The Arsenic Fault-Pathfinder: A Complementary Tool to Improve Structural Models in Mining
Abstract
:1. Introduction
2. Blast-Hole Arsenic Database Opportunity
3. The Case of Study: Main Mineralogical Features of the Los Bronces-Río Blanco Porphyry Cu-Mo Deposit
4. Without-Arsenic Structural Model
5. Arsenic Database: A Complementary Tool
6. Arsenic-Improved Structural Model
7. Discussion and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bond, C.E. Uncertainty in structural interpretation: Lessons to be learnt. J. Struct. Geol. 2015, 74, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Paradella, W.R.; Ferretti, A.; Mura, J.C.; Colombo, D.; Gama, F.F.; Tamburini, A.; Santos, A.R.; Novali, F.; Galo, M.; Camargo, P.O.; et al. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng. Geol. 2015, 193, 61–78. [Google Scholar] [CrossRef]
- Stead, D.; Wolter, A. A critical review of rock slope failure mechanisms: The importance of structural geology. J. Struct. Geol. 2015, 74, 1–23. [Google Scholar] [CrossRef]
- Morales, M.; Panthi, K.K.; Botsialas, K.; Holmøy, K.H. Development of a 3D structural model of a mine by consolidating different data sources. Bull. Eng. Geol. Environ. 2017, 1–19. [Google Scholar] [CrossRef]
- Shang, J.; West, L.J.; Hencher, S.R.; Zhao, Z. Geological discontinuity persistence: Implications and quantification. Eng. Geol. 2018, 241, 41–54. [Google Scholar] [CrossRef]
- Vatcher, J.; Mckinnon, S.D.; Sjöberg, J. Developing 3-D mine-scale geomechanical models in complex geological environments, as applied to the Kiirunavaara Mine. Eng. Geol. 2016, 203, 140–150. [Google Scholar] [CrossRef]
- Carlà, T.; Farina, P.; Intrieri, E.; Botsialas, K.; Casagli, N. On the monitoring and early-warning of brittle slope failures in hard rock masses: Examples from an open-pit mine. Eng. Geol. 2017, 228, 71–81. [Google Scholar] [CrossRef]
- Bakhtavar, E.; Shahriar, K.; Oraee, K. Transition from open-pit to underground as a new optimization challenge in mining engineering. J. Min. Sci. 2009, 45, 485–494. [Google Scholar] [CrossRef]
- MacNeil, J.A.L.; Dimitrakopoulos, R.G. A stochastic optimization formulation for the transition from open pit to underground mining. Optim. Eng. 2017, 18, 793–813. [Google Scholar] [CrossRef] [Green Version]
- Willenberg, H.; Loew, S.; Eberhardt, E.; Evans, K.F.; Spillmann, T.; Heincke, B.; Maurer, H.; Green, A.G. Internal structure and deformation of an unstable crystalline rock mass above Randa (Switzerland): Part I—Internal structure from integrated geological and geophysical investigations. Eng. Geol. 2008, 101, 1–14. [Google Scholar] [CrossRef]
- Schwartz, M.O. Arsenic in Porphyry Copper Deposits: Economic Geology of a Polluting Element. Int. Geol. Rev. 1995, 37, 9–25. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Nazari, A.M.; Radzinski, R.; Ghahreman, A. Review of arsenic metallurgy: Treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 2017, 174, 258–281. [Google Scholar] [CrossRef]
- Irarrazaval, V.; Sillitoe, R.H.; Wilson, A.J.; Toro, J.C.; Robles, W.; Lyall, G. Discovery History of a Giant, High-Grade, Hypogene Porphyry Copper-Molybdenum Deposit at Los Sulfatos, Los Bronces-Río Blanco District, Central Chile. In The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries; Goldfarb, R.J., Marsh, E.E., Monecke, T., Eds.; Special Publications of the Society of Economic Geologists: Littleton, CO, USA, 2010; pp. 253–269. [Google Scholar]
- Toro, J.C.; Ortúzar, J.; Zamorano, J.; Cuadra, P.; Hermosilla, J.; Spröhnle, C. Protracted magmatic-hydrothermal history of the Río Blanco-Los Bronces district, Central Chile: Development of world’s greatest known concentration of copper. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Special Publications of the Society of Economic Geologists: Littleton, CO, USA, 2012; pp. 105–126. [Google Scholar]
- Fleet, M.E.; Mumin, A.H. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. Am. Miner. 1997, 82, 182–193. [Google Scholar] [CrossRef]
- Simon, G.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E.; Kao, L.S. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. Am. Miner. 1999, 84, 1071–1079. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.W.; Ma, C.Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Tardani, D.; Reich, M.; Deditius, A.P.; Chryssoulis, S.; Sánchez-Alfaro, P.; Wrage, J.; Roberts, M.P. Copper–arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition. Geochim. Cosmochim. Acta 2017, 204, 179–204. [Google Scholar] [CrossRef] [Green Version]
- Franchini, M.; McFarlane, C.; Maydagán, L.; Reich, M.; Lentz, D.R.; Meinert, L.; Bouhier, V. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol. Rev. 2015, 66, 366–387. [Google Scholar] [CrossRef]
- Kouzmanov, K.; Pokrovski, G.S. Hydrothermal Controls on Metal Distribution in Porphyry Cu (-Mo-Au) Systems. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Special Publications of the Society of Economic Geologists: Littleton, CO, USA, 2012; pp. 573–618. [Google Scholar]
- Pokrovski, G.S.; Borisova, A.Y.; Bychkov, A.Y. Speciation and Transport of Metals and Metalloids in Geological Vapors. Rev. Mineral. Geochem. 2013, 76, 165–218. [Google Scholar] [CrossRef] [Green Version]
- Weis, P.; Driesner, T.; Heinrich, C.A. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts within Dynamic Fluid Plumes. Science 2012, 338, 1613–1616. [Google Scholar] [CrossRef] [PubMed]
- Piquer, J.; Skarmeta, J.; Cooke, D.R. Structural evolution of the Rio Blanco-Los Bronces District, Andes of Central Chile: Controls on stratigraphy, magmatism, and mineralization. Econ. Geol. 2015, 110, 1995–2023. [Google Scholar] [CrossRef]
- Deckart, K.; Silva, W.; Spröhnle, C.; Vela, I. Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: An update. Miner. Depos. 2014, 49, 535–546. [Google Scholar] [CrossRef]
- Carrizo, D.; Barros, C. El Modelo Estructural del Depósito Los Bronces, Andes Centrales, Chile; Internal Report; Anglo American Chile S.A., División Los Bronces: Santiago, Chile, 2017; p. 52. (In Spanish) [Google Scholar]
- Grez, E.; Spröhnle, C. Los Bronces Porphyry Copper Target; Internal Report; Anglo American Chile, División Los Bronces, Gerencia de Exploraciones, Exploraciones Categoría III: Santiago, Chile, 2003. (In Spanish) [Google Scholar]
- Barros, C. Distribución y Modelamiento Preliminar del Arsénico, Bismuto, Plomo, Antimonio, Zinc, Plata y oro en la Mineralización Profunda de la Mina Los Bronces, Región Metropolitana, Chile. Undergraduate Thesis, Universidad Católica del Norte, Antofagasta, Chile, 2007; p. 141. (In Spanish). [Google Scholar]
- Carrizo, D. Estudio Estructural en Torno al Socavón Sur, Los Sulfatos: Proyecto Los Bronces Underground–LBUG; Internal Report; Anglo American Chile S.A., División Los Bronces: Santiago, Chile, 2017; p. 35. (In Spanish) [Google Scholar]
- Riesner, M.; Lacassin, R.; Simoes, M.; Carrizo, D.; Armijo, R. Revisiting the Crustal Structure and Kinematics of the Central Andes at 33.5°S: Implications for the Mechanics of Andean Mountain Building. Tectonics 2018, 37, 1347–1375. [Google Scholar] [CrossRef]
- Cowan, E.J.; Lane, R.G.; Ross, H.J. Leapfrog’s implicit drawing tool: A new way of drawing geological objects of any shape rapidly in 3D. In Proceedings of the Australian Institute of Geoscientists Mining Geology 2004 Workshop, Brisbane, Australia, 21 October 2004; pp. 23–25. [Google Scholar]
- Birch, C. New systems for geological modelling-black box or best practice? J. S. Afr. Inst. Min. Metall. 2014, 114, 993–1000. [Google Scholar]
- Cox, S.F. Faulting processes at high fluid pressures: An example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J. Geophys. Res. 1995, 100, 12841–12859. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrizo, D.; Barros, C.; Velasquez, G. The Arsenic Fault-Pathfinder: A Complementary Tool to Improve Structural Models in Mining. Minerals 2018, 8, 364. https://doi.org/10.3390/min8090364
Carrizo D, Barros C, Velasquez G. The Arsenic Fault-Pathfinder: A Complementary Tool to Improve Structural Models in Mining. Minerals. 2018; 8(9):364. https://doi.org/10.3390/min8090364
Chicago/Turabian StyleCarrizo, Daniel, Carlos Barros, and German Velasquez. 2018. "The Arsenic Fault-Pathfinder: A Complementary Tool to Improve Structural Models in Mining" Minerals 8, no. 9: 364. https://doi.org/10.3390/min8090364
APA StyleCarrizo, D., Barros, C., & Velasquez, G. (2018). The Arsenic Fault-Pathfinder: A Complementary Tool to Improve Structural Models in Mining. Minerals, 8(9), 364. https://doi.org/10.3390/min8090364