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Abstract: Understanding the mineralogical and chemical characteristics of stone coal is imperative
for exploring the thermal storage characteristics of stone coal. Two types stone coal (SCwt and
SChc) were sampled from the pond of a stone coal mine in Henan province (China), and the
chemical composition, phase composition, and thermal behavior of the stone coal were investigated.
Furthermore, the petrography of the stone coal was studied in detail. The mineral phases of the stone
coal were quartz, kaolinite, roscoelite, and goethite, as distinguished by reflected light microscopy
and further proven by scanning electron microscope-energy dispersive spectrometer (SEM-EDS).
The thermal conductivity of SCwt was 0.19 W m−1 K−1, while that of SChc was 0.24 W m−1 K−1.
Stearic acid (SA) was blended with SCwt and SChc to prepare SA/SCwt and SA/SChc composites via
an impregnation method, respectively. The thermogravimetric (TG) curves show that the loading
capacity of SChc, at 17.40%, is higher than that of SCwt (16.63%). The thermal energy storage capacities
of SA/SCwt and SA/SChc composites were 29.21 J g−1 and 33.02 J g−1 according to a differential scanning
calorimetry (DSC) analysis. Therefore, SChc is a potential candidate for thermal storage applications
due to more obvious thermal storage characteristics, including higher thermal conductivity and
loading capacity.
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1. Introduction

Nowadays, energy and environmental issues are two major challenges of society, and improving
energy utilization efficiency and protecting the environment have received widespread attention [1–6].
It is obvious that inexpensive energy, which is a prerequisite for sustainable economic growth and
development, can be produced from coal [7]. Some trace elements in coal also have significant potential
for industrial extraction and utilization [8]. With the increasing market demand for high-performance
materials and the shortage of high-grade ores, it becomes more and more necessary and urgent
to exploit and utilize low-grade resources for high-performance materials [9]. Recently, utilizing
low-grade resources to produce high-performance materials and high purity metals has become
a research hotspot [10–14].

Stone coal is a combustible, low heat value, high-rank sedimentary rock mainly derived from early
Paleozoic bacteria and algae after saponification and coalification in a marine-influenced environment
(e.g., epicontinental sea, lagoon, or bay) [15]. It is mainly distributed in southern China, where coal
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resources are scarce, and the reserves are extremely rich. The total reserves of stone coal are 61.88 Gt,
covering an area of about 30,000 km2 [15]. Because of the simple mining conditions of stone coal and the
shortage of coal resources, stone coal resources will be widely used. In recent years, the comprehensive
utilization of stone coal resources has developed rapidly [16]. The utilization of stone coal is mainly
in four aspects: fuel power (stone coal power generation), building materials, agricultural fertilizer,
and refined rare metals [15]. While making full use of the low calorific energy value of stone coal, research
on the extraction of vanadium and other associated elements can not only improve the utilization value
of stone coal but also provide more urgently needed rare and precious metal materials [16]. Stone coal
after the extraction of vanadium also has the potential for producing composite phase change materials.
Therefore, the study of the mineralogical characteristics of stone coal is very important. So far, very little
information related to the composite phase change materials that use stone coal is available, and only
research in vanadium extraction from stone coal has been conducted. Stone coal is now used to extract
beneficial elements, mainly small-scale extraction of vanadium pentoxide. Vanadium is an important
rare metal that has been widely used in ferrous and non-ferrous alloys to improve its hardness,
tensile strength, and fatigue resistance, and vanadium oxide is widely applied [17–19]. In China,
apart from vanadium titano-magnetite, carbonaceous shale, also called stone coal, is another important
vanadium-bearing resource due to the vast amount of deposits [20]. The gross reserve of vanadium
in terms of V2O5 in stone coal accounts for more than 87% of the domestic reserve of vanadium [21].
Generally, most vanadium in stone coal exists in terms of isomorphism, where V3+ substitutes for Al3+

in the crystal lattice of aluminosilicates including muscovite, tourmaline, and garnet, because V3+ has
a similar electronegativity and ionic radius to Al3+ [22,23]. In addition, small amounts of vanadium
in the form of adsorbed state adsorb on the surface of clay minerals such as kaolinite [24]. After the
extraction of vanadium, if research on stone coal after extracting vanadium continues, the utilization of
stone coal resources will be fully, effectively, and reasonably developed. Due to the complex mineral
composition of stone coal, in order to fully exploit and utilize abundant stone coal resources and guide
the preparation of composite materials using stone coal as a raw material, it is necessary to thoroughly
explore the mineralogical and thermal storage characteristics of stone coal.

In recent years, mineralogical characteristics have been used to study stone coal. Researchers
have studied stone coal by various characterization methods so as to explore the nature of minerals,
extract vanadium, and prepare materials. To explore the flotation technology of high-carbon stone
coal bearing vanadium, Wang et al. [9] studied the mineralogical characteristics of stone coal by XRD,
scanning electron microscope-energy dispersive spectrometer (SEM-EDS), and optical micrographs.
To optimize the roasting method and conditions to improve the leaching efficiency of vanadium
pentoxide (V2O5), Zeng et al. [25] investigated the oxidizing roasting of stone coal in a laboratory
fluidized bed reactor by means of X-ray fluorescence (XRF), SEM-EDS, and XRD. Furthermore,
Hu et al. [26] explored the separation of V over Fe impurities from V-bearing shale using oxalic acid as
an eco-friendly leachant by XRF, XRD, and SEM-EDS. Xie et al. [16] also explored activated carbon
(AC), vanadium oxide (V2O5), and V2O5/AC photocatalyst prepared by in situ utilization of stone coal
ore by XRD, XRF, Fourier transformation infrared spectroscopy (FTIR), SEM, Brunauer-Emmett-Teller
(BET), and thermogravimetric-differential thermal analyzer (TG-DTA). In addition, Gao et al. [27–30]
explored the nature of minerals by calculating surface broken bonds combined with mineralogical
features. Therefore, the mineralogical characteristics of stone coal can serve as a guide for subsequent
work on stone coal. However, the use of stone coal as a raw material for the preparation of phase
change composites also requires research on its thermal storage characteristics.

As a natural mineral, stone coal has the potential to be used to prepare composite thermal storage
materials. However, few studied related to stone coal-based composite thermal storage materials have
been reported. Some scholars have studied a composite of coal-series kaolin (coal gangue) and fatty
acid as form-stable phase change material [31,32]. Stone coal with a lower carbonization degree has
similar properties to coal gangue [33], so it is meaningful to study the thermal storage characteristics
of stone coal. In this paper, mineralogical and thermal storage studies of stone coal were conducted
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with the purpose of preparing thermal storage materials by the comparison of the mineralogical and
thermal storage characteristics of two types of stone coal.

2. Materials and Methods

2.1. Materials

Two kinds of stone coal (weathered stone coal and high-carbon stone coal) were sampled from the
pond of a stone coal mine in Henan, China. After being transported to the laboratory, these stone coal
samples were air-dried, ground to pass through a 0.074 mm metal sieve, homogenized, and stored in
polypropylene plastic sample bags. The weathered stone coal and high-carbon stone coal were labeled
as SCwt and SChc, respectively.

2.2. Preparation of the SA/SC Composites

The SA/SC composites were synthesized via vacuum impregnation [34,35], and stearic acid
(CH3(CH2)16COOH, SA) with a phase change temperature range of 56–69.9 ◦C was supplied by Tianjin
Hengxing Chemical Reagent Co., Ltd., Tianjin, China. The following is the fabrication process: 10 g
SA (an excess) and 5.0 g SC were put into an Erlenmeyer flask, which was concatenated to a suction
pump by using a unit for preventing backward suction. A vacuum was created in the Erlenmeyer flask
at −0.1 MPa for 5 min, and then its temperature was maintained at 95 ◦C for 30 min via a constant
temperature bath. The vacuum was released and the flask heated to 80 ◦C for 5 min in an ultrasonic
bath before cooling to room temperature. The resulting mixture was filtered at 80 ◦C to produce
the final stearic acid/stone coal (SA/SC) composites. The composites were labeled as SA/SCwt and
SA/SChc, respectively.

2.3. Characterization

The elemental composition of raw stone coals (SCwt and SChc) was determined by X-ray
fluorescence (XRF, PANalytical B.V., Almelo, The Netherlands) using radiation at an acceleration
voltage of 60 kV and a current of 100 mA. X-ray diffraction (XRD, Bruker Corporation, Billerica,
MA, USA) was carried out using a D8 ADVANCE analyzer (Cu-Kα) under the following conditions:
voltage 40 kV, current 250 mA, scan range from 3 to 80◦, and step size of 0.5◦. The crystalline phases of
samples were identified using the software Jade 6.5 compiled by Materials Data Inc. (MDI, California,
CA, USA). The stone coal was embedded in the epoxy resin and polished for the petrography
analysis, and the photomicrographs were then obtained using an Axiovert 200 mat photomicroscope;
furthermore, a scanning electron microscope (SEM)-energy dispersive spectrometer (EDS, JEOL, Tokyo,
Japan) was used on the polished samples under the backscattered electron (BSE, JEOL, Tokyo, Japan)
mode by JEOL JSM-6490LV. The samples were pressed onto a conductive adhesive tab mounted on
a copper stub and coated with gold before the test, and the corresponding microstructures were
investigated using a Zeiss Sigma 500 scanning electron microscope (SEM, Carl Zeiss AG, Oberkochen,
Germany) operated at an accelerating voltage. Fourier transformation infrared spectroscopy (FTIR,
SHIMADZU, Japan) spectra were recorded using an IR tracer-100AH FTIR spectrometer in the range
of 4000~400 cm−1 at 20 kV. A thermogravimetric analysis (TGA, HENVEN HCT-3, Beijing Henven
Scientific Instrument Factory, Beijing, China) was conducted at a heating rate of 15 ◦C·min−1 up to
1100 ◦C in oxygen atmosphere. The thermal conductivity of two samples pressed into tablets was
recorded using a DRX-I-300. Before testing the samples, the samples had to be to be prepared into
wafers with a thickness of about 1 mm and a diameter of 12 mm. Differential scanning calorimetry
(DSC) analysis of stearic acid and the composites was performed using a TA instruments DSC Q10
(V9.9 Build 303, New Castle, DE, USA) at a heating rate of 5 ◦C/min under a constant stream of argon
at atmospheric pressure. Liquid nitrogen was used to cool the sample during the freezing period.
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3. Results

3.1. Elemental Composition

The main components of SCwt were Si, Al, and Fe, while the content of Ca, K, Ba, V, and P was less
(Table 1). The main components of SChc were Si, Al, and Fe, while the content of Cr, K, Ba, V, and P was
less. The content of V was 8182.42 ppm and 5479.98 ppm for SCwt and SChc, respectively, indicating
that the SCwt includes more vanadium. Other valuable elements, such as Cu, Zn, Ni, and Mo, are low
in the mineral composition, making little sense if recycled.

Table 1. X-ray fluorescence (XRF) results of samples (ppm).

Na Mg Al Si P SO3 Cl K Ca

SCwt 764.19 5646 41,876.47 308,186.67 4366.20 18,700 18,000 8546.81 20,642.86
SChc 487.45 2588.4 45,837.53 243,231.8 2841.96 567 0 10,652.81 2068.57

Ti V Cr Cu Zn As Se Rb Sr

SCwt 1362 8182.42 841.58 616 1348.15 143.94 35.59 27.43 725.15
SChc 1468.8 5479.98 9713.74 393.6 95.49 237.12 0 33.83 445.08

Y Zr Mo Ba Pb Co Mn Fe Ni

SCwt 126.02 63.63 46.67 30,623.53 176.37 15.73 123.94 38,745 330.4
SChc 57.5 46.61 42.67 20,451.50 41.77 11.8 179.72 21,886.9 815.77

3.2. Mineralogical Composition

Figure 1 shows the XRD patterns of the SCwt and SChc, indicating the respective phase composition
such as quartz, kaolinite, roscoelite, and goethite [36]. It can clearly be seen from the XRD curve that
the phase of the two stone coals is similar. The major phase of SCwt and SChc was quartz. Combined
with the results of the XRF, Fe, Ca, and Si in SCwt were slightly more than in SChc. The content of V in
SCwt is slightly greater than in SChc, whereas the content of Al and K in SCwt is slightly lower than in
SChc. This may be because the goethite in SCwt contains a small amount of vanadium [37]. Vanadium
seems to be affiliated mainly with roscoelite.
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3.3. FTIR Analysis

The FTIR spectra of samples are shown in Figure 2. The absorption at 3442 cm−1 and 2359 cm−1 in
all samples was attributed to loosely bound water (ν(H–O–H)) [38] and Al–OH [39], and the band at
2924 cm−1 in all samples was crystalline water (free water) [39]. The absorption bands at 1730 cm−1

and 1647 cm−1 were bending vibrations from adsorbed water in roscoelite [39]. The bands at 1456 cm−1

in all samples were attributed to stretching vibrations from CO3
2− in carbonate impurities [39,40].

The band at 1377 cm−1 in all samples was attributed to symmetric stretching vibrations from adsorbed
CO2 [41]. The bands at 1094 cm−1 in SCwt and 1089 cm−1 in SChc were attributed to antisymmetric
stretching vibrations from Si–O–Si in roscoelite and quartz [42]. The bands at 692 cm−1 and 798 cm−1

in all samples were attributed to symmetric stretching vibrations from Si–O–Si in quartz [42]. The band
at 515 cm−1 in all samples was attributed to Si–O–AlVI bending [43]. The bands at 469 cm−1 in all
samples were attributed to Si–O and Si–O–Si bending [39].
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3.4. TG-DTA Analysis

The TG and DTA curves of SCwt under the flow of O2 are shown in Figure 3a. According to
the TG curve, free water was released in the temperature range of 15–100 ◦C with a mass loss of
1.28%. Dehydration of lattice water occurred in the range of 100–689 ◦C with a mass loss of 4.82%.
From 689 ◦C to 879 ◦C, the weight loss was relatively stable, with a mass loss of 0.23%. From 879 ◦C
to 1140 ◦C, the weight loss maintained a rising trend with a mass loss of 1.66% due to the removal
of the structural hydroxyl groups from aluminosilicate minerals [41]. The TG curve of SCwt has no
obvious weightlessness step, while the corresponding DTA curve is a smooth curve without an obvious
endothermic peak. Figure 3b shows the TG and DTA curves of SChc under the flow of O2. According to
the TG curve, free water was released in the temperature range of 15–100 ◦C with a mass loss of
2.74%. The lattice water and structural hydroxyls (part) were released in 100–436 ◦C with a mass loss
of 4.00%. From 436 to 600 ◦C, the weight loss increased seriously, with a mass loss of 22.44% due to
the carbon oxidized and the dehydration of lattice water [44]. From 600 to 1130 ◦C, the weight loss
maintained the rising trend, with a mass loss of 3.13% due to the removal of the structural hydroxyl
groups from aluminosilicate minerals [41]. The TG curve of SChc has an obvious weightlessness step,
and in the DTA curve, an endothermic peak above 500 ◦C suggests that the endothermic enthalpies
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of SChc increased. There were no obvious chemical reactions in SCwt under O2 atmosphere at room
temperature to 1140 ◦C. This indicates that the SCwt had good thermal stability.Minerals 2019, 9, x FOR PEER REVIEW 6 of 16 
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3.5. Reflected Light Microscopy Images Analysis

The study of petrography is useful for the identification of rocks, minerals, and ores [38,45].
The reflected light microscopy images demonstrated that four types of mineral phases were easily
distinguished in two samples (Figure 4). The optical characteristic of roscoelite is that the ⊥ Bxa
interferogram can be seen on the (001) plane, and the irregular roscoelite particles were surrounded by
quartz. According to the optical characteristic of roscoelite, the dark roscoelite contains Fe impurities
or carbonaceous impurities (Figure 4b,c). Goethite was distributed in kaolinite in a wide range of sizes.
Kaolinite is mainly distributed along the bedding planes and, to a lesser extent, occurs as disseminated
fine particles (Figure 4a,d) [8]. Therefore, the mineralography compositions of these samples were
quartz, kaolinite, goethite, and roscoelite. However, the amount and size of roscoelite in SCwt was
slightly larger than in SChc, and the brownish-yellow area was also significantly larger than in SChc.
These results were in accord with the XRF and XRD results.
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3.6. SEM-EDS Analysis

The SEM-EDS analysis of the stone coal samples is presented in Figure 5, and atomic composition
contrasts are also identified. Figure 5a,c shows that the particles were well separated from each
other and that the shape of these particles is irregular. The stone coal samples presented flaky and
pellet structures; the size of the flaky structures was 1–2 µm, while the size of the pellet structures
was 0.1–1 µm. It is revealed that flaky structures were interspersed throughout the pellet structures.
According to the EDS results (Figure 5b,d), the V element emerged in both SCwt and SChc. These results
are in accord with the reflected light microscopy images and XRF results of the stone coal.

Secondary electron (SE) images and EDS elemental maps of SCwt and SChc are shown in Figures 6
and 7, respectively. These indicate that Si (Figures 6b and 7b), O (Figures 6c and 7c), and Al (Figures 6d
and 7d) emerged in the concentrated distribution, and Fe (Figures 6e and 7e) and V (Figures 6f and
7f) presented the uniform distribution. Si and O mainly originated from quartz, and Al was from
aluminosilicate (kaolinite and roscoelite). Fe and V were geared to goethite and roscoelite, respectively.
The elemental mapping diagrams of the two stone coal samples are similar, indicating that their
elemental composition and phase distributions are similar. The contents of vanadium minerals are
usually very low and are commonly detrital materials of terrigenous origin and, to a lesser extent,
from epigenetic igneous hydrothermal solutions [15]. Vanadium and roscoelite have a relatively
obvious synchronous distribution. Most of the vanadium in stone coal occurs in ground roscoelite.
The presence of V leads to the possibility of having roscoelite [7]. This suggests that roscoelite
was formed by a complex reaction involving a change in the oxidation–reduction potential of the
groundwater and the presence in the sandstone of sensitive associations of minerals containing
vanadium-rich iron and titanium oxides. The reduction spots formed by diffusion as part of the
same process [46]. The occurrence of roscoelite in depositional environment indicates input from
hydrothermal fluids [15]. The roscoelite is of authigenic origin and was probably derived from the
interaction between V derived from penetrating V-rich solutions and kaolinite already present in the
coal during an early stage of the diagenetic process [47]. The sediment-source region for the coal was
mainly due to Mesozoic intermediate-felsic volcanic rocks [8]. These results were in accord with the
XRF results of the stone coal.
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The EDS of the SC samples under the backscattered electron (BSE) mode is presented in Figure 8,
and atomic composition contrasts (Z-contrast) are also identified. The original EDS data are provided
in the Supplementary Materials. Four different contrasts can be seen in Figure 8a and are labeled as A1,
A2, A3, and A4, respectively. According to the EDS results (Figure 8b), the A1, A2, A3, and A3 were
quartz (dark-gray large grain), kaolinite (dark-gray small flake), roscoelite (light gray), and goethite
(bright gray), respectively, in the SCwt. This may be because the primary particles of SChc are too
small, and the color between the phases is not much different. But relying on the EDS analysis, quartz,
kaolinite, and roscoelite were also discovered in the SChc (Figure 8c,d) and labeled as C1, C2, and C3,
respectively. Moreover, quartz, kaolinite, and goethite emerged in Figure 8e, and the corresponding
EDS is presented in Figure 8f (E1, E2, and E3). These results were in accord with the reflected light
microscopy images and XRF results of the stone coal. In addition, relatively little roscoelite, kaolinite,
and goethite were detected according to the BSE and EDS. This is also the reason why the characteristic
peaks of kaolinite, goethite, and roscoelite are not obvious in the XRD results. Nevertheless, the optical
properties of the minerals in the reflected light microscopy and the results of the EDS data and their
elemental composition imply the possible presence of kaolinite, goethite, and roscoelite.
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Figure 8. Backscattered electron z-contrast (BSE-Z) images and energy dispersive X-ray spectroscopy
(EDS) of quartz, kaolinite, goethite, and roscoelite in SCwt (a,b) and SChc (c–f). (A1: quartz; A2:
kaolinite; A3: roscoelite; A4: goethite; C1: quartz; C2: kaolinite; C3: roscoelite; E1: quartz; E2: kaolinite;
E3: goethite).

3.7. The Thermal Conductivity of Stone Coal

Thermal conductivity is a fundamental factor for composite thermal storage material. The thermal
conductivity of SCwt is 0.19 W m−1 k−1, while the thermal conductivity of SChc is 0.24 W m−1 k−1.
The thermal conductivity of SChc is slightly greater due to the sample having a high carbon content.
It indicates that the SChc is more suitable for use as a composite thermal storage material. According to
the lattice theory, it is known that stone coal contains a large amount of silicate, and the Si–O bond is
the most powerful in the composition, so the crystal vibration of the grid is the most efficient in this
direction. According to the composition analysis of stone coal, the content of stone coal is complicated
and the Si–O bond in the unit cell increases, which will increase the vibration coupling between the
cells, and the phonon collision will increase, thus improving the thermal resistance. According to
the composition analysis, the metal ion composition in stone coal is also very different. However,
the metal ion generally does not participate in the phonon conduction, but the vibration of the Si–O
bond skeleton also partially excites the metal ion vibration, which also increases the difficulty of
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phonon propagation through the Si–O skeleton, thereby reducing the thermal conductivities of stone
coal [48]. The aforementioned results also provide the way for enhancing the thermal conductivity of
stone coal, such as adding the carbon materials.

3.8. Thermal Stability and Loading Capacity

As shown in Figure 9a, the curves of SCwt and SChc under N2 are similar to those under O2,
but are not as weightless as under O2. This was due to the release of free water and dehydration of
lattice water, not an oxidizing reaction (Figure 9b). Only one single decomposition process existed
in the tested temperature range of SA/SCwt, which was due to the degradation of SA. The TG curve
of SA/SChc has two obvious weightlessness steps. An endothermic peak above 200 ◦C suggested
decomposition of pure SA, and another endothermic peak in the curve of SA/SChc above 500 ◦C was
due to the dehydration of lattice water. As can be seen in Figure 9a, the maximum mass fractions of SA
in SA/SCwt and SA/SChc were 16.63% and 17.40%, respectively. Thus, the loading capacity of SChc

for phase change materials is higher than that of SCwt. The complete decomposition temperatures
(Tmax) for SA/SCwt and SA/SChc were in the range of 320–340 ◦C, indicating that the stone coal-based
composite phase change materials (PCMs) had good thermal stability under 300 ◦C. Moreover, the TG
curves and DTA curves of SCwt, SChc, SA/SCwt, and SA/SChc under the flow of N2 are shown in
Figure 9.

Minerals 2019, 9, x FOR PEER REVIEW 11 of 16 

 

thermal conductivities of stone coal [48]. The aforementioned results also provide the way for 

enhancing the thermal conductivity of stone coal, such as adding the carbon materials. 

3.8. Thermal Stability and Loading Capacity 

As shown in Figure 9a, the curves of SCwt and SChc under N2 are similar to those under O2, but 

are not as weightless as under O2. This was due to the release of free water and dehydration of lattice 

water, not an oxidizing reaction (Figure 9b). Only one single decomposition process existed in the 

tested temperature range of SA/SCwt, which was due to the degradation of SA. The TG curve of 

SA/SChc has two obvious weightlessness steps. An endothermic peak above 200 °C suggested 

decomposition of pure SA, and another endothermic peak in the curve of SA/SChc above 500 °C was 

due to the dehydration of lattice water. As can be seen in Figure 9a, the maximum mass fractions of 

SA in SA/SCwt and SA/SChc were 16.63% and 17.40%, respectively. Thus, the loading capacity of SChc 

for phase change materials is higher than that of SCwt. The complete decomposition temperatures 

(Tmax) for SA/SCwt and SA/SChc were in the range of 320–340 °C, indicating that the stone coal-based 

composite phase change materials (PCMs) had good thermal stability under 300 °C. Moreover, the 

TG curves and DTA curves of SCwt, SChc, SA/SCwt, and SA/SChc under the flow of N2 are shown in 

Figure 9. 

  

Figure 9. Thermogravimetric (TG) (a)—differential scanning calorimetry (DSC) (b) of SCwt, SChc, 

SA/SCwt, and SA/SChc. 

3.9. Thermal Storage Behavior of Composite Phase Change Materials 

It can be concluded that the thermal storage behavior of the composites was very close to that 

of the pure stearic acid (Figure 10), indicating no chemical reaction between stearic acid and stone 

coal during the preparation of the composites. The phase change properties were presented in Table 

2. The SA had a melting phase change temperature (Tm) of 52.91 °C in the heating curve and a 

freezing phase change temperature (Tf) of 53.10 °C in the cooling curve (Figure 10). DSC curves 

show that the heating curves of the two composites exhibit a peak; the phase change of SA/SCwt was 

at 52.18 °C (Figure 10), while the phase change of SA/SChc was at 52.77 °C (Figure 10). Furthermore, 

two transitions (a liquid–solid phase transition of SA/SCwt at 50.15 °C and a liquid–solid phase 

transition of SA/SChc at 53.24 °C) appeared in the cooling curve. The latent heats of melting (ΔHm) 

and freezing (ΔHf), therefore, were calculated to be 190.2 J g−1 and 191.5 J g−1, respectively, for stearic 

acid. However, the latent heats of melting and freezing were 29.21 J g−1 and 30.55 J g−1 for SA/SCwt, 

and 33.02 J g−1 and 33.17 J g−1 for SA/SChc, respectively. These values are lower than their theoretic 

values (Table 2).  

Figure 9. Thermogravimetric (TG) (a)—differential scanning calorimetry (DSC) (b) of SCwt, SChc,
SA/SCwt, and SA/SChc.

3.9. Thermal Storage Behavior of Composite Phase Change Materials

It can be concluded that the thermal storage behavior of the composites was very close to that
of the pure stearic acid (Figure 10), indicating no chemical reaction between stearic acid and stone
coal during the preparation of the composites. The phase change properties were presented in Table 2.
The SA had a melting phase change temperature (Tm) of 52.91 ◦C in the heating curve and a freezing
phase change temperature (Tf) of 53.10 ◦C in the cooling curve (Figure 10). DSC curves show that the
heating curves of the two composites exhibit a peak; the phase change of SA/SCwt was at 52.18 ◦C
(Figure 10), while the phase change of SA/SChc was at 52.77 ◦C (Figure 10). Furthermore, two transitions
(a liquid–solid phase transition of SA/SCwt at 50.15 ◦C and a liquid–solid phase transition of SA/SChc

at 53.24 ◦C) appeared in the cooling curve. The latent heats of melting (∆Hm) and freezing (∆Hf),
therefore, were calculated to be 190.2 J g−1 and 191.5 J g−1, respectively, for stearic acid. However,
the latent heats of melting and freezing were 29.21 J g−1 and 30.55 J g−1 for SA/SCwt, and 33.02 J g−1

and 33.17 J g−1 for SA/SChc, respectively. These values are lower than their theoretic values (Table 2).
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Table 2. Thermal properties of pure SA and SA/SC composites.

Sample Loadage (β, %)
Melting

Temperature
(Tm, ◦C)

Freezing
Temperature

(Tf, ◦C)

Latent Heat of
Melting (∆Hm, J g−1)

Latent Heat of
Freezing (∆Hf, J g−1)

Theoretic
Values of ∆Hm

(∆Hth, J g−1)

Crystallinity
of SA (Fc, %)

Efficient Energy
per Unit Mass of

SA (Eef, J g−1)

SA 100 52.91 53.10 190.2 191.5 - 100 -
SA/SCwt 16.63 52.18 50.15 29.21 30.55 31.63 92.35 175.64
SA/SChc 17.40 52.81 53.24 33.02 33.17 33.09 99.78 189.78
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The decrease in the latent heats of the composites is not only attributable to the lower fraction of
stearic acid within the composites but could also be related to the crystallinity of the stearic acid in
the composites. Crystallization of the stearic acid in the composites may be inhibited by interactions
between the stearic acid and the substrate, which would also reduce the latent heats of the composites.
The crystallinity of stearic acid (Fc) and efficient energy (Eef) in the composite were calculated by [49–53]:

Fc =
∆Hcomposite

∆HPCMβ
× 100%, (1)

Ee f = ∆HPCM × Fc, (2)

where ∆Hcomposite and ∆HPCM are the latent heats of the composites and pure stearic acid, respectively,
and β represents the loading of stearic acid in the composites. The crystallinity of stearic acid in the
SA/SChc (99.78%) was clearly higher than in the SA/SCwt (92.35%). The stearic acid in the SA/SChc had
a higher Eef (189.78 J g−1) than the SA/SCwt (175.64 J g−1). In this experiment, the loading of stearic
acid in SA/SCwt is higher than that in SA/SChc, but the latent heat of phase change in SA/SChc is higher
than SA/SCwt, and the crystallinity of stearic acid in SA/SChc is also higher than in SA/SCwt. This is
because the mineral composition in stone coal is complex, and the adsorption of components in SCwt

may affect the stearic acid molecules, reducing the regularity of stearic acid molecules and resulting in
a decrease in crystallinity and a decrease in enthalpy.

4. Conclusions

The mineralogical and thermal storage characteristics of two types of stone coal (SCwt and SChc)
were investigated by XRF, XRD, FTIR, TGA-DTA, reflected light microscopy, thermal conductivity,
and DSC. The content of V2O5 was 1.46 wt.% and 0.9778 wt.% for SCwt and SChc, respectively.
The main mineral phase in the two samples was quartz, kaolinite, roscoelite, and goethite. The results
of combining reflected light microscopy images and scanning electron microscopy of the stone coal show
that most of the roscoelite in the stone coal is dispersed around the quartz. The thermal conductivity
of SCwt and SChc was 0.19 W m−1 k−1 and 0.24 W m−1 k−1, respectively. The SA/SCwt and SA/SChc

composites were prepared by impregnating SA into SCwt and SChc, respectively. The loading capacities
of SCwt and SChc for SA were 16.63% and 17.40%, respectively. The latent heat value of SA/SChc

(33.02 J g−1) was higher than that of SA/SCwt (29.21 J g−1). The composite PCMs had good thermal
stability under 300 ◦C. Therefore, the SChc is a potential candidate for thermal storage applications due
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to its higher thermal conductivity and loading capacity. The results can provide a base for preparing
thermal storage materials from stone coal.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/10/594/s1,
Figure S1: The original EDS data (a) and BSE (b) of A1 in Figure 8; Figure S2: The original EDS data (a) and BSE
(b) of A2 in Figure 8; Figure S3: The original EDS data (a) and BSE (b) of A3 in Figure 8; Figure S4: The original
EDS data (a) and BSE (b) of A4 in Figure 8; Figure S5: The original EDS data (a) and BSE (b) of C1 in Figure 8;
Figure S6: The original EDS data (a) and BSE (b) of C2 in Figure 8; Figure S7: The original EDS data (a) and BSE (b)
of C3 in Figure 8; Figure S8: The original EDS data (a) and BSE (b) of E1 in Figure 8; Figure S9: The original EDS
data (a) and BSE (b) of E2 in Figure 8; Figure S10: The original EDS data (a) and BSE (b) of E3 in Figure 8.
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