine. The finer the serpentine was, the lower the flotation recovery of pyrite was. The results
shown in Figure 2 are consistent with previous studies by Feng and Li [14,24].
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Figure 3 shows the flotation recovery of pyrite as a function of the concentration of
KAl(SO4)2·12H2O in the presence and absence of −10 µm serpentine at pH 9.0. It is obvious that the
flotation recovery of pyrite slightly decreased with the increase of KAl(SO4)2·12H2O concentration
without serpentine. A maximum decrease was obtained with the pyrite flotation recovery of 87%
at the concentration of 9.375 × 10−4 mol/L KAl(SO4)2·12H2O, whereas higher KAl(SO4)2·12H2O
concentration did not further reduce the flotation recovery of pyrite. James et al. [25] proposed the
view that metal ions could adsorb on minerals surface via forming metal hydroxide precipitation,
because the solubility product of metal hydroxide at the interface is less than the solubility product in
the solution, and the concentration of metal ions in the interface area is much higher than that of metal
ions in the solution phase. Thus, it can be deduced that the slight decrease of pyrite recovery was caused
by the adsorption of aluminum hydroxyl onto pyrite surfaces, which decreased the hydrophobicity of
pyrite [25,26]. In contrast, the flotation recovery of pyrite was rather low, with a value of about 14%
in the presence of serpentine at pH 9, which shows that fine serpentine had an adverse influence on
pyrite flotation due to the serpentine slime coatings [13]. Interestingly, the flotation recovery of pyrite
was significantly improved with the addition of KAl(SO4)2·12H2O, and a maximum increasement



Minerals 2018, 8, 582 5 of 11

of pyrite recovery from 14% to 86% was obtained with 2.5 × 10−3 mol/L KAl(SO4)2·12H2O in the
presence of serpentine.
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Figure 4 shows the flotation recovery of pyrite under different conditions as a function of the
pulp pH. It is evident that the adverse effect of serpentine on the flotation of pyrite was related to pulp
pH. With the increase of pulp pH, the depression effect decreased. According to previous reports [9,27],
the decrease of the depression effect of serpentine was caused by the change of the surface charges of
minerals. Besides, it also can be seen that the depression effect of serpentine on pyrite was limited
with the addition of 2.5 × 10−3 mol/L KAl(SO4)2·12H2O. At pulp pH 5–9, the recovery of pyrite
almost reached 90%. However, when pulp pH was below 5, the elimination effect of KAl(SO4)2·12H2O
on serpentine slimes decreased, which may have been caused by the restriction of the formation of
Al(OH)3, which requires a pH above 4.3 [28].
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3.2. Particle Size Measurements

As a coagulant, the addition of KAl(SO4)2·12H2O brought an influence on the coagulation
behavior of mineral particles, and this may also have been the main reason for the regain of
pyrite recovery. In order to investigate the coagulation of mineral particles at different concentrations
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of KAl(SO4)2·12H2O in the flotation process, particle size measurements were subsequently carried
out, and the results are shown in Figures 5 and 6. Figure 5 shows the changes of the particle size
distribution of pyrite particles in the absence and presence of KAl(SO4)2·12H2O. The average particle
size barely changed (from 153,799 µm to 148,254 µm) as 2.5 × 10−3 mol/L KAl(SO4)2·12H2O was
added, indicating that KAl(SO4)2·12H2O could not coagulate pyrite particles.
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Figure 6 exhibits the changes in the apparent size of serpentine particles under different
concentrations of KAl(SO4)2·12H2O. It can be seen that significant changes in particle size of serpentine
particles occurred with the addition of different concentrations of KAl(SO4)2·12H2O. The D50 and D90

of serpentine particles were 4401 µm and 9836 µm, respectively, in the absence of KAl(SO4)2·12H2O.
When the concentration of KAl(SO4)2·12H2O increased, the dominant peak of fine size fractions
decreased, and new peaks generated in the coarse size fractions range. The D90 of serpentine particles
increased from 9836 µm to 304,532 µm, and the D50 increased from 4.401 µm to 6.178 µm, as the
concentration of KAl(SO4)2·12H2O increased from 0 to 2.5 × 10−3 mol/L. When the concentration of
KAl(SO4)2·12H2O continued to increase, the D90 and D50 of serpentine particles remained stabilized,
corresponding to the variation tendency of flotation results, which are shown in Figure 3.
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The difference of the changes of apparent particle size between pyrite and serpentine may have
been caused by the distinction between the particle size fraction of two minerals. Beyond that, the bridge
connection between serpentine slimes and Al(OH)3(s) by hydroxyl also played an important role [29].

3.3. Rheological Measurements

Pulp rheology, which provides much information about the heterocoagulation between particles,
has been extensively used to investigate the particle interactions in slurries of fluorite and quartz,
galena, and clay minerals [30–32]. In order to investigate the influence caused by serpentine and
KAl(SO4)2·12H2O on single pyrite pulp, rheological tests were conducted by adding serpentine and
KAl(SO4)2·12H2O under different conditions. In Figure 7a, there are obvious changes in apparent
viscosity values at certain shear rates after the serpentine was added at relatively low concentrations
(3 wt % and 8 wt %), which means that there was some mutual interaction between these mixed
minerals [33]. As a result, the separation of pyrite and serpentine became difficult, thereby deteriorating
the flotation, the same result as in Figure 2. In contrast, the coagulant KAl(SO4)2·12H2O brought
about a slight decrease in the influence on pulp viscosity. Figure 7b shows the shear yield point in
the same conditions. It concludes that the raised amount of serpentine could significantly increase
the shear yield point of mixed pulp. For example, the shear yield stress was as high as 0.57 Pa
when the mass concentration of serpentine reached 8 wt %. Ancey and Jorrot [34] also found
that the yield stress sharply increased and approached an infinity value when the solid density
reached its maximum value. The increase of shear yield stress with the addition of serpentine
indicates that the serpentine-pyrite aggregates were much more difficult to break than single pyrite.
However, a maximum decrease of shear yield stress from 0.57 Pa to 0.14 Pa was obtained with the
addition of 0.025 mol/L KAl(SO4)2·12H2O, suggesting that the addition of KAl(SO4)2·12H2O could
decrease the formation of serpentine-pyrite aggregates.Minerals 2018, 8, x FOR PEER REVIEW  8 of 11 
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3.4. Adsorption Measurements

To further demonstrate the fact that the addition of KAl(SO4)2·12H2O could coagulate fine
serpentine particles and consequently limit the formation of “slimes” on pyrite surface, adsorption
measurements were conducted to detect the adsorption density of PBX on mineral surfaces under
different conditions. Figure 8 shows the results of adsorption isotherms of PBX onto pyrite
and serpentine. The results show that the adsorption density of PBX onto pyrite surface increased
with the increase of PBX. However, the adsorption density of PBX onto serpentine surface was always
extremely low, illustrating that PBX could not adsorb onto a serpentine surface, which was similar
to earlier observations [27]. After the addition of 0.2 g of serpentine, the adsorption density of PBX
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on pyrite surface decreased significantly, which indicated that the formation of “slimes” consisted
of serpentine on the pyrite surface and prevented the adsorption of PBX. This may have been the
main reason for the decrease of pyrite recovery in the presence of fine serpentine. With the addition
of 2.5 × 10−3 mol/L KAl(SO4)2·12H2O, the adsorption density of PBX onto pyrite could be regained,
indicating that the fine serpentine slimes were limited effectively.
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4. Mechanism Analysis

It can be seen obviously from Figures 5 and 6 that the addition of KAl(SO4)2·12H2O could not
change the apparent size of pyrite particles. However, as a coagulant, the addition of KAl(SO4)2·12H2O
hydrolyzed and formed Al(OH)3(s) when pulp pH was above 4.3, and they existed as amorphous flocs
with strong adsorption capacities [17,28]. The amorphous flocs of Al(OH)3(s) could adsorb the fine
serpentine particles and form flocs, which obtained bigger D90 than pyrite did. In the separation process
of pyrite and serpentine, the depressant effect of serpentine on pyrite was significantly influenced by
the particle size [24]. According to the flotation results shown in Figure 2, finer serpentine particles were
easily forming slimes and preventing the adsorption of collectors on pyrite. However, the depressant
effect of serpentine decreased as the serpentine particle size increased, which was further confirmed
by the flotation results shown in Figures 3 and 4. The results of rheology measurements also indicated
that the formation of serpentine-pyrite aggregates was limited with the addition of KAl(SO4)2·12H2O.
The results of the adsorption measurements showed that the adsorption density of PBX on pyrite
surface was regained in the presence of serpentine, which further confirmed that the formation of
serpentine slimes could be limited through increasing the apparent particle size of serpentine with the
addition of KAl(SO4)2·12H2O. Therefore, KAl(SO4)2·12H2O could efficiently eliminate the adverse
effect of fine serpentine on the flotation of pyrite.

Based on the abovementioned analysis, the schematic illustration of the effect of KAl(SO4)2·12H2O in
the pyrite-serpentine system is shown in Figure 9. In Figure 9, the serpentine slimes coating was formed
on the pyrite surface without KAl(SO4)2·12H2O. With the addition of KAl(SO4)2·12H2O, fine serpentine
particles could be coagulated and obtained a bigger apparent particle size. Subsequently, the formation of
serpentine slimes onto pyrite was prevented, and the adsorption density of PBX on the surface of pyrite
was regained, which was consistent with the results of particle size measurements, rheology measurements,
and adsorption measurements. One could explain the result as the use of KAl(SO4)2·12H2O being able to
eliminate the adverse effect of fine serpentine on the flotation process of pyrite.



Minerals 2018, 8, 582 9 of 11

Minerals 2018, 8, x FOR PEER REVIEW  9 of 11 

 

It can be seen obviously from Figures 5 and 6 that the addition of KAl(SO4)2·12H2O could not 
change the apparent size of pyrite particles. However, as a coagulant, the addition of 
KAl(SO4)2·12H2O hydrolyzed and formed Al(OH)3(s) when pulp pH was above 4.3, and they existed 
as amorphous flocs with strong adsorption capacities [17,28]. The amorphous flocs of Al(OH)3(s) 
could adsorb the fine serpentine particles and form flocs, which obtained bigger D90 than pyrite did. 
In the separation process of pyrite and serpentine, the depressant effect of serpentine on pyrite was 
significantly influenced by the particle size [24]. According to the flotation results shown in Figure 2, 
finer serpentine particles were easily forming slimes and preventing the adsorption of collectors on 
pyrite. However, the depressant effect of serpentine decreased as the serpentine particle size 
increased, which was further confirmed by the flotation results shown in Figures 3 and 4. The results 
of rheology measurements also indicated that the formation of serpentine-pyrite aggregates was 
limited with the addition of KAl(SO4)2·12H2O. The results of the adsorption measurements showed 
that the adsorption density of PBX on pyrite surface was regained in the presence of serpentine, 
which further confirmed that the formation of serpentine slimes could be limited through increasing 
the apparent particle size of serpentine with the addition of KAl(SO4)2·12H2O. Therefore, 
KAl(SO4)2·12H2O could efficiently eliminate the adverse effect of fine serpentine on the flotation of 
pyrite. 

Based on the abovementioned analysis, the schematic illustration of the effect of 
KAl(SO4)2·12H2O in the pyrite-serpentine system is shown in Figure 9. In Figure 9, the serpentine 
slimes coating was formed on the pyrite surface without KAl(SO4)2·12H2O. With the addition of 
KAl(SO4)2·12H2O, fine serpentine particles could be coagulated and obtained a bigger apparent 
particle size. Subsequently, the formation of serpentine slimes onto pyrite was prevented, and the 
adsorption density of PBX on the surface of pyrite was regained, which was consistent with the 
results of particle size measurements, rheology measurements, and adsorption measurements. One 
could explain the result as the use of KAl(SO4)2·12H2O being able to eliminate the adverse effect of 
fine serpentine on the flotation process of pyrite. 

 
Figure 9. Schematic illustration of the effect of KAl(SO4)2·12H2O on the flotation of pyrite in the 
presence of serpentine. 

Figure 9. Schematic illustration of the effect of KAl(SO4)2·12H2O on the flotation of pyrite in the
presence of serpentine.

5. Conclusions

The use of KAl(SO4)2·12H2O to limit the adverse effect of fine serpentine in the pyrite flotation
process was investigated in this paper. From the results of the flotation tests, particle size measurements,
rheology measurements, and adsorption measurements above, conclusions could be reached as follows.

Fine serpentine possessed a strong depressant effect on the flotation of pyrite in the presence
of PBX, which could be efficiently solved by the utilization of KAl(SO4)2·12H2O. The results of
particle size measurements and rheology measurements showed that the addition of KAl(SO4)2·12H2O
increased the apparent particle size of serpentine remarkably through the flocculation of Al(OH)3(s),
in contrast, had little influence on the pyrite particle size. Therefore, the formation of serpentine-pyrite
aggregates was prevented. The coarser the serpentine particle in the flotation system of pyrite and
serpentine, the lesser the depressant effect on pyrite was. The results of adsorption measurements also
proved that the adsorption density of PBX on pyrite regained with the addition of KAl(SO4)2·12H2O.
Therefore, KAl(SO4)2·12H2O is likely to be a reagent of great significance in eliminating the adverse
effect of fine serpentine on the pyrite flotation process.
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