Ore Genesis of Shanmen Ag Deposit in Siping Area of Southern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O, S, Pb Isotopes
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Samples and Analytical Methods
4.1. Fluid Inclusion Analytical Methods
4.2. H-O Isotope Analysis
4.3. S and Pb Isotope Analysis
5. Results
5.1. Fluid Inclusions
5.1.1. Fluid Inclusion Types
5.1.2. Microthermometry Results
5.1.3. Laser Raman Spectroscopy
5.2. H-O Isotopes
5.3. S and Pb Isotopes
6. Discussion
6.1. Nature and Evolution of the Ore-Forming Fluids
6.2. Sources of the Ore-Forming Fluid, Sulfur and Metals
6.3. Genetic Type and Ore Genesis of the Shanmen Ag Deposit
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Safonova, I.Y.; Santosh, M. Accretionary complexes in the Asia–Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 2014, 25, 126–158. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.K. Analysis on metallogenetic conditions of the Shanmen silver deposit in Siping, Jilin Province. Jilin Geol. 1994, 13, 9–16. (In Chinese) [Google Scholar]
- Huang, W.B.; Shen, H.C.; Fen, L. Isotopic geochemistry of Mesozoic igneous rocks and mineralization of Shanmen silver deposit in Yi-Su Basin, Jilin Province. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Tian, W.S.; Shao, J.B. Geological characteristics of the Shanmen silver deposit in Siping, Jilin Province. Jilin Geol. 1991, 10, 152–160. (In Chinese) [Google Scholar]
- Fu, S.D. Metallogenic characteristics in the Shanmen silver deposit, Siping. Jilin Geol. 1992, 1, 10–19. (In Chinese) [Google Scholar]
- Wang, Z.G. Study on Metallogenesis of Mesozoic Endogenetic Metal Deposits in the Eastern Part of Jilin Province. Ph.D. Thesis, Jilin University, Changchun, China, 2012. (In Chinese). [Google Scholar]
- Yang, H.; Ge, W.C.; Zhao, G.C.; Yu, J.J.; Zhang, Y.L. Early Permian–Late Triassic granitic magmatism in the Jiamusi–Khanka Massif, eastern segment of the Central Asian Orogenic Belt and its implications. Gondwana Res. 2015, 27, 1509–1533. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, F.; Pei, F.P.; Meng, E.; Tang, J.; Xu, M.J.; Wang, W. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrol. Sin. 2013, 29, 339–353. (In Chinese) [Google Scholar]
- Wang, B.; Zhou, J.B.; Wilde, S.A.; Zhang, X.Z.; Ren, S.M. The timing of final closure along the Changchun–Yanji suture zone: Constraints from detrital zircon U–Pb dating of the Triassic Dajianggang Formation, NE China. Lithos 2016, 261, 216–231. [Google Scholar] [CrossRef]
- Wang, F.; Xu, Y.G.; Xu, W.L.; Yang, L.; Wu, W.; Sun, C.Y. Early Jurassic calc-alkaline magmatism in northeast China: Magmatic response to subduction of the paleo-pacific plate beneath the Eurasian Continent. J. Asian Earth Sci. 2017, 143, 249–268. [Google Scholar] [CrossRef]
- Ma, X.H.; Zhu, W.P.; Zhou, Z.H.; Qiao, S.L. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin–Heilongjiang Belt, NE China. J. Asian Earth Sci. 2017, 144, 261–286. [Google Scholar] [CrossRef]
- Pei, F.P.; Zhang, Y.; Wang, Z.W.; Cao, H.H.; Xu, W.L.; Wang, Z.J.; Wang, F.; Yang, C. Early–Middle Paleozoic subduction–collision history of the south-eastern Central Asian Orogenic Belt: Evidence from igneous and metasedimentary rocks of central Jilin Province, NE China. Lithos 2016, 261, 164–180. [Google Scholar] [CrossRef]
- Gu, C.C.; Zhu, G.; Li, Y.J.; Su, N.; Xiao, S.Y.; Zhang, S.; Liu, C. Timing of deformation and location of the eastern Liaoyuan Terrane, NE China: Constraints on the final closure time of the Paleo-Asian Ocean. Gondowana Res. 2018, 60, 194–212. [Google Scholar] [CrossRef]
- Zhang, H.H.; Wang, F.; Xu, W.L.; Cao, H.H.; Pei, F.P. Petrogenesis of Early–Middle Jurassic intrusive rocks in northern Liaoning and central Jilin provinces, northeast China: Implications for the extent of spatial–temporal overprinting of the Mongol–Okhotsk and Paleo-Pacific tectonic regimes. Lithos 2016, 132–147, 256–257. [Google Scholar] [CrossRef]
- Feng, M.; Chen, L.; Zhou, P.F.; Cui, L.X. Geologic characteristics and prospecting indicators of the Shanmen Silver deposit in Siping, Jilin Province. Geol. Res. 2010, 19, 215–220. (In Chinese) [Google Scholar]
- Ren, Y.S.; Niu, J.P.; Lei, E.; Wang, H.; Wang, X. Geological and geochemical characteristics and metallogenesis of Sanjiazi scheelite deposit in Siping area, Jilin Province. J. Jilin Univ. 2010, 40, 314–320. (In Chinese) [Google Scholar]
- Li, T.; Ni, S.B. Abundance of Chemical Elements in the Earth and the Earth’s Crust, 1st ed.; Geological Publishing House: Beijing, China, 1990; pp. 29–90. [Google Scholar]
- Potter, R.W.; Clynne, M.A.; Brown, D.L. Freezing point depression of aqueous sodium chloride solutions. Econ. Geol. 1978, 73, 284–285. [Google Scholar] [CrossRef]
- Liu, B.; Duan, G.X. The density and isochoric formulae for NaCl-H2O fluid inclusions (salinity ≤ 25 wt. %) and their applications. Acta Miner. Sin. 1987, 7, 345–352. (In Chinese) [Google Scholar]
- Bozzo, A.T.; Chen, H.S.; Kass, J.R.; Barduhn, A.J. The properties of the hydrates of chlorine and carbon dioxide. Desalination 1975, 16, 303–320. [Google Scholar] [CrossRef]
- Touret, J.; Bottinga, Y. Equation of state of CO2; application to carbonic inclusions. Bull. Miner. 1979, 102, 577–583. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Rev. Miner. 1984, 12, 1–644. [Google Scholar]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Craig, H.; Lupton, J.E. Lupton primordial neon, helium and hydrogen in oceanic basalts. Earth Planet. Sci. Lett. 1976, 31, 369–385. [Google Scholar] [CrossRef]
- Zhang, L.G. Hydrogen, oxygen, sulfur and carbon isotope geochemistry of the Lianhuashan porphyry type tungsten deposit. Miner. Depos. 1985, 4, 54–63. (In Chinese) [Google Scholar]
- Huang, W.B.; Shen, H.C. Isotopic Geochemistry evidence for genesis of Shanmen silver deposit, Siping. Geol. Pros. 2006, 42, 46–50. (In Chinese) [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Gao, S.B.; Zheng, Y.Y.; Jiang, J.S.; Zhang, S.Z.; Jiang, X.J.; Guo, X.R. Mineralogy, fluid inclusions and C–H–O–S–Pb isotopes of the Palaeocene Longgen Pb-Zn deposit in the western Nyainqentanglha belt, Tibet. Ore Geol. Rev. 2018, 102, 18–43. [Google Scholar] [CrossRef]
- White, W.M. Geochemistry, 9th ed.; Publication, John Wiley and Sons Ltd.: New York, NY, USA, 2013; pp. 406–409. [Google Scholar]
- Jiang, F.P.; Deng, L.S.; Liu, D.W.; Wang, H.Y. The characteristics of stable isotopes and gas-liquid inclusions of the Shanmen Ag deposit, Jilin Province. Jilin Geol. 2007, 26, 47–50. (In Chinese) [Google Scholar]
- Zang, Y.S.; Wang, F.K. The geological characteristics of sulfur isotopes in the Shanmen silver deposit, Siping. Jilin Geol. 1992, 1, 22–29. (In Chinese) [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics-the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Xiong, S.F.; He, M.C.; Yao, S.Z.; Cui, Y.B.; Shi, G.Z.; Ding, Z.J.; Hu, X.L. Fluid evolution of the Chalukou giant Mo deposit in the northern Great Xing’an Range, NE China. Geol. J. 2015, 50, 720–738. [Google Scholar] [CrossRef]
- Gao, S.; Xu, H.; Quan, S.L.; Zang, Y.Q.; Wang, T. Geology, hydrothermal fluids, H-O-S-Pb isotopes, and Rb-Sr geochronology of the Daxintun orogenic gold deposit in Heilongjiang province, NE China. Ore Geol. Rev. 2018, 92, 569–587. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, S.W.; Song, Q.H.; Yu, Z.T.; Liang, S.F. Fluid and metal sources of the Changfagou porphyry copper deposit, southern Jilin Province, NE China: Constraints from fluid inclusions and H-O-S-Pb isotope systematics. Geol. J. 2017, 53, 2746–2758. [Google Scholar] [CrossRef]
- Luque, F.J.; Crespo-Feo, E.; Barrenechea, J.F.; Ortega, L. Carbon isotopes of graphite: Implications on fluid history. Geosci. Front. 2012, 3, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Lowenstern, J.B. Carbon dioxide in magmas and implications for hydrothermal systems. Miner. Depos. 2001, 36, 490–502. [Google Scholar] [CrossRef]
- Ruan, B.X.; Lv, X.B.; Yang, W.; Liu, S.T.; Yu, Y.M.; Wu, C.M. Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb–Zn–Ag deposit, Inner Mongolia, NE China: Implications for tectonic setting and metallogeny. Ore Geol. Rev. 2015, 71, 121–137. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer: Berlin, Germany, 2009; p. 1250. [Google Scholar]
- Chai, P.; Sun, J.G.; Hou, Z.Q.; Xing, S.W.; Wang, Z.Y. Geological, fluid inclusion, H–O–S–Pb isotope, and Ar–Ar geochronology constraints on the genesis of the Nancha gold deposit, southern Jilin Province, northeast China. Ore Geol. Rev. 2016, 72, 1053–1071. [Google Scholar] [CrossRef]
- Cooke, D.R.; Deyell, C.L.; Waters, P.J.; Gonzales, R.I.; Zaw, K. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2011, 100, 801–818. [Google Scholar] [CrossRef]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman Scientific and Technical Press: Harlow, UK, 1993; p. 352. [Google Scholar]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wang, Y.H.; Liu, J.J.; Wang, C.J. Ore genesis and hydrothermal evolution of the Wulandele Mo deposit, Inner Mongolia, Northeast China: Evidence from geology, fluid inclusions and H–O–S–Pb isotopes. Ore Geol. Rev. 2018, 93, 181–199. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Wang, Z.C.; He, H.Y. Multiple isotope composition (S, Pb, H, O, He, and Ar) and genetic implications for gold deposits in the Jiapigou gold belt, Northeast China. Miner. Depos. 2014, 49, 145–164. [Google Scholar] [CrossRef]
- Ke, L.L.; Zhang, H.Y.; Liu, J.J.; Zhai, D.G.; Guo, D.H.; Yang, J.K.; Tan, Q.; Xu, Y.W.; Zhang, M.; Wang, S.G. Fluid Inclusion, H-O, S, Pb and noble gas isotope studies of the Aerhada Pb-Zn-Ag deposit, Inner Mongolia, NE China. Ore Geol. Rev. 2017, 88, 304–316. [Google Scholar] [CrossRef]
- Wang, C.Y.; Li, J.F.; Wang, K.Y. Fluid Inclusions, stable isotopes, and geochronology of the Haobugao lead-zinc deposit, Inner Mongolia, China. Resour. Geol. 2018, 69, 1–20. [Google Scholar] [CrossRef]
- Rye, R.O. The evolution of magmatic fluids in the epithermal environment: The stable isotope perspective. Econ. Geol. 1993, 88, 733–752. [Google Scholar] [CrossRef]
- Harris, A.C.; Golding, S.D. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits. Geology 2002, 30, 335–338. [Google Scholar] [CrossRef]
- Rye, R.O.; Ohmoto, H. Sulfur and carbon isotopes and ore genesis: A review. Econ. Geol. 1974, 69, 826–842. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Miner. Geochem. 1986, 16, 491–559. [Google Scholar]
- Ohmoto, H.; Goldhaber, M. Sulfur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1997; pp. 517–611. [Google Scholar]
- Guo, W.K.; Zeng, Q.D.; Guo, Y.P.; Wang, Y.B.; Zhang, B. Rb–Sr dating of sphalerite and S–Pb isotopic studies of the Xinxing cryptoexplosive breccia Pb–Zn–(Ag) deposit in the southeastern segment of the Lesser Xing’an–Zhangguangcai metallogenic belt, NE China. Ore Geol. Rev. 2018, 99, 75–85. [Google Scholar] [CrossRef]
- Li, T.G.; Wu, G.; Liu, J.; Wang, G.R.; Hu, Y.Q.; Zhang, Y.F.; Luo, D.F.; Mao, Z.H.; Xu, B. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb–Zn–Ag deposit, Inner Mongolia, China. Lithos 2016, 261, 340–355. [Google Scholar] [CrossRef]
- Gao, R.Z.; Xue, C.J.; Lv, X.B.; Zhao, X.B.; Yang, Y.S.; Li, C.C. Genesis of the Zhengguang gold deposit in the Duobaoshan ore field, Heilongjiang Province, NE China: Constraints from geology, geochronology and S-Pb isotopic compositions. Ore Geol. Rev. 2017, 84, 202–217. [Google Scholar] [CrossRef]
- Bierlein, F.P.; McNaughton, N.J. Pb isotope fingerprinting of mesothermal gold deposits from central Victoria, Australia: Implications for ore genesis. Miner. Depos. 1998, 33, 633–638. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Chen, Y.J.; Jiang, S.Y.; Zhao, H.X.; Qin, Y.; Hu, C.J. Geology, geochemistry and ore genesis of the Wenyu gold deposit, Xiaoqinling gold field, Qinling Orogen, southern margin of North China Craton. Ore Geol. Rev. 2014, 59, 1–20. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, S.Y.; Li, H.L. Isotope geochemistry and genesis of the Liyuan gold deposit, Shanxi, North China. Ore Geol. Rev. 2018, 92, 129–143. [Google Scholar] [CrossRef]
- Harris, A.C.; Golding, S.D.; White, N.C. Bajo de la Alumbrera copper-gold deposit: Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Econ. Geol. 2005, 100, 863–886. [Google Scholar] [CrossRef]
- Yu, G.; Chen, J.F.; Xue, C.J.; Chen, Y.C.; Chen, F.K.; Du, X.Y. Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield, Northeastern China. Ore Geol. Rev. 2009, 35, 367–382. [Google Scholar] [CrossRef]
- Tuduri, J.; Chauvet, A.; Barbanson, L.; Labriki, M.; Dubois, M.; Trapy, P.-H.; Lahfid, A.; Poujol, M.; Melleton, J.; Badra, L.; et al. Structural control, magmatic-hydrothermal evolution and formation of hornfels-hosted, intrusion-related gold deposits: Insight from the Thaghassa deposit in Eastern Anti-Atlas, Morocco. Ore Geol. Rev. 2018, 97, 171–198. [Google Scholar] [CrossRef] [Green Version]
- Tuduri, J.; Chauvet, A.; Barbanson, L.; Bourdier, J.-L.; Labriki, M.; Ennaciri, A.; Badra, L.; Dubois, M.; Ennaciri-Leloix, C.; Sizaret, S.; et al. The Jbel Saghro Au (–Ag, Cu) and Ag–Hg Metallogenetic Province: Product of a Long-Lived Ediacaran Tectono-Magmatic Evolution in the Moroccan Anti-Atlas. Minerals 2018, 8, 592. [Google Scholar] [CrossRef]
- Li, J.F. Chengde Fengning Niujuan Silver Deposit Genesis Analysis. Master’s Thesis, Shijiazhuang University of Economics, Shijiazhuang, China, 2013. (In Chinese). [Google Scholar]
- Zeng, Q.D.; He, H.Y.; Zhu, R.X.; Zhang, S.; Wang, Y.B.; Su, F. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from H-O-He-Ar isotopes. J. Asian Earth Sci. 2017, 144, 384–397. [Google Scholar] [CrossRef]
- Li, L.; Sun, J.G.; Men, L.J.; Chai, P. Origin and evolution of the ore-forming fluids of the Erdaogou and Xiaobeigou gold deposits, Jiapigou gold province, NE China. J. Asian Earth Sci. 2016, 129, 170–190. [Google Scholar] [CrossRef]
- Yoo, B.C.; Lee, H.K.; White, N.C. Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—A mesothermal, vein-hosted gold–silver deposit. Miner. Depos. 2010, 45, 161–187. [Google Scholar] [CrossRef]
- Wilde, S.A.; Zhou, J.B. The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. J. Asian Earth Sci. 2015, 113, 909–921. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Simmons, S.F.; Stoffell, B. How metalliferous brines line Mexican epithermal veins with silver. Sci. Rep. 2013, 3, 2057. [Google Scholar] [CrossRef] [PubMed]
- Peter, G.V. Silver mineralization in the Rochester District, Pershing County, Nevada. Econ. Geol. 1981, 76, 580–609. [Google Scholar]
- Deng, J.; Yuan, W.M.; Carranza, E.J.M.; Yang, L.Q.; Wang, C.M.; Yang, L.Y.; Hao, N.N. Geochronology and thermochronometry of the Jiapigou gold belt, northeastern China: New evidence for multiple episodes of mineralization. J. Asian Earth Sci. 2014, 89, 10–27. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M. Province-scale commonalities of some world-class gold deposits: Implications for mineral exploration. Geosci. Front. 2015, 6, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.K.; Li, J.W.; Chen, L.; Zhang, S.X.; Zheng, S. Occurrence of silver in the Shagou Ag-Pb-Zn deposit, Luoning County, Henan Province: Implications for mechanism of silver enrichment. Earth Sci. J. China Univ. Geosci. 2010, 35, 621–636. (In Chinese) [Google Scholar]
- Fontboté, L.; Kouzmanov, K.; Chiaradia, M.; Pokrovski, G.S. Sulfide minerals in hydrothermal deposits. Elements 2017, 13, 97–103. [Google Scholar] [CrossRef]
- Seward, T.; Barnes, H. Metal transport by hydrothermal ore fluid. In Geochemistry of Hydrothermal Ore Deposit, 3rd ed.; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 435–486. [Google Scholar]
- Zhong, J.; Chen, Y.J.; Qi, J.P.; Chen, J.; Dai, M.C.; Li, J. Geology, fluid inclusion and stable isotope study of the Yueyang Ag-Au-Cu deposit, Zijinshan Orefield, Fujian Province, China. Ore Geol. Rev. 2017, 86, 254–270. [Google Scholar] [CrossRef]
- Kouzmanov, K.; Pokrovski, G.S. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Special Publications of the Society of Economic Geologists: Lancaster, PA, USA, 2012; pp. 573–618. [Google Scholar]
- Chai, P.; Sun, J.G.; Xing, S.W.; Li, B.; Lu, C. Ore geology, fluid inclusion and 40Ar/39Ar geochronology constraints on the genesis of the Yingchengzi gold deposit, southern Heilongjiang Province, NE China. Ore Geol. Rev. 2016, 72, 1022–1036. [Google Scholar] [CrossRef]
- Zhang, X.B.; Wang, K.Y.; Fu, L.J.; Zhang, M.; Konare, Y.; Peng, D.W.; Cai, W.Y. Fluid inclusions, C–H–O–S isotope and geochronology of the Bujinhei Pb–Zn deposit in the southern Great Xing’an Range of Northeast China: Implication for ore genesis. Resour. Geol. 2016, 67, 207–227. [Google Scholar] [CrossRef]
Sample Number | Sample Type | Minerals | Orebody Number | Exploration Line Number |
---|---|---|---|---|
SM-6 | Stage 1 Pyrite-quartz veins | Quartz | 6 | 48 |
SM-14 | Quartz | 6 | 48 | |
SM-9 | Stage 2 Polymetallic-sulfides grayish quartz veins | Quartz | 6 | 44 |
SM-10 | Quartz | 6 | 44 | |
SM-20 | Quartz | 6 | 44 | |
SM-21 | Pyrite | 6 | 44 | |
SM-23 | Sphalerite, galena | 6 | 44 | |
SM-16 | Stage 3 Carbonate-quartz veins | Quartz | 3 | 44 |
Stage | Type | Number | Tice 1 (°C) | Tcla 2 (°C) | Te 3 (°C) | Th 4 (°C) | Salinity (wt.% NaCl Equivalent) | Density (g/cm3) |
---|---|---|---|---|---|---|---|---|
Stage I | L-type | 27 | −8.3 to −2.5 | 191.8 to 390.7 | 4.2 to 12.1 | 0.64 to 0.96 | ||
V-type | 4 | −5.3 to −3.9 | 273.3 to 327.5 | 6.3 to 8.3 | 0.75 to 0.82 | |||
C-type | 8 | 6.9 to 9.2 | 23.4 to 31.1 | 272.2 to 412.5 | 1.6 to 5.9 | 0.55 to 0.74 | ||
Stage II | L-type | 77 | −5.8 to −0.8 | 124.1 to 313.3 | 1.4 to 8.9 | 0.73 to 0.98 | ||
V-type | 13 | −4.8 to −0.8 | 153.4 to 272.4 | 1.4 to 7.6 | 0.81 to 0.97 | |||
Stage III | L-type | 33 | −3.6 to −0.2 | 128.6 to 224 | 0.4 to 5.8 | 0.90 to 0.96 |
Sample Number | Stage | Sample Type | Th (°C) | δ18O (‰) | δ18OH2O (‰) | Δd (‰) |
---|---|---|---|---|---|---|
SM-14-1 | Stage I | Poor-sulfide quartz veins | 313 | 14.1 | 7.7 | −104 |
SM-14-2 | 313 | 14.5 | 8.1 | −106 | ||
SM-14-3 | 313 | 14.4 | 8.0 | −103 | ||
SM-23-1 | Stage II | Sulfide-bearing quartz veins | 205 | 13.6 | 2.2 | −108 |
SM-23-2 | 205 | 11.7 | 0.3 | −106 | ||
SM-23-3 | 205 | 12.8 | 1.4 | −106 | ||
SM-20-1 | 205 | 12.7 | 1.3 | −105 | ||
SM-20-2 | 205 | 12.9 | 1.5 | −105 | ||
SM-20-3 | 205 | 13.4 | 2.0 | −113 | ||
SM-16-1 | Stage III | Quartz veins | 162 | 10.8 | −3.7 | −105 |
SM-16-2 | 162 | 11.2 | −3.3 | −105 | ||
SM-16-3 | 162 | 11.5 | −3.0 | −107 |
Sample Number | Sample Type | Minerals | δ34S (‰) | Mean | References |
---|---|---|---|---|---|
SM-21-1 | Early-stage lean ore | Pyrite | 0.4 | This study | |
SM-21-2 | Pyrite | 0.3 | |||
SM-23-1 | Block Ag ores | Sphalerite | −0.4 | ||
SM-23-2 | Galena | −9.4 | |||
- | Ore and mineralization zone | Pyrite | −4.6 to 1.8 | −1.5 | [28] |
- | Sphalerite | −8.7 to 1.2 | −3.9 | ||
- | Galena | −11.4 to −2.7 | −8.2 | ||
- | Monzonite | Pyrite | −1.9 to 0.5 | −0.8 | |
- | Marble | Marble | −30.3 to −1.9 | - |
Sample Number | Minerals | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | References |
---|---|---|---|---|---|
SM-21-1 | Pyrite | 18.182 | 15.587 | 38.207 | This study |
SM-21-2 | Pyrite | 18.189 | 15.599 | 38.251 | |
SM-23-1 | Sphalerite | 18.148 | 15.548 | 38.081 | |
SM-23-2 | Galena | 18.143 | 15.543 | 38.062 | |
- | Pyrite | 18.104 | 15.473 | 37.877 | [33] |
- | Galena | 18.091 | 15.478 | 37.852 | |
- | Sphalerite | 18.099 | 15.481 | 37.835 | |
- | Pyrite | 18.101 | 15.506 | 37.942 | [34] |
- | Pyrite | 18.115 | 15.51 | 37.997 | |
- | Galena | 18.113 | 15.492 | 37.901 | |
- | Galena | 18.115 | 15.499 | 37.912 | |
- | Galena | 18.149 | 15.531 | 37.994 | |
- | Sphalerite | 18.093 | 15.479 | 37.825 | |
- | Sphalerite | 18.112 | 15.496 | 37.84 | |
- | Sphalerite | 18.115 | 15.488 | 37.86 | |
- | Monzonite | 18.56 | 15.583 | 38.712 | [34] |
- | Monzonite | 18.891 | 15.609 | 38.85 | |
- | Quartz diorite | 18.353 | 15.558 | 38.242 |
Name | Host rocks | Shapes of Ore Bodies | Structures and Textures of Ores | Metal Mineral Assembles | Wall Rock Alterations | Characteristics of Fluid Inclusions | Genesis | References |
---|---|---|---|---|---|---|---|---|
Shanmen Ag deposit (Jilin Province) | Yanshanian monzonite and quartz diorite | Layered, veined and lenticular shapes | Veined, veinleted, disseminated, banding structures and euhedral-, subhedral- to allotriomorphic-granular, metasomatic and exsolution textures | Pyrite, galena, sphalerite, chalcopyrite, native silver, argentite, etc. | Chloritization, silicification, sericitization, carbonation, etc. | Mainly two-phase aqueous and multi-phase CO2-bearing inclusions. Fluid is mixed for magmatic and meteoric water | Medium-low temperature magmatic hydrothermal deposit | This paper |
Niujuan Ag deposit (Hebei Province) | Hercynian and Yanshanian granite | Veined shape | Brecciated, disseminated, cellular, massed structures and metasomatic, poikilitic, euhedral-, to allotriomorphic-granular textures | Marcasite, galena, pyrite, chalcopyrite, sphalerite, native silver, argentite, etc. | Silicification, potassic alteration, sericitization, chloritization, kaolinization, carbonation, etc. | Mainly two-phase aqueous fluid inclusions. Fluid is mixed for magmatic and meteoric water | Epithermal deposit | [66] |
Haigou Au deposit (Jilin Province) | Monzonite | Mainly veined shape | Disseminated, massed structures and euhedral-, subhedral- to allotriomorphic-granular, metasomatic textures | Pyrite, galena, sphalerite, chalcopyrite, native gold, calaverite, etc. | Silicification, potassic alteration, sericitization, chloritization, carbonation, etc. | Mainly two-phase aqueous and multi-phase CO2-bearing inclusions. Fluid is mainly derived from magmatic water | Mesothermal deposit | [67] |
Xiaobeigou Au deposit (Jilin Province) | Quartz diorite | Veined and reticular veined shapes | Veined, reticular veined, disseminated structures and allotriomorphic-granular, fragmented, metasomatic textures | Pyrite, chalcopyrite, galena, sphalerite, native gold, etc. | Silicification, sericitization, potassic alteration, chloritization, carbonation, etc. | Mainly two-phase aqueous and multi-phase CO2-bearing inclusions. Fluid is mainly derived from magmatic water | Mesothermal deposit | [68] |
Samwang Ag-Au deposit (Korea) | Jurassic granite | Veined and lenticular shapes | Veined, disseminated, massed structures and euhedral-, subhedral- to allotriomorphic-granular, metasomatic, fragmented textures | Pyrite, arsenopyrite, galena, sphalerite, chalcopyrite and other Au-Ag-bearing minerals | Silicification, potassic alteration, sericitization, chloritization, etc. | Mainly two-phase aqueous and multi-phase CO2-bearing inclusions. Fluid is mainly derived from magmatic water | Mesothermal deposit | [69] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Ren, Y.; Cao, P.; Hao, Y.; Gao, Y. Ore Genesis of Shanmen Ag Deposit in Siping Area of Southern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O, S, Pb Isotopes. Minerals 2019, 9, 586. https://doi.org/10.3390/min9100586
Sun X, Ren Y, Cao P, Hao Y, Gao Y. Ore Genesis of Shanmen Ag Deposit in Siping Area of Southern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O, S, Pb Isotopes. Minerals. 2019; 9(10):586. https://doi.org/10.3390/min9100586
Chicago/Turabian StyleSun, Xinhao, Yunsheng Ren, Peng Cao, Yujie Hao, and Yu Gao. 2019. "Ore Genesis of Shanmen Ag Deposit in Siping Area of Southern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O, S, Pb Isotopes" Minerals 9, no. 10: 586. https://doi.org/10.3390/min9100586
APA StyleSun, X., Ren, Y., Cao, P., Hao, Y., & Gao, Y. (2019). Ore Genesis of Shanmen Ag Deposit in Siping Area of Southern Jilin Province, NE China: Constraints from Fluid Inclusions and H-O, S, Pb Isotopes. Minerals, 9(10), 586. https://doi.org/10.3390/min9100586