Bioleaching of Arsenic-Bearing Copper Ores
Abstract
:1. Introduction
2. Conventional Technologies in Processing Copper Ores
Mining Process Techniques Used to Remove Arsenic from Copper Concentrates
3. Copper Biohydrometallurgy
- -
- -
- -
- Tolerance of high concentrations of iron (Fe) and Cu are very common in bacteria that has sulfide-oxidation activity in the mine environment or natural rock weathering [67]. However, in enargite or tennantite bioleaching, dissolved As may become inhibitory to bioleaching microorganisms. Hence, for bioleaching Cu from As-bearing ores, microorganisms need to be also resistant to As [61,68,69].
4. Enargite Oxidation
5. Arsenic-Bearing Ores Bioleaching
5.1. Enargite Bioleaching Mechanisms
5.2. Bioleaching of Enargite with Acidophilic Microorganisms
5.2.1. Mesophiles
5.2.2. Thermophiles
5.3. Enargite Bioleaching with Neutrophilic Microorganisms
5.4. Bioleaching Pre-Treatment Releasing Arsenic
- -
- Sinorhizobium sp. M14 produced at neutral pH a concentration of As (133.5 mg/L), 33.5% higher than control.
- -
- Pseudomonas strains (OS8 and OS20) produced 195 and 211.3 mg/L of dissolved As, respectively.
- -
- Anaerobic As mobilization by Shewanella sp. O23S and Aeromonas sp. O23A (the two dissimilatory arsenate reducers) was much more efficient than the aerobic cultures.
- -
- With siderophores solution from Serratia sp. OM17, 4.07 mg/L of As was detected compared with 0.37 mg/L in sterile medium.
- -
- The highest concentration of As in the middlings dissolution was observed when the siderophores solution of Shewanella sp. OM1 was used (1.47 times higher than the control).
- -
- From middlings, the maximum As recovery was 28.11% after 21 days by Aeromonas sp. OM4.
- -
- Pseudomonas sp. OM2 had the maximum recovery of As from concentrates with 2.47% after 21 days.
- -
- Serratia sp. OM17 cultured on middlings had an elevated level of Cu leaching (767.50 µg/kg) after 21 days. However, this amount represents only 0.04% of the initial Cu content.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Transparency Market Research. Copper Market: Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2015–2023; Copper Market: Industry Analysis; Transparency Market Research: Albany, NY, USA, 2015. [Google Scholar]
- Davis, J.R. Copper and copper alloys. In ASM Specialty Handbook, 1st ed.; ASM international: Novelty, OH, USA, 2001; ISBN 0-87170-726-8. [Google Scholar]
- The Observatory of Economic Complexity. Available online: https://atlas.media.mit.edu/en/visualize/stacked/hs92/export/show/all/7403/1995.2016/ (accessed on 29 January 2018).
- Donoso Muñoz, M.J. El mercado del cobre a nivel mundial: Evolución, riesgos, características y potencialidades futuras. Ingeniare 2013, 21, 248–261. [Google Scholar] [CrossRef]
- Riveros, P.A.; Dutrizac, J.E.; Spencer, P. Arsenic disposal practices in the metallurgical industry. Can. Metall. Q. 2001, 40, 395–420. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Cullen, W.R.; Reimer, K.J. Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713–764. [Google Scholar] [CrossRef]
- Mondal, P.; Majumder, C.B.; Mohanty, B. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater. 2006, 137, 464–479. [Google Scholar] [CrossRef] [PubMed]
- Pierce, M.L.; Moore, C.B. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 1982, 16, 1247–1253. [Google Scholar] [CrossRef]
- Chen, C.J.; Chen, C.W.; Wu, M.M.; Kuo, T.L. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer. 1992, 66, 888. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.; Lamm, S.H. Arsenic exposure and childhood cancer—A systematic review of the literature. J. Environ. Health 2008, 71, 12–16. [Google Scholar] [PubMed]
- Smith, A.H.; Goycolea, M.; Haque, R.; Biggs, M.L. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am. J. Epidemiol. 1998, 147, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.M.; Kuo, T.L.; Hwang, Y.H.; Chen, C.J. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am. J. Epidemiol. 1989, 130, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Gentina, J.C.; Acevedo, F. Copper bioleaching in Chile. Minerals 2016, 6, 23. [Google Scholar] [CrossRef]
- Watling, H. Microbiological advances in biohydrometallurgy. Minerals 2016, 6, 49. [Google Scholar] [CrossRef]
- Nazari, A.M.; Radzinski, R.; Ghahreman, A. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 2017, 174, 258–281. [Google Scholar] [CrossRef]
- Fountain, C. The whys and wherefores of penalty elements in copper concentrates. In MetPlant 2013: Metallurgical Plant Design and Operating Strategies; Australasian Institute of Mining and Metallurgy: Carlton, Australia, 2013; Volume 5, pp. 502–518. [Google Scholar]
- Rivera-Vasquez, B.F.; Dixon, D.G. Lixiviando concentrados de cobre con alto contenido de arsénico. Comité de Encuentro de Operadores Procesos Metalúrgicos TT-151. In Proceedings of the XXIX Convención Minera, Arequipa, Peru, 14–18 September 2009. [Google Scholar]
- Danus, H. Crónicas Mineras de Medio Siglo, 1950–2000; RIL: Santiago, Chile, 1985; p. 381. (In Spanish) [Google Scholar]
- Domic, E.M. A review of the development and current status of copper bioleaching operations in Chile: 25 years of successful commercial implementation. In Biomining; Rawlings, D.E., Johnson, D.B., Eds.; Springer: Berlin, Germany, 2007; pp. 81–95. [Google Scholar]
- Acevedo, F.; Gentina, J. Fundamentos y Perspectivas de las Tecnologías Biomineras; Ediciones Universitarias de Valparaiso: Valparaiso, Chile, 2005. [Google Scholar]
- Robles, E.; Miller, G.; Readett, D. Recent experience in bacterial assisted heap leaching of copper ores in Chile. Proc. BioMine 1994, 94, 11.1–11.14. [Google Scholar]
- Watling, H.R. Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 2015, 5, 1–60. [Google Scholar] [CrossRef]
- Safarzadeh, M.S.; Moats, M.S.; Miller, J.D. Recent trends in the processing of enargite concentrates. Miner. Process. Extr. Metall. Rev. 2014, 35, 283–367. [Google Scholar] [CrossRef]
- Watling, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy 2006, 84, 81–108. [Google Scholar] [CrossRef]
- Gentina, J.C.; Acevedo, F. Application of bioleaching to copper mining in Chile. Electron. J. Biotechnol. 2013, 16, 16. [Google Scholar] [CrossRef]
- Rahman, R.M.; Ata, S.; Jameson, G.J. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. Int. J. Miner. Process. 2012, 106, 70–77. [Google Scholar] [CrossRef]
- Filippou, D.; St-Germain, P.; Grammatikopoulos, T. Recovery of metal values from copper—Arsenic minerals and other related resources. Miner. Process. Extr. Metall. Rev. 2007, 28, 247–298. [Google Scholar] [CrossRef]
- Fornasiero, D.; Grano, S.; Ralston, J. The selective separation of penalty element minerals in sulphide flotation. In Proceedings of the International Congress on Mineral Processing and Extractive Metallurgy, Melbourne, Victoria, 11–13 September 2000. [Google Scholar]
- Dalewski, F. Removing arsenic from copper smelter gases. JOM 1999, 51, 24–26. [Google Scholar] [CrossRef]
- Baxter, K.; Scriba, H.; Vega, I. Treatment of high-arsenic copper-gold concentrates—An options review. Proc. Copp. 2010, 5, 1783–1802. [Google Scholar]
- Du Plessis, C.A.; Batty, J.D.; Dew, D.W. Commercial applications of thermophile bioleaching. In Biomining; Rawlings, D.E., Johnson, D.B., Eds.; Springer: Berlin, Germany, 2007; pp. 57–80. [Google Scholar]
- Beer, B.; Evtiminova, K.; Hristov, N. Arsenic-the technological motivator for the Chelopech copper/gold mine. In Proceedings of the Arsenic Metallurgy, TMS, San Francisco, CA, USA, 13–17 February 2005; pp. 283–299. [Google Scholar]
- Kappes, R.; Gathje, J. The Metallurgical Development of an Enargite-Bearing Deposit. In Proceedings of the XXV International Mineral Processing Congress (IMPC), Brisbane, Australia, 6–10 September 2010; pp. 6–10. [Google Scholar]
- McElroy, R.; Lipiec, T.; Tomlinson, M. Roasting—The neglected option. Hydrometallurgy 2008, 425–430. [Google Scholar]
- Schroeder, W.H.; Dobson, M.; Kane, D.M.; Johnson, N.D. Toxic trace elements associated with airborne particulate matter: A review. Japca 1987, 37, 1267–1285. [Google Scholar] [CrossRef] [PubMed]
- Baláž, P.; Achimovičová, M.; Bastl, Z.; Ohtani, T.; Sanchez, M. Influence of mechanical activation on the alkaline leaching of enargite concentrate. Hydrometallurgy 2000, 54, 205–216. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Grandon, L.; Padilla, R. Selective arsenic removal from enargite by alkaline digestion and water leaching. Hydrometallurgy 2014, 150, 20–26. [Google Scholar] [CrossRef]
- Lane, D.J.; Cook, N.J.; Grano, S.R.; Ehrig, K. Selective leaching of penalty elements from copper concentrates: A review. Miner. Eng. 2016, 98, 110–121. [Google Scholar] [CrossRef]
- Anderson, C.G.; Twidwell, L.G. The Alkaline Sulfide Hydrometallurgical Separation, Recovery and Fixation of Tin, Arsenic, Antimony, Mercury and Gold; The Southern African Institute of Mining and Metallurgy: Johannesburg, Southern Africa, 2008; pp. 121–132. [Google Scholar]
- Ruiz, M.C.; Daroch, F.; Padilla, R. Digestion kinetics of arsenic removal from enargite–tennantite concentrates. Miner. Eng. 2015, 79, 47–53. [Google Scholar] [CrossRef]
- Ehrlich, H.L. Past, present and future of biohydrometallurgy. Hydrometallurgy 2001, 59, 127–134. [Google Scholar] [CrossRef]
- Ehrlich, H.L. Beginnings of rational bioleaching and highlights in the development of biohydrometallurgy: A brief history. Eur. J. Miner. Process. Environ. Prot. 2004, 4, 102–112. [Google Scholar]
- Rohwerder, T.; Gehrke, T.; Kinzler, K.; Sand, W. Bioleaching review part A. Appl. Microbiol. Biotechnol. 2003, 63, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Cézac, P.; Hoadley, A.F.; Contamine, F.; D’Hugues, P. A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int. Biodeterior. Biodegrad. 2016, 119, 118–146. [Google Scholar] [CrossRef]
- Rawlings, D.E. Heavy metal mining using microbes. Annu. Rev. Microbiol. 2002, 56, 65–91. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, D.E. Microbially assisted dissolution of minerals and its use in the mining industry. Pure Appl. Chem. 2004, 76, 847–859. [Google Scholar] [CrossRef]
- Johnson, D.B. Development and application of biotechnologies in the metal mining industry. Environ. Sci. Pollut. Res. 2013, 20, 7768–7776. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, F.; Gentina, J.C.; Bustos, S. Bioleaching of minerals—A valid alternative for developing countries. J. Biotechnol. 1993, 31, 115–123. [Google Scholar] [CrossRef]
- Dixon, D.G. Analysis of heat conservation during copper sulphide heap leaching. Hydrometallurgy 2000, 58, 27–41. [Google Scholar] [CrossRef]
- Baker, B.J.; Banfield, J.F. Microbial communities in acid mine drainage. FEMS Microbiol. Ecol. 2003, 44, 139–152. [Google Scholar] [CrossRef]
- Temple, K.L.; Colmer, A.R. The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J. Bacteriol. 1951, 62, 605. [Google Scholar] [PubMed]
- Torma, A.E. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. In Advances in Biochemical Engineering; Springer: Berlin, Germany, 1997; Volume 6. [Google Scholar]
- Brierley, C.L. Microbiological mining. Sci. Am. 1982, 247, 44–53. [Google Scholar] [CrossRef]
- Konishi, Y.; Yoshida, S.; Asai, S. Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol. Bioeng. 1995, 48, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Konishi, Y.; Tokushige, M.; Asai, S. Bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi. Process Metall. 1999, 9, 367–376. [Google Scholar]
- Dopson, M.; Lindström, E.B. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 1999, 65, 36–40. [Google Scholar] [PubMed]
- Zhou, Q.G.; Bo, F.; Bo, Z.H.; Xi, L.; Jian, G.; Fei, L.F.; Hua, C.X. Isolation of a strain of AcidiThiobacillus caldus and its role in bioleaching of chalcopyrite. World J. Microbiol. Biotechnol. 2007, 23, 1217–1225. [Google Scholar] [CrossRef]
- Clark, D.A.; Norris, P.R. Oxidation of mineral sulphides by thermophilic microorganisms. Miner. Eng. 1996, 9, 1119–1125. [Google Scholar] [CrossRef]
- Plumb, J.J.; McSweeney, N.J.; Franzmann, P.D. Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore. Miner. Eng. 2008, 21, 93–99. [Google Scholar] [CrossRef]
- Stott, M.B.; Sutton, D.C.; Watling, H.R.; Franzmann, P.D. Comparative leaching of chalcopyrite by selected acidophilic bacteria and archaea. Geomicrobiol. J. 2003, 20, 215–230. [Google Scholar] [CrossRef]
- Nemati, M.; Lowenadler, J.; Harrison, S.T.L. Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC). Appl. Microbiol. Biotechnol. 2000, 53, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.A.; Blázquez, M.L.; González, F.; Ballester, A.; Acevedo, F.; Gentina, J.C.; González, P. Electrochemical study of enargite bioleaching by mesophilic and thermophilic microorganisms. Hydrometallurgy 2006, 84, 175–186. [Google Scholar] [CrossRef]
- Corkhill, C.L.; Wincott, P.L.; Lloyd, J.R.; Vaughan, D.J. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochim. Cosmochim. Acta 2008, 72, 5616–5633. [Google Scholar] [CrossRef]
- Ahonen, L.; Tuovinen, O.H. Effect of temperature on the microbiological leaching of sulfide ore material in percolators containing chalcopyrite, pentlandite, sphalerite and pyrrhotite as main minerals. Biotechnol. Lett. 1989, 11, 331–336. [Google Scholar] [CrossRef]
- Dopson, M.; Baker-Austin, C.; Koppineedi, P.R.; Bond, P.L. Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic micro-organisms. Microbiology 2003, 149, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Tuffin, I.M.; Hector, S.B.; Deane, S.M.; Rawlings, D.E. Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl. Environ. Microbiol. 2006, 72, 2247–2253. [Google Scholar] [CrossRef] [PubMed]
- Coram, N.J.; Rawlings, D.E. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl. Environ. Microbiol. 2002, 68, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Dold, B. Basic concepts in environmental geochemistry of sulfidic minewaste management. In Waste Management; Kumar, E.S., Ed.; InTech: Rijeka, Croatia, 2010; 232p. [Google Scholar]
- Peters, E. Direct leaching of sulfides: Chemistry and applications. Metall. Trans. B 1976, 7, 505–517. [Google Scholar] [CrossRef]
- Nicol, M.; Lazaro, I. The role of non-oxidative processes in the leaching of chalcopyrite. In Proceedings of the 5th Copper-Cobre International Conference, Santiago, Chile, 30 November–3 December 2003; pp. 405–417. [Google Scholar]
- Schippers, A.; Sand, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 1999, 65, 319–321. [Google Scholar] [PubMed]
- Sand, W.; Gerke, T.; Hallmann, R.; Schippers, A. Sulfur chemistry, biofilm, and the (in) direct attack mechanism—A critical evaluation of bacterial leaching. Appl. Microbiol. Biotechnol. 1995, 43, 961–966. [Google Scholar] [CrossRef]
- Gehrke, T.; Telegdi, J.; Thierry, D.; Sand, W. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol. 1998, 64, 2743–2747. [Google Scholar] [PubMed]
- Fantauzzi, M.; Rossi, G.; Elsener, B.; Loi, G.; Atzei, D.; Rossi, A. An XPS analytical approach for elucidating the microbially mediated enargite oxidative dissolution. Anal. Bioanal. Chem. 2009, 393, 1931. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Takatsugi, K.; Kaneko, K.; Kozai, N.; Ohnuki, T.; Tuovinen, O.H.; Hirajima, T. Characterization of secondary arsenic-bearing precipitates formed in the bioleaching of enargite by AcidiThiobacillus ferrooxidans. Hydrometallurgy 2010, 104, 424–431. [Google Scholar] [CrossRef]
- Lattanzi, P.; Da Pelo, S.; Musu, E.; Atzei, D.; Elsener, B.; Fantauzzi, M.; Rossi, A. Enargite oxidation: A review. Earth-Sci. Rev. 2008, 86, 62–88. [Google Scholar] [CrossRef]
- Di Benedetto, F.; Pelo, S.D.; Caneschi, A.; Lattanzi, P. Chemical state of arsenic and copper in enargite: Evidences from EPR and X-ray absorption spectroscopies, and SQUID magnetometry. J Miner. Geochem. 2011, 188, 11–19. [Google Scholar] [CrossRef]
- Sasaki, K.; Takatsugi, K.; Ishikura, K.; Hirajima, T. Spectroscopic study on oxidative dissolution of chalcopyrite, enargite and tennantite at different pH values. Hydrometallurgy 2010, 100, 144–151. [Google Scholar] [CrossRef]
- Curreli, L.; Garbarino, C.; Ghiani, M.; Orrù, G. Arsenic leaching from a gold bearing enargite flotation concentrate. Hydrometallurgy 2009, 96, 258–263. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Oremland, R.S.; Stolz, J.F. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 2005, 13, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Santini, J.M.; Sly, L.I.; Wen, A.; Comrie, D.; Wulf-Durand, P.D.; Macy, J.M. New Arsenite-Oxidizing Bacteria Isolated from Australian Gold Mining Environments—Phylogenetic Relationships. Geomicrobiol. J. 2002, 19, 67–76. [Google Scholar] [CrossRef]
- Inskeep, W.P.; Macur, R.E.; Hamamura, N.; Warelow, T.P.; Ward, S.A.; Santini, J.M. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol. 2007, 9, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.R.; Botero, L.M.; Franck, W.L.; Hassett, D.J.; McDermott, T.R. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J. Bacteriol. 2006, 188, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, E.; Brugna, M.; Baymann, F.; Muller, D.; Lievremont, D.; Lett, M.C. Arsenite oxidase, an ancient bioenergetic enzyme. Mol. Biol. Evol. 2003, 20, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, H.; Rosen, B.P. Arsenic metabolism in prokaryotic and eukaryotic microbes. In Molecular Microbiology of Heavy Metals; Springer: Berlin/Heidelberg, Germany, 2007; pp. 371–406. [Google Scholar]
- Mukhopadhyay, R.; Rosen, B.P.; Phung, L.T.; Silver, S. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 2002, 26, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, R.; Rosen, B.P. Arsenate reductases in prokaryotes and eukaryotes. Environ. health perspect. 2002, 110, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Jianqun, L.; Ling, G.; Jianqiang, L.; Yinbo, Q. Modeling and simulation of enargite bioleaching. Chin. J. Chem. Eng. 2008, 16, 785–790. [Google Scholar]
- Langhans, D.; Lord, A.; Lampshire, D.; Burbank, A.; Baglin, E. Biooxidation of an arsenic-bearing refractory gold ore. Miner. Eng. 1995, 8, 147–158. [Google Scholar] [CrossRef]
- Breed, A.W.; Glatz, A.; Hansford, G.S.; Harrison, S.T.L. The effect of As(III) and As(V) on the batch bioleaching of a pyrite- arsenopyrite concentrate. Miner. Eng. 1996, 9, 1235–1252. [Google Scholar] [CrossRef]
- Escobar, B.; Huenupi, E.; Godoy, I.; Wiertz, J.V. Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70 °C. Biotechnol. Lett. 2000, 22, 205–209. [Google Scholar] [CrossRef]
- Collinet, M.N.; Morin, D. Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron. Antonie Leeuwenhoek J. Microbiol. 1990, 57, 237–244. [Google Scholar] [CrossRef]
- Tuovinen, O.H.; Bhatti, T.M.; Bigham, J.M.; Hallberg, K.B.; Garcia, O.; Lindström, E.B. Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophiles. Appl. Environ. Microbiol. 1994, 60, 3268–3274. [Google Scholar] [PubMed]
- Takatsugi, K.; Sasaki, K.; Hirajima, T. Mechanism of the enhancement of bioleaching of copper from enargite by thermophilic iron-oxidizing archaea with the concomitant precipitation of arsenic. Hydrometallurgy 2011, 109, 90–96. [Google Scholar] [CrossRef]
- Drahota, P.; Filippi, M. Secondary arsenic minerals in the environment: A review. Environ. Int. 2009, 35, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Frau, F.; Ardau, C. Mineralogical controls on arsenic mobility in the Baccu Locci stream catchment (Sardinia, Italy) affected by past mining. Mineral. Mag. 2004, 68, 15–30. [Google Scholar] [CrossRef]
- Rochette, E.A.; Li, G.C.; Fendorf, S.E. Stability of arsenate minerals in soil under biotically generated reducing conditions. Soil Sci. Soc. Am. J. 1998, 62, 1530–1537. [Google Scholar] [CrossRef]
- Brierley, C.L. Mining biotechnology: Research to commercial development and beyond. In Biomining; Springer: Berlin/Heidelberg, Germany, 1997; pp. 3–17. [Google Scholar]
- Waksman, S.A.; Joffe, J.S. Microörganisms Concerned in the Oxidation of Sulfur in the Soil: II. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil 1. J. Bacteriol. 1992, 7, 239. [Google Scholar] [CrossRef]
- Holmes, D.S.; Bonnefoy, V. Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In Biomining; Springer: Berlin/Heidelberg, Germany, 2007; pp. 281–307. [Google Scholar]
- Markosyan, G.E. A new iron-oxidizing bacterium, Leptospirillum ferrooxidans gen. Et sp. Nov. Biol. Zh. Arm. 1972, 25, 26. [Google Scholar]
- Escobar, B.; Huenupi, E.; Wiertz, J.V. Chemical and biological leaching of enargite. Biotechnol. Lett. 1997, 19, 719–722. [Google Scholar] [CrossRef]
- Sasaki, K.; Takatsugi, K.; Hirajima, T. Effects of initial Fe2+ concentration and pulp density on the bioleaching of Cu from enargite by Acidianus brierleyi. Hydrometallurgy 2011, 109, 153–160. [Google Scholar] [CrossRef]
- Brierley, C.L.; Brierley, J.A. A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can. J. Microbiol. 1973, 19, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.; Stetter, K.O. Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst. Appl. Microbiol. 1991, 14, 372–378. [Google Scholar] [CrossRef]
- Segerer, A.; Neuner, A.; Kristjansson, J.K.; Stetter, K.O. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int. J. Syst. Evol. Microbiol. 1986, 36, 559–564. [Google Scholar] [CrossRef]
- Konishi, Y.; Nishimura, H.; Asai, S. Bioleaching of sphalerite by the acidophilic thermophile Acidianus brierleyi. Hydrometallurgy 1998, 47, 339–352. [Google Scholar] [CrossRef]
- Ai, C.; McCarthy, S.; Liang, Y.; Rudrappa, D.; Qiu, G.; Blum, P. Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula. J. Ind. Microbiol. Biotecnol. 2017, 44, 1613–1625. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.; Spinnler, C.; Gambacorta, A.; Stetter, K.O. Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst. Appl. Microbiol. 1989, 12, 38–47. [Google Scholar] [CrossRef]
- Oyama, K.; Hirajima, T.; Sasaki, K.; Miki, H.; Okibe, N. Mechanism of Silver-Catalyzed Bioleaching of Enargite Concentrate. In Solid State Phenomena; Trans Tech Publications: Zürich, Switzerland, 2017; Volume 262, pp. 273–276. [Google Scholar]
- Córdoba, E.M.; Muñoz, J.A.; Blázquez, M.L.; González, F.; Ballester, A. Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential. Hydrometallurgy 2008, 93, 88–96. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. The microbiology of acidic mine waters. Res. Microbiol. 2003, 154, 466–473. [Google Scholar] [CrossRef]
- Rhine, E.D.; Chadhain, S.N.; Zylstra, G.J.; Young, L.Y. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem. Biophys. Res. Commun. 2007, 354, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Rhine, E.D.; Onesios, K.M.; Serfes, M.E.; Reinfelder, J.R.; Young, L.Y. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO. Environ. Sci. Technol. 2008, 42, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Mishra, A.K.; Tindall, B.J.; Rainey, F.A.; Stackebrandt, E. Oxidation of Thiosulfate by a New Bacterium, Bosea thiooxidans. (strain BI-42) gen. nov., sp. nov.: Analysis of Phylogeny Based on Chemotaxonomy and 16S Ribosomal DNA Sequencing. Int. J. Syst. Evol. Microbiol. 1996, 46, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, S.; Amachi, S. Microbiology of inorganic arsenic: From metabolism to bioremediation. J. Biosci. Bioeng. 2014, 118, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Drewniak, L.; Sklodowska, A. Arsenic-transforming microbes and their role in biomining processes. Environ. Sci. Pollut. Res. 2013, 20, 7728–7739. [Google Scholar] [CrossRef] [PubMed]
- Drewniak, L.; Rajpert, L.; Mantur, A.; Sklodowska, A. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: Estimation of the physiological potential for arsenic mobilization. BioMed Res. Int. 2014, 2014, 841892. [Google Scholar]
- Drewniak, L.; Sklodowska, A.; Radlinska, M.; Ciezkowska, M. Bacterial Strains, Plasmids, Method of Producing Bacterial Strains Capable of Chemolithotrophic Arsenites Oxidation and Uses Thereof. U.S. Patent No. 9,243,255, 26 January 2015. [Google Scholar]
- Tomczyk-Żak, K.; Kaczanowski, S.; Drewniak, Ł.; Dmoch, Ł.; Sklodowska, A.; Zielenkiewicz, U. Bacteria diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. Sci. Total Environ. 2013, 461, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Drewniak, L.; Styczek, A.; Majder-Lopatka, M.; Sklodowska, A. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ. Pollut. 2008, 156, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Drewniak, L.; Matlakowska, R.; Rewerski, B.; Sklodowska, A. Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy 2010, 104, 437–442. [Google Scholar] [CrossRef]
- Drewniak, L.; Matlakowska, R.; Sklodowska, A. Microbial impact on arsenic mobilization in Zloty Stok gold mine. Adv. Mater. Res. 2009, 71–73, 121–124. [Google Scholar] [CrossRef]
- Drewniak, L.; Matlakowska, R.; Sklodowska, A. Arsenite and arsenate metabolism of Sinorhizobium sp. M14 living in the extreme environment of the Zloty Stok gold mine. Geomicrobiol. J. 2008, 25, 363–370. [Google Scholar] [CrossRef]
As-Grade (%) | Penalty Fee (USD/ton) | Percentage from Concentrate Price (%) |
---|---|---|
<0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 | 0 1.5 3.0 4.5 6.0 7.5 15 22.5 30.0 37.5 | 0 1.7 3.5 5.2 7.0 8.7 17.4 26.2 35.0 43.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, J.A.; Serrano, J.; Leiva, E. Bioleaching of Arsenic-Bearing Copper Ores. Minerals 2018, 8, 215. https://doi.org/10.3390/min8050215
Díaz JA, Serrano J, Leiva E. Bioleaching of Arsenic-Bearing Copper Ores. Minerals. 2018; 8(5):215. https://doi.org/10.3390/min8050215
Chicago/Turabian StyleDíaz, José Antonio, Jennyfer Serrano, and Eduardo Leiva. 2018. "Bioleaching of Arsenic-Bearing Copper Ores" Minerals 8, no. 5: 215. https://doi.org/10.3390/min8050215
APA StyleDíaz, J. A., Serrano, J., & Leiva, E. (2018). Bioleaching of Arsenic-Bearing Copper Ores. Minerals, 8(5), 215. https://doi.org/10.3390/min8050215