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Abstract: The commercial application of copper bioleaching, an environmentally-friendly approach
for low-grade and secondary mineral resources recycling, has increased worldwide since the 2000s.
As the world’s second-largest economic entity and the largest developing country, China has the
largest demand for metal resources, significantly advancing the theory and industrial technology
of copper bioleaching. This paper reviews the exploration and application of copper bioleaching
in China. Two typical bioleaching applications and technological processes, bioheap leaching at
the Zijinshan Copper Mine and bioheap leaching at the Dexing Copper Mine, are introduced.
The considerable research completed by researchers is summarized, especially focusing on the
isolation and identification of leaching bacteria, the bioleaching mechanism and interface reactions,
multistage percolation behavior, bioleaching system reconstruction, the multiphysics coupled model,
and enhanced copper bioleaching from waste printed circuit boards (WPCBs). Based on this
investigation in China, key trends and prospects in copper bioleaching—such as efficiency
improvement, environmental protection, and improved technology applications—are proposed.
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1. Introduction

Due to its excellent ductility and electric and thermal conductivity, copper has been widely applied
in the construction, electricity, transportation, and manufacturing industries [1,2]. Since the 1970s,
China has experienced rapid economic growth and a related sharp increase in its rate of urbanization.
This has resulted in China increasingly significant driving global growth and improving mineral
resource demand since the late 2000s, becoming the world’s second-largest emerging economic
giant [3–7].

Lower-grade extractions and increasing global demand are noticeable barriers to valuable
metal extraction [8]. As an efficient recycling approach used for low-grade minerals, complex
polymetallic resource, and solid ore waste [9,10], bioheap leaching and biodump leaching have been
broadly applied, having potential given the exhaustion of high-quality copper mines. These approaches
have been extensively researched and utilized in China, Chile, Spain, and South Africa [11–15].
Bioleaching drives conventional mining revolution to extract minerals from mineral wastes and ore
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deposits buried deep in the ground [16–18]. The basic and simplified process of bioheap leaching is
shown in Figure 1.
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Figure 1. Typical industrial schematic of copper bioheap leaching.

Although copper bioleaching faces many challenges and limitations, progress has been made
which mainly focuses on the bioleaching mechanism, pore network, microorganisms cultivation,
fluid flow, process catalysis, and so on. Lower-grade copper ore in complex sulfide deposits is
extremely difficult to extract [19]. By incorporating the catalytic function of bacteria, the dissolution
and copper extraction is increased [20]. Genomic engineering has been implemented to obtain targeted
bacteria [21,22]. Additionally, the intervention of precise scanning and observatory technologies—such
as computed tomography (CT), magnetic resonance imaging (MRI), particle image velocimetry (PIV),
and others [23–26]—have improved on research. Some characterized models have been improved,
like the lattice Boltzmann model (LBM) and so on [27–29]. To increase permeability, leaching,
and optimal metal extraction rate, some reformative methods like agglomeration of oxide copper
minerals [30,31]; enhanced aeration [32,33]; dripping irrigation regulation [34,35]; surfactants like
polyethylene glycol, sodium lauryl sulfate, and silver [36–38]; and ultrasonic intensification [39] were
proposed. Advanced aerial image analysis has been applied to assess particle size segregation in
copper heap leaching [40]. Except for Australia, the United States, and other developed mining
countries, the factors controlling commercial application are complex, and China plays an essential
role in the technological innovation of copper bioleaching. For copper bioleaching in China, we want
to compare the fundamental conditions, developed process and status, outstanding breakthroughs,
and exemplary industrial cases with similar studies around the world. However, a systematic and
summative research of copper bioleaching is still lacking.

In this paper, the biotechnology progress and current status of copper bioleaching in China
is considered. To review the copper biotechnology application and status in China, two industrial
case studies of copper bioleaching at the Zijinshan Copper Mine (ZCM, bioheap leaching) and the
Dexing Copper Mine (DCM, biodump leaching) are presented. Challenges for copper bioleaching
are identified, advanced technologies and improved methods to overcome these issues are discussed.
Furthermore, the future prospects for copper bioleaching are presented.
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2. Copper Bioleaching Development Process in China

2.1. Development and Status of Bioleaching around World

Over the years, bioleaching technology, which has been applied to copper, uranium, coal, nickel,
and manganese mining [41–43], has progressed considerably, especially in Chile, South Africa,
the United States, Australia, India, Mexico, Iran, and China. In 1762, in the Rio Tinto Mine of
Spain, Copper (Cu) was leached from pyrite mixed with copper by acid mine drainage (AMD).
The appearance of Acidthiobacillus ferrooxidans (A.f ) subtly influenced recycling methods used for
copper resources. Temple and Hinkle [44] found bacteria associated with AMD in 1947 and naming
of Thiobacillus ferrooxidans (T.f ) from AMD of coalmine in 1951. Three years later, Bryer and
Beck [45] found A.f leached from a wide range of copper sulfide mines using AMD in copper mines.
In 1958, copper extraction significantly progressed when biotechnology was first applied to industrial
production in the Bingham mine by the Kennecott copper company [46–48].

Since the 1970s, bioleaching technology has been researched and applied widely around the
world, enabling the industrial production of copper, uranium, and gold [49,50]. To date, the bioheap
leaching, biodump leaching, and in situ bioleaching processes (uranium mainly) have become the most
common bioleaching approaches. Worldwide, about 20% of Cu is extracted using bioleaching [51,52].
Given the gradual exhaustion of mineral resources located in the shallow surface of the earth, copper
biotechnology has been playing a more important role in metal extraction [53,54]. For instance,
the European Commission applied some innovation methods to in situ leaching without ore stripping
and onerous infrastructure operations in 2015. Some in situ copper leaching studies, including heap
leaching, were completed at the University of Cape Town, University of Melbourne, Imperial College
London, University of Utah, Cornell University, BacTech, Mintek, Rio Tinto, and other authoritative
universities and institutions since the 1990s. As relevant reviews have been systemically performed,
these are not covered at length in this paper [55,56].

2.2. Major Characteristics of Copper Resources in China

China is one of the largest mining countries in the world, with more than 240 mine
sites [57]. China’s copper deposits are mainly divided into porphyry-type (41%), skarn-type (27%),
marine volcanic-type (9.24%), copper-nickel (Cu-Ni) sulfide-type (5.67%) and others (17.09%) [58].
For complex reasons, the majority of the condition of conventional surface and underground mining
for copper minerals in China are not very suitable, unlike South Africa and Australia. Chinese copper
mines tend to be lower-grade, having an average Cu content of around 0.87%, which is hard to extract
using conventional mineral processing. In terms of size, the medium-scale (9%) and small-scale
(88%) copper mines dominate, compared to the large-scale mines (3%). Due to the limitations in the
metal quantity and quality, the application of conventional mining methods tends to be impossible.
Chinese copper mines have complex mineral compositions with associated minerals like nickel, gold,
and sulfur, among others. Around 76% associated-gold, 32.5% associated-silver, and 76% sulfur come
from copper mines. The mines contain heterogeneous dissemination-type ores. Porphyry copper
deposits and skarn copper deposits dominate. China has several copper deposits and production bases
(Figure 2). The copper bioleaching bases are concentrated in the central and eastern regions, especially
in the southeast, due to the suitable mineral composition. Details of each base are:

• Jiangxi Copper Bases. Jiangxi Province has the richest copper resources and its reserves account
for more than 34% of the total copper reserves in China. Some large-scale copper mines, like the
Dexing Copper Mine, Yongping Copper Mine, Wushan Copper Mine, Chengmenshan Copper
Mine, Dongxiang Copper Mine, and others have been established since 1978.

• Yunnan Copper Bases. Yunnan Province is the second-largest copper bases in China, including the
Dongchuan Copper Mine, Yimen Copper Mine, Dayao Copper Mine, and Muding Copper Mine.
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• Tongling Copper Bases. This base is located in Anhui Province and is the first copper base that
produced about 10,000 t/a of copper in China, and includes the Tongguanshan Copper Mine,
Dongguanshan Copper Mine, Shizishan Copper Mine, Xinqiao Copper Mine, and Fenghuangshan
Copper Mine.

• Daye Copper Bases. Located in Hubei province can produce about 45,600 t electrolytic copper.
The Tonglushan Copper Mine, Tongshankou Copper Mine, Xinye Copper Mine are included in
this base.

• Zhongtiaoshan Copper Bases. Established in 1956, the base includes the Tongkuangyu Copper
Mine, Bizhigou Copper Mine, and Hujiayu Copper Mine.

• Northeast Copper Bases. This base, located in Northeast region of China in Heilongjiang Province,
Jilin Province, and Liaoning Province, has been developed since 1948. Some copper mines, like the
Qingyuan Copper-Nickel Mine, Huatong Copper Mine, and Tianbao Copper Mine are established,
producing 70,000 t/a electrolytic copper metals.

• Baiyin Copper Bases. This base located in Gansu province and can produce more than
60,000 t/a electrolytic copper metal, including the Zheyaoshan Copper Mine and Tongchanggou
Copper Mine.
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2.3. History and Evolution of Copper Bioleaching in China

According to Morris’ 1984 publication on solution mining for minerals in Australia, China was
one of earliest countries to develop solution mining to exploit copper resources. With bronze product
smelting and production, copper recycling technology has made considerable progress. As The Classic
of Mountains and Seas (third century B.C. to second century A.D.) saying goes, “there is abundant
copper resources in the shade of Shicui Mountains”. During the Western Han Dynasty (206 B.C. to
24 A.D.), the copper was obtained from copper sulfate (CuSO4) by displacement reaction as written in
the Huainan Encyclopedia of Liuan Wang. Per Qian Zhang’s Copper Leached Synopsis Records, the copper
was leached from AMD in the earlier Song Dynasty (960–1127). Due to the technology limitations and
feudal government blockade policy, the improvement of biotechnology slowed in ancient China.

Since the 1960s, bioleaching research for low-grade copper extraction was applied in underground
bioleaching of Tonguanshan Copper Mine which was completed in the 1970s. In 1997, the Dexing
Copper Mine constructed the first heap leaching plant and started commercial operation [59].
The Chinese government carried out several key foundation projects—such as the “863 Project”,
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“973 Project”, and “111 Project”—to effectively promote and develop bioleaching technology. To date,
a number of Chinese researchers have contributed, and as a result the bioleaching technology system
and application have developed considerably [60]. On the 22th July 2016, the Ministry of Science
and Technology of the People’s Republic of China commissioned the “13th Five-Year National
Science and Technology Innovation Planning” the largest-scale research project ever, focusing on
geological prospecting and in situ fluidized bioleaching of copper, gold and uranium ores. This central
government project, costing 10 billion dollars, will run until 2030. This investment is for the
improvement of technology and equipment for copper bioleaching.

3. Status of Current Copper Bioleaching in China

3.1. Typical Application and Exploration Cases of Copper Bioleaching

Chinese researchers have investigated copper bioleaching in laboratories and industrial
applications, in mines such as Dexing Copper Mine and Zijinshan Copper Mine. A review of
the application and investigation of copper bioleaching are introduced (Table 1). Figure 2 shows
their locations and illustrates the seven copper bases. Bioleaching investigation and application
are concentrated in the southeast region, which includes three copper production bases including
the Jiangxi Copper Base, Tongling Copper Base, and Daye Copper Base. Among them, the Jiangxi
Copper Base—rich in chalcocite and chalcopyrite—is the main base for copper bioleaching due to its
mineral richness. Because of lower permeability, in situ copper bioleaching of the deep leachates of
primary ores is limited. Some extreme conditions in the area include high attitude, low temperature,
and low oxygen content, as found in the Xinjiang Autonomous Region (Sarake Copper Mine, etc.)
and Qinghai–Tibet Plateau (Yulong Copper Mine, etc.) potentially have copper resources that may be
suitable for bioleaching.

3.2. Typical Commercial Cases of Copper Bioleaching in China

Many bioleaching studies, including laboratory experiments, pilot tests and industrial operations
have been conducted on mine sites like the Zijinshan Copper Mine, Dexing Copper Mine, Asele Copper
Mine of Xinjiang; Yulong Copper Mine (Table 1). In this section the research conducted on the Zijinshan
Copper Mine (ZCM) and Dexing Copper Mine (DCM) mine sites are introduced.
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Table 1. Exploration and successful industrial cases of copper bioleaching in China.

Typical Mine Location Features Minerals References

Dexing Copper Mine Dexing, Jiangxi Province

Biodump leaching; extraction rate 30%;
>2000 t/a; built in 1965; started to use
bioleaching in 1979; built bioleaching factory
in 1997

Cu 0.30%; 0.45% primary copper sulfide,
0.028% secondary [61]

Yangla Copper Mine Diqing County, Yunnan Province

Alkaline bioleaching of low-grade oxide
copper ores by Providencia sp. JAT-1; initial
pH 8 and 30 ◦C; Cu extraction rate is 54.5%
after 156 h

Copper oxide ore (Cu 1.01%, malachite
0.36%, chrysocolla 0.29%, chalcopyrite 0.29%) [62]

Zijinshan Mine Shanghang City, Fujian Province

bioheap leaching using Solvent
extraction/Electro-Winning(SX-EW)
technology; Around 20,000 t/a; Bioheap
leaching factory was built in 2006

Cu 0.38%; low-grade copper sulfide ore
(digenite and covellite) [63]

Guanfang Copper Mine Lincang County, Yunnan Province
Bioheap leaching factory of primary copper
sulfide and secondary coppe sulfide was
built in 2003

Cu 0.9% (mainly secondary copper sulfide) [64]

Zhongtiaoshan Copper Mine Yuncheng City, Shanxi Province
In situ leaching; underground; bioleaching
and acid leaching (extraction electrowinning
process); >500 t/a in 2000

Cu 0.65%, SiO2 68.44%; secondary copper
sulfide 59.1%, free oxide copper 37.4% [65,66]

Tongguanshan Copper Mine Tongling City, Anhui Province

Underground bioleaching since 1965; Cu
recovery reached 95% in 1980; discontinued
production in 2003; Bioleaching tests from
1972 to 1980;

Cu 0.9% [67]

Dabaoshan Copper Mine Qujiang County, Guangdong, Province Biodump leaching by T.f obtained from
Dabaoshan mining region

Cu 1.06%, Fe 26.8%; primary and secondary
copper sulfide occupied 90% of Cu [68,69]

Yulong Copper Mine Jiangda County, Tibet Autonomous Region

Bioheap leaching of oxide and copper sulfide
minerals; High altitude (4569–5118 m) of
Tibet; Bioleaching SX-EW technology,
realizing >80% copper extraction rate of
sulfide ores

Cu 2.75%; secondary copper sulfide 28.95%,
primary copper sulfides 35% [70]

Asele Copper Mine Habahe County, Xinjiang Autonomous Region
Cu recovery reached 80%; Formal operation
of bioleaching industrial plant used since
July 2004

Cu 2.43% [71]

Yongping Copper Mine Shangrao City, Jiangxi Province

Second-largest open copper pit in China;
formal operation from October 1984; recycle
low grade oresand wastes by bioleaching
since the 1990s

Cu 0.32%; primary copper sulfide (65.6%)
and secondary copper sulfide (16.3%) [72]
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Table 1. Cont.

Typical Mine Location Features Minerals References

Saishitang Copper Mine Hainan Tibetan Autonomous Prefecture,
Qinghai Province

High altitude (3450 m); located in
Qinghai–Tibet Plateau; bioleaching
experiment and plant under extremely high
and cold environment

Cu 0.83%; copper sulfide ore and oxide
copper ores [73,74]

Dongchuan Copper Mine Dongchuan City, Yunnan Province
Built in the 1960s, performed copper
bioleaching experiments with the whole
plants successfully

Cu 0.9–1.5%; 33% sulfide ore (bornite,
chalcocite, chalcopyrite); 41% oxide ores [75]

Dongguashan Copper Mine Tongling City, Anhui Province
Bioleaching experiments of low-grade
chalcopyrite sample by Acidithiobacillus
ferrooxidans and Acidithiobacillus thiooxidans

Cu 0.94–1.06% (chalcopyrite mainly),
leaching bacteria is A.f (CUMT-1 & ZJJN-3) [76]

Jinchuan Copper-Nickel Mine Jinchang City, Gansu Province

Mainly nickel (Top two in the world);
operated from 2006 to 2009; coupled
multi-metals included nickel, copper and
cobalt; good leachability: copper extraction
rate reaches 93.48% after 40 days

Cu 0.44%; primary copper sulfide 69.8%,
free oxide copper 20.6% and secondary
copper sulfide 8%

[77,78]

Dongxiang Copper Mine Fuzhou City, Jiangxi Province
In situ bioleaching of low-grade primary
chalcopyrite after underground blasting and
crushing, high sulfur ores

Cu 1.34% (chalcopyrite 1.01%,
chalcocite 0.33%), pyrite 11.48%, Fe 30.05% [79,80]

Yunfu Ni-Cu sulfide Mine Meizhou City, Jiangxi Province
Combined bacteria: Betaproteobacteria 47.75%,
phylum Nitrospira 0.9%, Gammaproteobacteria
37.84%, Alphaproteobacteria 13.51%

First FeS2 mine in China [81]

Sarake Copper Mine Wuqian, Xinjiang Autonomous Region
Based on experimental plant experiments,
extraction rates reached 93.77% after
155 days, applied heaps bioleaching

Cu 1.34%; secondary copper sulfide
(chalcocite, digenite and chalcopyrite mainly)

[82]
Zhongwei Copper Mine Ningxia Hui Autonomous Region

Based on experimental plant experiments,
extraction rate reaches 83.03% after 315 days;
Existed amount of CaSO4

Cu 0.32%; secondary copper sulfide 59.38%
and primary copper sulfide 37.5%

Duobaoshan Copper Mine Nenjiang County, Heilongjiang Province
Cu extraction rate just 15.5% after 326 days
and CaSO4 passivation disturbed
results obviously

Cu 0.51%; primary copper sulfide 0.38%
(chalcopyrite mainly)

Daye Copper Mine Daye City, Hubei Province
Low-grade, biodump leaching, high-oxide,
high-clay; copper extraction rate can reach
83.97% after 80 days

Cu 0.35%; copper sulfide 32.3%, free oxide
copper 26.3%, silicate copper 22%

Hami Copper-Nickel Mine Hami, Xinjiang Autonomous Region
Low grade sulfide ores containing high
magnesium; nickel and copper bioleaching;
extraction rate: Cu 32.6%, Ni 84.6%

Sufide ores 3–8% (pyrrhotite, nickel pyrite,
chalcopyrite mainly) [83–85]
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3.2.1. Zijinshan Copper Mine (ZCM)

Zijinshan Copper Mine is the largest bio-heap leaching case study, playing a key role in
the research and application of copper bioleaching in China. It is located in Shanghang City,
Fujian Province. The ZCM has the largest chalcocite deposit, with about 13.9 million tons of low-grade
copper sulfide ore (Cu 0.38%). An overview and the flowchart of bioleaching system are shown in
Figure 3 [86]. Due to lower recovery and high cost of traditional mining methods, the ZCM has been
extracting copper using bioheap leaching since the 1998. A Solvent Extraction/Electro-Winning
(SX-EW) commercial bioleaching plant, designed by China ENFI Engineering Corporation was
constructed in 2000 and has been operational since the 2005 with a capacity of 20,000 t/a at a copper
extraction rate of 80% [87–89].
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The bacteria are mixture strains of Acidithiobacillus (>51%), Leptospirillum (>48%), and Ferrimicrobium
(~1%) obtained from AMD, Zijinshan Copper Mine [90,91]. For the bioleaching of ZCM, the core
reaction was originally researched and proposed as the dissolution of chalcocite divided into several
steps [92–94]

Cu2S + 2Fe3+ → Cu2+ + 2Fe2+ + CuS (1)

CuS + 2Fe3+ → 2Fe2+ + S0 (2)

S0 + 3O2 + 2H2O bacteria→ 2H2SO4 (3)

Compared with other large-scale commercial bioheap leaching cases in the world, ZCM’s
bio-heap leaching has three main characteristics: lower pH value (0.8–1.0), high Fe3+ concentration
(50 g/L), and high temperature (45–60 ◦C). However, during bioleaching processes, plenty of Fe(III)
is precipitated as jarosite, an extracellular polymeric substance (EPS) generated on the ore surface,
blocking pores and fractures, causing the copper extraction to reach its peak.

3.2.2. Dexing Copper Mine (DCM)

The Dexing copper mine (DCM) is located in Dexing City, Jiangxi Province, which is known as the
‘copper homeland of China’. The mine is one of largest porphyry copper deposits around the world.
The mine consists of 80% chalcopyrite, 5% pyrite, 5% quartz, and 5% others. Both underground and
open-pit extraction have been occurred since the 1965 and 1971 [95–97]. The stripping waste rock
dump (WRD) contained 1.2 million tons total copper piled up at a height of 70 m, with an inclination
slope angle of 55◦and an area of 7,570,000 m2 with about 600 million tons of waste rocks in total [98].
This negatively affects the environment in terms of occupation of land, dust, and dump sliding.

Recovery of ore from dumps was completed from 1984 to 1996, an industrial scale experiment of
1000 t (1984–1991) resulted in considerable progress, increasing the recovery of copper from 0.121%
(1984, average grade of Cu in dumps) to 16.59% (1987) and 30% (1991). Moreover, the feasibility study
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(1993) and primary design (1994) was carried out sequentially. In October 1997, the biodump leaching
SX-EW plant of DCM was finally finished with 2000 t/a [99,100]. The key technological process is
as follows: initial leaching solution (ILS) is sprayed on the top of dump; the concentration of Cu(II)
increases when solution percolates through the ores; then the pregnant leaching solution (PLS) is
collected at the bottom of dumps. The Figure 4 shows flowchart in DCM.
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Compared to bioheap leaching, lacking a pad and higher boulder yield are considered pivotal
challenges of biodump leaching. A lower bacteria population and WRD’s intrinsic permeability are
thought as bottlenecks to better extraction in DCM, as Figure 4 shows [101]. Due to heap’s lower
permeability in the DCM, seepage phenomenon, like preferential flow, was founded based on CT
technology, and its effects on extraction and surface morphology were pinpointed [102]. Mutiphysics
interactions were researched. Moreover, the WRD’s stability is threatened by certain factors, such as
particle size, surface erosion, and bioleaching mechanism, creating a landslide threat. As a notable
landmark with great significance, biodump leaching in the DCM confirmed the leachability and
potential commercial profits of WRD with lower intrinsic permeability.

4. Recent Technical Progress of Copper Bioleaching

The successful application of these above-mentioned cases cannot be separated from
breakthroughs in key technologies, such as bacteria identification, interface reaction, multistage
percolation, a pore structure revolution [103–105]. Given the unique and complex situation of
copper minerals in China, researchers have made significant progress, investigating some new
typical technologies and innovations. These effective achievements are summarized and enumerated,
mainly focusing on Chinese experts and authorities around the world.

4.1. Isolation, Identification, and Enrichment of Bacteria

Bacteria play a crucial role in copper bioleaching [106]. The physiological and phylogenetic
biodiversity of acidophilic microorganisms are prominent and less definite [107]. These studies
deepened the knowledge of genomics, metagenomics, and proteomics [108]. It is noteworthy that the
Chinese research on the isolation, identification, molecular diversity, and inhomogeneous catalysis
behavior of leaching bacteria have reached the gene level and have proven efficacious for copper
bioleaching [109–112]. For instance, thermophile bacteria are widely distributed in extreme conditions,
ranging from 10 ◦C to 80 ◦C [113]. The complexity of the microbial community structure differs in
different locations of biological heaps [114–118]. Many studies have inferred that mixed bacteria
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perform better in copper bioleaching from oxide-copper sulfide and nickel-copper sulfide [119–123].
Some methods of rapid specific detection and quantification like real-time PCR, have been proposed
for determining functional genes expressions [124]. Moreover, sulfur and nitrogen, putative efflux
transport systems, and sensitivity analysis of the bacteria growth have been researched [125–127].
The heterotrophic strain and bioleaching mechanism of ammonia producing bacteria, whose the
optimal growth condition is 30 ◦C and initial pH value is 8, is not clearly understood. Mineral–bacteria
interactions are visualized by Raman and Fourier transform infrared (FTIR) microspectroscopies.
Some novel bacteria-obtaining methods, like ultraviolet irradiation, have been proposed [128–130].
The alkaline strain was obtained and its leaching behavior are studied both in China and the
world [131,132]. Additionally, a mixed culture of sulfur-oxidizing and iron-oxidizing microorganisms
was successfully applied in the bioleaching of arsenopyrite [133]. In 2016, as Figure 5 shows, microbial
diversity inside acid solution, biofilms, and sediments of 125 AMD samples with different pH values,
were systemically summarized. Anaerobic bioleaching, passivation phenomenon, and removal of
surface substances have also been reported.
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and sediments and its distribution with different pH value ranges [134]. Reproduced with permission
from Chen, L.X., Current Opinion in Biotechnology, Microbial communities, processes and function in
acid mine drainage ecosystems; published by Elsevier, 2012.

4.2. Bioleaching Mechanism and Interface Reaction

One of the challenges in this field has been how to bioleach valuable metal from low-grade ores,
this has been the subject of numerous discussions around the world [135]. Due to the complexity of
the mineral composition, especially in China, bioleaching mechanisms and interface reactions—such
as pH value, ferrous transportation, EPS, quartz addition, and sulfur speciation, etc.—have been
extensively studied [136–142]. Microorganism transportation, mechanisms, and reaction pathways
of chalcopyrite, carrollite, and djurleite bioleaching [143,144]; synergistic bioleaching processes,
like p-type chalcopyrite, n-type chalcopyrite, bornite [145,146]; and other low-grade resources have
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been analytically researched. Zhang et al. [147,148] proposed enhancement of copper extraction by the
application of bioaugmented treatment and re-inoculation.

In addition, light illumination catalysis [149] was discussed and been demonstrated to
accelerate Fe2+/Fe3+ cycling. Influence of interfacial interaction on bioleaching behavior was also
investigated [150,151], and vital parameters were discussed, including pH value [152], ferric iron
enrichment [153], dissolved oxygen concentration, temperature, and bacteria community initial
proportion and dynamics [154–156]. Nickel-copper sulfide bioleaching and its community succession
were researched (Figure 6) [157–159]. Biosorption processes of physical adsorption, ion exchange,
complexation and microprecipitation were discussed by Jing et al. [160]. Additionally, except for
biosorption effects, passivations that included EPS, jarosite, and polysulfide are crucial factors
limiting copper extraction rate [161,162]. The new integration strategies have been tentatively
applied for weakening EPS, jarosite formation [163,164], biofilm formation [165], and other passivation
substances [166]. Based on having high-resolution and non-turbulent characteristics, atomic force
microscopy (AFM) and epifluorescence microscopy (EFM) were applied to observe the bioleaching
interface interaction and organism attachment [167–169].
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4.3. Multistage Percolation Behavior of Leaching Solution

Whether ILS interacts with recyclable minerals is the key link during bioleaching, thus determining
the flow behavior and understanding the regulation of leaching solution are important [171]. Aiming at
WRD and heaps with high clay content, heap permeability tends to be smaller, the phenomenon
and formative mechanism of preferential flow was proposed and researched systematically [172].
This behavior of preferential flow inside heaps has been simulated by CFD model, confirming
convective transport through inter-connected pathways [173].
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By relying on the difference of particle kinematics and characteristics—such as roughness,
particle size, and viscosity—segregation appears during dumping, promoting the formation of
straticulate dumps and preferential flow which is thought of as a rapid fluid passing through pores
constructed by coarse ores [174,175]. In 2008, to research flow mechanics especially for preferential
flow, a field-scale test was conducted in highly heterogeneous industrial ore heaps. Inhomogeneous
fluid flow, called moisture liquid dispersion of unsaturated inter-particles, was determined to rely on
capillary process driven by van der Waals force and micro forces. Solution flow behavior, like capillary
progress among micro pores, was researched [176]. Fluid flow based on three-dimensional dual
pore-network models and solute transport models are successfully established [177–179], solute and
microbial medium transport, and the response relationship to key operation parameters in heaps [180].
Hydrodynamic dispersion, chaotic advection, and hysteresis phenomenon in liquid holdup and liquid
spread mechanisms in unsaturated packed bed and heaps are also described [181]. Furthermore,
fine interlayers are resulted to layered structure and obstruct infiltration pathways, influencing the
formation of somewhat faint leaching regions [182].

4.4. Reconstruction and Characterization of Multiple Pore Structure

Pore structure insides heaps or dumps are intricate, so Wu et al. searched for a better method
to characterize and visualize pore structure [183]. Ore particles with complex shape parameters
are accumulated to form ore heaps, configuring unsaturated gas–solid diphase structure especially
for ore dumps, creating migration pathways for leaching solution and oxygen. Pore structure is
influenced by aperture size, mineral distribution, and connectivity [184]. Compared to ore waste
dumps, the permeability of heaps improved remarkably after agglomeration processing, and relevant
binders and particle fractions are invented [185,186]. For simple ore particles, the effect of high
pressure grinding roll (HPGR) crushing on extraction rate attracted more and more attention [187].
With the introduction of advanced visualization means like uCT, X-ray CT [188], and MRI [189,190],
image processing of packed ore particle beds has improved considerably, such as leaching behavior
measuring methods [191,192], multi-scale quantification [193], LBM constructions [194], and the
three-dimensional characterization, analysis, and reconstructions of ore heap leaching [195–198].

4.5. Multiphysics Coupled Model of Bioleaching Process

The complexity of bioleaching system has complicated the estimation of extraction rates and
effects during leaching processes, as shown by a few specific experiments [199]. Hence, some models
were constructed to replace studies where common approaches have not been implemented [200].
For the reaction, fluid flow, and other factors in the complex bioleaching process, model construction
and computer simulation have been used as an alternative technology [201]. Besides, some coupled
mathematical models and simulations based on Comsol Multiphysics, Fluent, and Simpleware—like
solute transportation, seepage, heat transportation and balance, and microbial transport in bioleaching
system—were also established [202].

Some comprehensive mathematical models deterministic models of heap leaching have been
established for enargite bioleaching [203], grey forecasting model of primary sulfide ore bioleaching,
bacterial community monitoring of Ni-Cu sulfide [204], air sparing and distribution inside heaps [205],
modeling of copper-sulfide ore in heap and dump, a population balance model of OAs during heap
leach operation, kinetics of copper dissolution under pressure oxidative leaching [206], and kinetics
modeling of chalcopyrite bioleaching catalyzed by silver ions [207].

4.6. Enhanced Copper Bioleaching from Waste Printed Circuit Boards (WPCBs)

With the promotion and application of electronic products, the impacts of waste electric
and electronic equipment (WEEE) on environment are considerable and hard to eliminate [208].
Bioleaching copper is now being sourced from electronic wastes like WPCBs in China [209–211].
Figure 7 shows basic bioprocessing schematic of WPBCs by bacteria. Hence, further exploring
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strategies to effectively leach valuable metals is an important field of study [212–215]. Efficiency and
electric fields effects of Acidithiobacillus ferrooxidans and mixed culture were also proven in copper
bioleaching from PCBs [216–219]. Furthermore, to enhance the bioleaching process, new catalyzed
materials like biochar, nitrogen-doped carbon nanotubes (NCNTs), and new strategies were applied
in hydrometallurgy fields [220–222]. Bioleaching of e-waste will be applied and developed for new
applications, introducing more sustainable and practical ways to recover minerals and metals in the
future [223,224].Minerals 2018, 8, 32  13 of 26 
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5. Future Opportunities and Challenges

Sustainable development is a common worldwide theme [226–229]. Biotechnology has an
important place in the future, especially for the bioleaching of metal from secondary lower-grade
ores [230–233]. Given the conflict between bioleaching and environment protection, issues include
environment protection, bio-diversity disturbance, acid pollution, and ore dumping [234–237].
As mines become deeper, costs and security risks inevitably increase. In this case, in situ copper
bioleaching is thought to be a niche technology [238]. In this paper, based on previous research and
developing trends, some key opportunities and challenges are proposed, based on the foundations
in China.

5.1. Efficiency Improvement and Guarantee

During the bioleaching process, many key factors are uncontrolled—including fluid flow,
bacteria proliferation, temperature distribution, and gas transportation—causing out-off-balance
of copper extraction in different areas of heaps. To avoid this lower permeability, bacteria culture and
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efficiency limit efficient and high-volume metal recovery. The diversity of microorganisms and their
capabilities and function are waiting to be validated and exploited [239].

• Efficiency bacteria obtained via genetic engineering [240] and other induced domestication
means, especially for extremophiles [241,242] in severe environments with high temperature,
lower oxygen, high osmotic pressure, and so on.

• Enhanced bioleaching methods using external field energy, like enhanced aeration,
permeability regulation, geothermal energy, underground pressure, etc.

• Target minerals activation pre-treatment insides ore and other enhanced minerals exposing technology.

• Bioleaching process control, like weakened passivation methods, especially for copper
sulfide bioleaching.

5.2. Environmental Protection and Security

With the exposition of environmental contamination, increased focus has been placed on leakages
and insecurity during the bioleaching progress [243]. Hazardous pollution migrations and their effect
of acidophiles inside bioheaps of the ZCM on nearby rivers have negative impacts [244]. In 2014,
the greenhouse gas of in situ leaching of copper, uranium, and gold resources were researched [245].
Conversely, as far back in 1993, the microbes had been proposed as a treatment for metal pollution like
groundwater bioremediation [246–248]. Thus, to some extent, balancing application and control of
bioleaching is a key factor which has limited the layout space.

• Acid leaching solution is a serious hazard to surface runoff and groundwater, presenting risks
such as depositing crop pollution, high cancer rates, and animal deformity.

• Exotic bacterium escaping from bioleaching industrial plants could be a momentous threat to
native bio-diversity, even leading to crowning calamity of rare species.

• Ore dump and heap collapse threats under internal bioleaching mechanisma and external
environmental factors such as rainstorms.

• Consummation of relevant environmental assessment (EIA) methods and regulations.

5.3. Application of Novel Technology and Methods

Application of advanced technologies and new concepts in copper bioleaching are essential for
biotechnology development. For instance, to enhance temperature inside heaps, the solar thermal
energy was applied in a Chilean copper mine by setting up flat plate collectors and other integration
equipment, improving the copper extraction rates from 67% to 85% [249,250].

• New field energy, like solar thermal energy, wind energy, microwave treatment [251]
is used to enhance bioleaching strength, obtaining a better extraction and decreasing
environmental pollution.

• New visualization, intellectualization, and fluidization mining methods such as super-precise
unperturbed scanning even deeper into the reaction interface, real-time 3D printing during
bioleaching, unmanned in situ bioleaching.

• Metal recovery from solid waste like ore dumps WPCBs with surfactant based on bioleaching.
• New leach pad types to increase permeability and decrease OAs of heaps, for instance, standard

heap [252], valley fill heap [253], and bacterial thin leaching (BTL) methods [254].
• New in situ copper bioleaching methods to explore mineral resources located in the deep earth.

Last but not least, biotechnology has been proven to be promising for metal recovery from
lower-grade ores and wastes [255,256]. In addition to the copper resources discussed in this paper,
some critical and scarce metals, even biomining from asteroids in the deep universe and stratums in
the deep sea are thought as important directions [257,258].
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6. Conclusions

China’s improvements in science and technology are of concern. Thus, this paper provides an
in-depth review of the historical investigation and current scientific research processes on copper
bioleaching in China over the course of 5000 years, with research spanning macroscopic industrial
cases to molecular and genetic understanding. With prominent advances in leaching bacteria isolation,
interface reaction, percolation behavior, heap reconstruction, and other technology applicationss,
copper bioleaching has quickly developed, gaining a considerable market share. The Zijinshan Copper
Mine (bioheap leaching) and Dexing Copper Mine (biodump leaching) have advanced the bioleaching
of low grade and dumps. In conclusion, even though there are plenty of unknown obstacles and
challenges, the potential for cross-disciplinary and technological development in copper bioleaching is
remarkable, this brief review lays a good foundation for future research.
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AMD Acid Mine Drainage
A.f Acidthiobacillus ferrooxidans
AFM Atomic Force Microscopy
CT Computed Tomography
DCM Dexing Copper Mine
EFM Epifluorescence Microscope
EPS Extracellular Polymeric Substances
FTIR Fourier Transform Infrared
HPGR High Pressure Grinding Rolls
ILS Initial Leaching Solution
LBM Lattice Boltzmann Model
MRI Magnetic Resonance Imaging
NCNTs Nitrogen-Doped Carbon Nanotubes
PIV Particle Image Velocimetry
PLS Pregnant Leaching Solution
T.f Thiobacillus ferrooxidans
WEEE Waste Electric and Electronic Equipment
WPCBs Waste Printed Circuit Boards
WRD Waste Rock Dump
ZCM Zijinshan Copper Mine
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