Supplementary Materials: Biosynthesis of schwertmannite and goethite in a bioreactor with acidophilic Fe(II)-oxidizing betaproteobacterium strain GJ-E10

Naoyuki Miyata 1,*, Ayato Takahashi 1, Tatsuo Fujii 2, Hideki Hashimoto 3 and Jun Takada 24

Conditions	Eq. 2 Parameters (± SD)		Eq. 1 Parameters (± SD)			
Conditions	k (h ⁻¹)	R^2	<i>X</i> ₀ (mM) ^b	μ_{max} (h ⁻¹)	R^2	
25°C /GJ-E10 /pH 2.2	_ a	-	1.35×10^{-1}	$(8.82 \pm 0.06) \times 10^{-2}$	0.9891	
pH 2.5	-	-	1.35×10^{-1}	$(1.02 \pm 0.01) \times 10^{-1}$	0.9907	
pH 3.0	-	-	$(1.35 \pm 0.51) \times 10^{-1}$	$(1.05 \pm 0.08) \times 10^{-1}$	0.9900	
pH 3.5	-	-	1.35×10^{-1}	$(1.01 \pm 0.01) \times 10^{-1}$	0.9842	
pH 3.8	-	-	1.35×10^{-1}	$(9.16 \pm 0.05) \times 10^{-2}$	0.9907	
pH 4.2	-	-	-	-	-	
25°C/abiotic/ pH 3.0	NO ^c	NO	-	-	-	
pH 3.5	$(4.81 \pm 0.73) \times 10^{-4}$	0.6465	-	-	-	
pH 3.8	$(7.96 \pm 1.18) \times 10^{-4}$	0.7716	-	-	-	
pH 4.2	$(2.41 \pm 0.11) \times 10^{-3}$	0.9415	-	-	-	
37°C/GJ-E10/pH 2.5	-	-	$3.84 imes 10^{-1}$	$(1.71 \pm 0.03) \times 10^{-1}$	0.9430	
pH 3.0	-	-	$(3.84 \pm 1.30) \times 10^{-1}$	$(1.88 \pm 0.16) \times 10^{-1}$	0.9937	
pH 3.5	-	-	$3.84 imes 10^{-1}$	$(1.61 \pm 0.01) \times 10^{-1}$	0.9951	
37°C/abiotic/pH 2.5	NO	NO	-	-	-	
pH 3.0	$(1.22 \pm 0.17) \times 10^{-3}$	0.5643	-	-	-	
pH 3.5	$(1.57 \pm 0.08) \times 10^{-3}$	0.9620	-	-	-	

Table S1. Kinetics of biotic and abiotic Fe(II) oxidation at different temperatures and pH levels.

^a Not applicable.^b X₀ that was determined for the cultures at pH 3.0 served as a fixed value in analysis at other pH levels.^c Fe(II) oxidation was not observed under these conditions.

Conditions	Term (h)	Ratio ^c	
	Biotic Oxidation Abio		
25°C, pH 2.5	51	_b	-
25°C, pH 3.0	49	-	-
25°C, pH 3.5	52	4800	1/92
25°C, pH 3.8	57	2900	1/51
25°C, pH 4.2	-	960	-
37°C, pH 2.5	24	-	-
37°C, pH 3.0	22	1900	1/86
37°C, pH 3.5	26	1500	1/58

Table S2. A comparison of biotic and abiotic oxidation of Fe(II) under different pH and temperature conditions.

^a Incubation time needed for oxidation of 90% of the Fe(II) amount initially added (i.e. $S/S_0 = 0.1$). The calculations for biotic and abiotic Fe(II) oxidation were conducted via Eqs. 1 and 2, respectively, with parameters shown in Table S1.^b Not calculated.^c Biotic versus abiotic oxidation.

	Schwertmannite			Goethite			
Metal	Maximum			Maximum			
	sorption	K (L mg ⁻¹)	R^2	sorption	K (L mg ⁻¹)	R^2	
	(Γ_{max}) , mg g ⁻¹	-		(Γ_{max}) , mg g ⁻¹			
As(V)	123 ± 5	3.9 ± 0.8	0.9554	51.0 ± 3.1	2.6 ± 1.0	0.8209	
As(III)	70.1 ± 5.9	0.087 ± 0.022	0.9409	81.2 ± 12.2	0.041 ± 0.014	0.9272	
Cr(VI)	20.1 ± 1.1	0.32 ± 0.06	0.9663	15.8 ± 0.9	2.3 ± 0.7	0.9208	
Se(VI)	53.2 ± 5.4	0.052 ± 0.011	0.9739	26.2 ± 1.7	0.073 ± 0.014	0.9738	

Table S3. Sorption capacity values of metal oxyanions in schwertmannite and goethite phases formed in cultures of strain GJ-E10^a.

^a The data on sorption isotherms were fitted to the Langmuir equation to estimate sorption capacity: $\Gamma = \Gamma_{max} \cdot \frac{K \cdot [Metal]}{1+K \cdot [Metal]'}$ where Γ is the amount of metal adsorbed on the solid, Γ_{max} is the maximum metal sorption, *K* is the Langmuir constant, and [*Metal*] is the metal concentration in the aqueous phase.

Figure S1. Fe(II) oxidation kinetics in cultures of strain GJ-E10 (filled circles) and in an abiotic medium (open circles) at different pH levels at 37°C. The dashed lines show nonlinear regression of the data from biotic cultures and the abiotic medium to Equations (1) and (2), respectively.

Figure S2. The relation between As(V) sorption capacity and specific surface area in goethite phases. The plotted data (grey circles) are from Asta et al. [39]: naturally occurring and chemically synthesized phases are indicated by 'N' and 'C', respectively. The black circle represents the value for goethite produced by strain GJ-E10. The dashed line shows linear regression of the data with a slope of 5.1 (μ mol m⁻²; *r* > 0.966).

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).