Correlations between the Properties of Crushed Fine Aggregates
Abstract
:1. Introduction
2. State-of-the-Art Review
2.1. Standardized and Non-Standardized Procedures for Fine Aggregate Quality Testing
2.1.1. Sand Equivalent and Methylene Blue
2.1.2. Water Absorption and Relative Density
2.1.3. Magnesium Sulphate Soundness and Micro-Deval
2.2. Established Correlations between Fine Aggregate Properties
3. Materials and Methodology
3.1. Geological Setting
3.2. Materials
3.3. Testing Methodology
4. Results and Discussion
5. Conclusions
- The physicomechanical properties of fine aggregates are influenced by their mineralogical composition.
- Diabasic/basaltic aggregates have slightly higher water absorption values due to the presence of phyllosilicate minerals and zeolite.
- The presence of phyllosilicate minerals, as well as of high activity clays, affects the results of the methylene blue test in diabasic/basaltic aggregates. These aggregates consequently have lower sand equivalent values.
- The results of the magnesium sulphate soundness tests are noticeably high. Carbonates generally display higher percentage mass losses due to their porosity and softness. The high percentage of dolomite in the reef limestone aggregate samples also seems to be decisive in the final MS results.
- The magnesium sulphate soundness coefficients correlate well with the Micro-Deval coefficients. This suggests that the Micro-Deval could possibly serve as an alternative test method for the quality testing of fine aggregates, despite the fact that it uses a different mechanism to quantify aggregate durability (i.e., abrasion/friction in the presence of water, rather than chemical weathering).
- A good correlation between the methylene blue and sand equivalent tests has also been observed; however, these two tests remain complementary and should not replace each other in assessing fine aggregate quality.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tugrul, A.; Yilmaz, M. Assessing the Quality of Sandstones for Use as Aggregate in concrete. Mag. Concr. Res. 2012, 64, 1067–1078. [Google Scholar] [CrossRef]
- Theodoridou, M.; Ioannou, I.; Philokyprou, M. New Evidence of Early Use of Artificial Pozzolanic Material in Mortars. J. Archaeol. Sci. 2013, 40, 3263–3269. [Google Scholar] [CrossRef]
- Stefanidou, M.; Papayianni, I. The Role of Aggregates on the Structure and Properties of Lime Mortars. Cement Concr. Comp. 2005, 27, 914–919. [Google Scholar] [CrossRef]
- Alexander, M.G.; Mindess, S. Aggregates for Concrete; Taylor and Francis Group: New York, NY, USA, 2005; p. 448. ISBN 0-203-96369-5. [Google Scholar]
- Mehta, P.K.; Monteiro, P.J.M. Concrete. Microstructure, Properties, and Materials, 4th ed.; The McGraw-Hill Companies: New York, NY, USA, 2013. [Google Scholar]
- De Brito, J.; Kurda, R.; da Silva, P.R. Can we truly predict the Compressive Strength of Concrete without Knowing the Properties of Aggregates? Appl. Sci. 2018, 8, 1095. [Google Scholar] [CrossRef]
- Tugrul, A.; Hasdemir, S.; Yılma, M. The Effect of Feldspar, Mica and Clay Minerals on Compressive Strength of Mortar. In Engineering Geology for Society and Territory—Volume 5; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer International Publishing: Basel, Switzerland, 2015; pp. 93–96. [Google Scholar]
- Quiroga, P.N.; Fowler, D.W. The Effects of Aggregates Characteristics on the Performance of Portland Cement Concrete; Technical Report for International Center for Aggregates Research: Austin, TX, USA, July 2004. [Google Scholar]
- Schouenborg, B.; Akesson, U. Aggregate Research in Support of European Standardization. In Engineering Geology for Infrastructure Planning in Europe: A European Perspective; Hack, R., Azzam, R., Charlier, R., Eds.; Springer Science & Business Media: Heidelberg, Germany, 2004; p. 803. ISBN 1613-2580. [Google Scholar]
- Petkovšek, A.; Maček, M.; Pavšič, P.; Bohar, F. Fines Characterization through the Methylene Blue and Sand Equivalent Test: Comparison with Other Experimental Techniques and Application of Criteria to the Aggregate Quality Assessment. Bull. Eng. Geol. Environ. 2010, 69, 561–574. [Google Scholar] [CrossRef]
- EN 933-8. Tests for the Geometrical Properties of Aggregates—Part 8: Assessment of Fines—Sand Equivalent Test; European Committee for Standardization: Brussels, Belgium, 2012+A1:2015.
- ASTM D2419-14. Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregates; American Society for Testing and Materials: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Kondelchuk, D.; Miskovsky, K. Determination of the Test Methods Sensitive to Free Mice Content in Aggregate Fine Fractions. J. Mater. Eng. Perform. 2009, 18, 282–286. [Google Scholar] [CrossRef]
- Westerholm, M.; Lagerblad, B.; Silfwerbrand, J.; Forssberg, E. Influence of Fine Aggregate Characteristics on the Rheological Properties of Mortars. Cement Concr. Comp. 2008, 30, 274–282. [Google Scholar] [CrossRef]
- Nikolaides, A.; Manthos, E.; Sarafidou, M. Sand Equivalent and Methylene Blue Value of Aggregates for Highway Engineering. Found. Civ. Environ. Eng. 2007, 10, 111–121. [Google Scholar]
- Mukhopadhyay, A.K.; Pitre, B.; Russell, A.; Arambula, E.; Estakhri, C.; Deng, Y. Treatments for Clays in Aggregates Used to Produce Cement Concrete, Bituminous Materials, and Chip Seals; Technical Report for Texas Department of Transportation: Austin, TX, USA, July 2013.
- ASTM C837-09. Standard Test Method for Methylene Blue Index of Clay; American Society for Testing and Materials: West Conshohocken, PA, USA, 2014. [Google Scholar]
- EN 933-9. Tests for the Geometrical Properties of Aggregates—Part 9: Assessment of Fines—Methylene Blue Test; European Committee for Standardization: Brussels, Belgium, 2009+A1:2013.
- Kandhal, P.S.; Parker, F.J.R. Aggregate Tests Related to Asphalt Concrete Performance in Pavements; Final Report to the Transportation Research Board: Washington, DC, USA, 1998. [Google Scholar]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Tsikouras, B.; Papoulis, D.; Lampropoulou, P.; Hatzipanagiotou, K. The Influence of Alteration of Aggregates on the Quality of the Concrete: A Case Study from Serpentinites and Andesites from Central Macedonia (North Greece). Geosciences 2018, 8, 115. [Google Scholar] [CrossRef]
- Nehdi, M.L. Clay in Cement-Based Materials: Critical Overview of State-of-the-Art. Constr. Build. Mater. 2014, 51, 372–382. [Google Scholar] [CrossRef]
- Cortas, R.; Rozière, E.; Staquet, S.; Hamami, A.; Loukili, A.; Delplancke-Ogletree, M.P. Effect of the Water Saturation of Aggregates on the Shrinkage Induced Cracking Risk of Concrete at Early Age. Cement Concr. Comp. 2014, 50, 1–9. [Google Scholar] [CrossRef]
- Alqarni, A.S. Quantifying the Characteristics of Fine Aggregate Using Direct and Indirect Test Methods. Master’s Thesis, University of Texas, Austin, TX, USA, December 2013. [Google Scholar]
- ASTM C128-15. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015. [Google Scholar]
- EN 1097-6. Tests for the Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption; European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- Fookes, P.G. An Introduction to the Influence of Natural Aggregates on the Performance and Durability of Concrete. Q. J. Eng. Geol. 1980, 13, 207–229. [Google Scholar] [CrossRef]
- Brandes, H.G.; Robinson, C.E.; Johnson, G.P. Soil and Rock Properties in a Young Volcanic Deposit on the Island of Hawaii. J. Geotech. Geoenviron. 2011, 137, 597–610. [Google Scholar] [CrossRef]
- Ioannou, I.; Petrou, M.F.; Fournari, R.; Andreou, A.; Hadjigeorgiou, C.; Tsikouras, B.; Hatzipanagiotou, K. Crushed Limestone as an Aggregate in Concrete Production: The Cyprus Case. Geol. Soc. Spec. Publ. 2010, 331, 127–135. [Google Scholar] [CrossRef]
- Fournari, R.; Ioannou, I.; Vatyliotis, D. A Study of Fine Aggregate Properties and their Effect on the Quality of Cementitious Composite Materials. In IAEG XII Congress Engineering Geology for Society and Territory—Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation, 15–19 Sep 2014 Torino, Italy; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer: New York, NY, USA; London, UK, 2015; pp. 33–36. [Google Scholar]
- Williams, S.G.; Cunningham, J.B. Evaluation of Aggregate Durability Performance Test Procedures. 2012. Available online: http://arkansastrc.com/TRC%20REPORTS/TRC%200905.pdf (accessed on 20 February 2016).
- West, D. Brard’s test into the 21st Century: Sodium Sulphate Soundness Testing of Dimension Stone. In Sandstone City: Sydney’s Dimension Stone and Other Sandstone Geomaterials; McNally, G.H., Franklin, B.J., Eds.; Geological Society of Australia Environmental, Engineering and Hydrogeology Specialist Group Monograph: Sydney, Australia, 2000; Volume 5, pp. 138–148. ISBN 1876315229. [Google Scholar]
- EN 1367-2. Tests for Thermal and Weathering Properties of Aggregates—Part 2: Magnesium Sulphate Test; European Committee for Standardization: Brussels, Belgium, 2009. [Google Scholar]
- ASTM C88/C88M-18. Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate; American Society for Testing and Materials: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Ioannou, I.; Fournari, R.; Petrou, M. Testing the Soundness of Aggregates Using Different Methodologies. Constr. Build. Mater. 2013, 40, 604–610. [Google Scholar] [CrossRef]
- Wu, Y.; Parker, F.; Kandhal, Κ. Aggregate Toughness/Abrasion Resistance and Durability/Soundness Tests Related to Asphalt Concrete Performance in Pavements; Technical Report for NCAT: Auburn, AL, USA, March 1998. [Google Scholar]
- Clement, J.; Stutts, Z.; Alqarni, A.; Fowler, D.; Whitney, D. Revamping Aggregate Property Requirements for Portland Cement Concrete; Technical Report for the Center for Transportation Research at The University of Texas: Austin, TX, USA, August 2013. [Google Scholar]
- Jayawickrama, P.W.; Hossain, S.; Hoare, A.R. Long-Term Research on Bituminous Coarse Aggregate: Use of Micro-Deval Test for Project Level Aggregate Quality Control; Technical Report for Texas Transportation Institute: Austin, TX, USA, March 2007. [Google Scholar]
- ASTM D7428-15. Standard Test Method for Resistance of Fine Aggregate to Degradation by Abrasion in the Micro-Deval Apparatus; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015. [Google Scholar]
- EN 1097-1. Tests for the Mechanical and Physical Properties of Aggregates—Part 1: Determination of the Resistance to Wear (Micro-Deval); European Committee for Standardization: Brussels, Belgium, 2011. [Google Scholar]
- Cuelho, E.; Mokwa, R.; Obert, K. Comparative Analysis of Coarse Surfacing Aggregate Using Micro-Deval, l.A. Abrasion and Sodium Sulfate Soundness Tests; Final Report to the Western Transportation Institute: Bozeman, MT, USA, January 2007. [Google Scholar]
- Phillips, F.W. Comparative Analysis between the Magnesium Sulfate Soundness and Micro-Deval Tests in the Evaluation of Bituminous Aggregates. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, May 2000. [Google Scholar]
- Hanna, A.N. Aggregate Tests for Portland Cement Concrete Pavements: Review and Recommendations; Technical Report for the National Cooperative Highway Research Program: Washington, DC, USA, September 2003. [Google Scholar]
- Rogers, C.A.; Bailey, M.L.; Price, B. Micro-Deval Test for Evaluating the Quality of Fine Aggregate for Concrete and Asphalt. Transp. Res. Record. 1991, 1301, 68–76. [Google Scholar]
- Rogers, C.A.; Lane, B.C.; Senior, S.A. The Micro-Deval Abrasion Test for Coarse and Fine Aggregate in Asphalt Pavement; Technical Report for the Materials Engineering and Research Office, Ministry of Transportation (MTO): Downsview, ON, Canada, 2003. [Google Scholar]
- Brandes, H.G.; Robinson, C.E. Correlation of Aggregate Test Parameters to Hot Mix Asphalt Pavement Performance in Hawaii. J. Transp. Eng. 2006, 132, 86–95. [Google Scholar] [CrossRef]
- Senior, S.A.; Rogers, C.A. Laboratory Tests for Predicting Coarse Aggregate Performance in Ontario. Transp. Res. Record. 1991, 1301, 97–106. [Google Scholar]
- Rangaraju, P.; Edlinski, J. Comparative Evaluation of Micro-Deval Abrasion Test with Other Toughness/Abrasion Resistance and Soundness Tests. J. Mater. Civ. Eng. 2008, 20, 343–351. [Google Scholar] [CrossRef]
- Hoare, R.A. Feasibility of Using the Micro-Deval Test Method as an Aggregate Production Quality Control Tool. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, December 2003. [Google Scholar]
- Richardson, D.N. Quick Test for Percent of Deleterious Material; Final Report to the Missouri Department of Transportation: Jefferson City, MI, USA, August 2009. [Google Scholar]
- Prowell, B.D.; Zhang, J.; Brown, E.R. Aggregate Properties and the Performance of Superpave-Designed Hot Mix Asphalt; Final Report to the National Cooperative Highway Research Program: Washington DC, USA, June 2005. [Google Scholar]
- Fowler, D.W.; Allen, J.J.; Lang, A.; Range, P. The Prediction of Coarse Aggregate Performance by Micro-Deval and Other Aggregate Test; Technical Report for the International Center for Aggregates Research: Austin, TX, USA, June 2006. [Google Scholar]
- Williamson, G.S. Investigation of Testing Methods to Determine Long-Term Durability of Wisconsin Aggregate Resources Including Natural Materials, Industrial By-Products, and Recycled/Reclaimed Materials. Master’s Thesis, Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, April 2005. [Google Scholar]
- Goswami, S.C. Influence of Geological Factors on Soundness and Abrasion Resistance of Road Surface Aggregates: A Case Study. Bull. Eng. Geol. Environ. 1984, 30, 59–61. [Google Scholar] [CrossRef]
- Koukis, G.; Sabatakakis, N.; Spyropoulos, A. Resistance Variation of Low-Quality Aggregates. Bull. Eng. Geol. Environ. 2007, 66, 457–466. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. The Influence of Alteration on the Engineering Properties of Dolerites: The Examples from the Pindos and Vourinos Ophiolites (Northern Greece). Int. J. Rock Mech. Min. 2010, 47, 69–80. [Google Scholar] [CrossRef]
- Aghamelu, O.P.; Okogbue, C.O. Some Geological Considerations and Durability Analysis on the Use of Crushed Pyroclastics from Abakaliki (Southeastern Nigeria) as Concrete Aggregate. Geotech. Geol. Eng. 2013, 31, 699–711. [Google Scholar] [CrossRef]
- Tia, M.; Bekoe, P.; Chen, Y. Development of Tiered Aggregate Specifications for Fdot Use; Final Report to the Department of Civil and Coastal Engineering, Engineering School of Sustainable Infrastucture and Environment, Collage of Engineering, University of Florida: Gainesville, FL, USA, March 2012. [Google Scholar]
- Brennan, M.J.; Crawley, K.; Sheahan, J.N.; Jordan, J. Ranking the Performance of Aggregates Using CEN Test Results. Road Mater. Pavement. 2003, 4, 439–454. [Google Scholar] [CrossRef]
- Shakoor, A.; Bonelli, R.E. Relationship between Petrographic Characteristics, Engineering Index Properties, and Mechanical Properties of Selected Sandstones. Bull. Assoc. Eng. Geol. 1991, 28, 55–71. [Google Scholar] [CrossRef]
- Miskovsky, K.; Taborda Duarte, M.; Kou, S.Q.; Lindqvist, P.A. Influence of the Mineralogical Composition and Textural Properties on the Quality of Coarse Aggregates. J. Mater. Eng Perform. 2004, 13, 144–150. [Google Scholar] [CrossRef]
- Yzenas, J.J., Jr. Bulk Density, Relative Density (Specific Gravity), Pore Structure, Absorption and Surface Moisture. In Significance of Tests and Properties of Concrete & Concrete-Making Materials; Lamond, J., Pielert, J., Eds.; ASTM: Philadelphia, PA, USA, 2006; pp. 346–354. ISBN 0-8031-3367-7. [Google Scholar]
- Pomonis, P.; Rigopoulos, I.; Tsikouras, B.; Hatzipanagiotou, K. Relationships between Petrographic and Physicomechanical Properties of Basic Igneous Rocks from the Pindos Ophiolitic Complex, NW Greece. In Proceedings of the 11th International Conference of the Geological Society of Greece, Bulletin of the Geological Society of Greece, Athens, Greece, 24–26 May 2007. [Google Scholar]
- Makani, A.; Vidal, T. Relationships between Mineralogical and Physico-Mechanical Properties of Granitic Aggregates. Chem. Mater. Res. 2013, 4, 25–31. [Google Scholar]
- Fortes, A.P.P.; Anastasio, S.; Kuznetsova, E.; Danielsen, S.W. Behaviour of Crushed Rock Aggregates used in Asphalt Surface Layer Exposed to Cold Climate Conditions. Environ. Earth Sci. 2016, 75, 1414. [Google Scholar] [CrossRef]
- Santos, A.R.; Veiga, M.R.; Santos Silva, A.; de Brito, J.; Alvarez, J.I. Evolution of The Microstructure of Lime Based Mortars and Influence on the Mechanical Behaviour: The Role of the Aggregates. Constr. Build. Mater. 2018, 187. [Google Scholar] [CrossRef]
- Haraldsson, H. Relations between Petrography and the Aggregate Properties of Icelandic Rocks. Bull. Int. Assoc. Eng. Geol. 1984, 30, 73–76. [Google Scholar] [CrossRef]
- Marfil, S.A.; Maiza, P.J. Assessment of the Potential Alkali Reactivity of Rhyolitic Rocks from Argentina. In Proceedings of the 10th IAEG International Congress Engineering Geology for Tomorrow’s Cities, Nottingham, UK, 6–10 September 2006. [Google Scholar]
- Tugrul, A.; Zarif, I.H. The Influence of Mineralogical Textural and Chemical Characteristics on the Durability of Selected Sandstones in Istanbul, Turkey. Bull. Eng. Geol. Environ. 1998, 57, 185–190. [Google Scholar] [CrossRef]
- Sabatakakis, N.; Koukis, G.; Tsiambaos, G.; Papanakli, S. Index Properties and Strength Variation Controlled by Microstructure for Sedimentary Rocks. Eng. Geol. 2008, 97, 80–90. [Google Scholar] [CrossRef]
- Kazi, A.; Al-Mansour, Z.R. Influence of Geological Factors on Abrasion and Soundness Characteristics of Aggregate. Eng. Geol. 1980, 15, 195–203. [Google Scholar] [CrossRef]
- Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of Uniaxial Compressive Strength of Sandstones using Petrography-Based Models. Eng. Geol. 2008, 96, 141–158. [Google Scholar] [CrossRef]
- Williams, G.D.; Hampel, K.; Allen, J.J.; Fowler, D.W. The Significance and Application of the Micro-Deval Test; Technical Report for the International Center for Aggregates Research: Austin, TX, USA, 2005. [Google Scholar]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329. [Google Scholar] [CrossRef]
- Ben-Avraham, Z.; Kempler, D.; Ginzburg, A. Plate Convergence in the Cyprean Arc. Tectonophysics 1988, 146, 231–240. [Google Scholar] [CrossRef]
- Van der Meer, F.; Vazquez-Torres, F.M.; Van Dijk, P.M. Spectral Characterization of Ophiolite Lithologies in the Troodos Ophiolite Complex of Cyprus and its Potential in Prospecting for Massive Sulphide Deposits. Int. J. Remote Sens. 1997, 18, 1245–1257. [Google Scholar] [CrossRef]
- Stylianou, I.I.; Tassou, S.; Christodoulides, P.; Panayides, I.; Florides, G. Measurement and Analysis of Thermal Properties of Rocks for the Compilation of Geothermal Maps of Cyprus. Renew. Energy 2016, 88, 418–429. [Google Scholar] [CrossRef]
- Constantinou, G.; Panagides, I. Κύπρος και Γεωλογία. Επιστήμη—Περιβάλλον—Πολιτισμός [Cyprus and Geology. Science—Environment- Culture]; Bank of Cyprus Cultural Foundation: Cyprus, Nicosia, 2013; ISBN 978-9963-42-940-0. (In Greek) [Google Scholar]
- Richardson, C.J.; Cann, J.R.; Richards, H.G.; Cowan, J.G. Metal-Depleted root Zones of the Troodos Ore-Forming Hydrothermal Systems, Cyprus. Earth Planet. Sc. Lett. 1987, 84, 243–253. [Google Scholar] [CrossRef]
- Kinnaird, T.C. Tectonic and Sedimentary Response to Oblique and Incipient Continental—Continental Collision in the Easternmost Mediterranean (Cyprus). Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 2008. [Google Scholar]
- Zomeni, Z. Quaternary Marine Terraces on Cyprus: Constraints on Uplift and Pedogenesis, and the Geoarchaeology of Palaipafos. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2012. [Google Scholar]
- McCallum, J.E.; Robertson, A.H.F. Late Pliocene-Early Pleistocene Athalassa Formation, North-Central Cyprus: Carbonates sand Bodies in a Shallow Seaway between two Emerging Landmasses. Terra Nova 1995, 7, 265–278. [Google Scholar] [CrossRef]
- Franzini, M.; Leoni, L.; Lezzerini, C.R. Relationships between Mineralogical Composition, Water Absorption and Hydric Dilatation in the “Macigno” Sandstones from Lunigiana (Massa, Tuscany). Eur. J. Mineral. 2007, 19, 113–123. [Google Scholar] [CrossRef]
- Toth, J. Groundwater in Igneous, Metamorphic, and Sedimentary Rocks. In Groundwater—Volume I; Silveira, L., Usunoff, E.J., Eds.; EOLSS Publications: Oxford, UK, 2009; pp. 67–96. ISBN 978-1-84826-027-6. [Google Scholar]
- Tugrul, A. The effect of Weathering on Pore Geometry and Compressive Strength of Selected Rock Types from Turkey. Eng. Geol. 2004, 75, 215–227. [Google Scholar] [CrossRef]
- Dokic, O.; Matovic, V.; Eric, S.; Saric, K. Influence of Engineering Properties on Polished Stone Value (PSV): A Case Study on Basic Igneous Rocks from Serbia. Constr. Build. Mater. 2015, 101, 1088–1096. [Google Scholar] [CrossRef]
- Kelsall, P.C.; Watters, R.J.; Franzone, J.G. Engineering Characterization of Fissured, Weathered Dolerite and Vesicular Basalt. In Proceedings of the 27th U.S. Symposium on Rock Mechanics Rock Mechanics: Key to Energy Production, Tuscaloosa, AL, USA, 23–25 June 1986; pp. 77–84. [Google Scholar]
- Timur, A.; Hempkins, W.B.; Weinbrandt, R.M. Scanning Electron Microscope Study of Pore Systems in Rocks. J. Geophys. Res. 1971, 76, 4932–4948. [Google Scholar] [CrossRef]
- Lindquist, J.E.; Malaga, K.; Middendorf, B.; Savukoski, M.; Pétursson, M.P. Frost Resistance of Natural Stone, the Importance of Micro and Nano-Porosity, Geological Survey of Sweden, External Research Project Report. Available online: http://www.sgu.se/dokument/fou_extern/Lindqvist-etal_2007.pdf (accessed on 3 February 2016).
- Carlos, A.; Masumi, I.; Hiroaki, M.; Maki, M.; Takahisa, O. The effects of limestone aggregate on concrete Properties. Constr. Build. Mater. 2010, 24, 2363–2368. [Google Scholar]
- Rouvelas, G.; Xintaras, K.; Alafouzos, K. Determination of Clay Content or Plastic Fines in Aggregate through Sand Equivalent Test (ASTM D 2419-02 and EN 933-08) and Methylene Blue (EN 933-09)—Comparative results. In Proceedings of the 16th Concrete Conference, Paphos, Cyprus, 21–23 October 2009. (In Greek). [Google Scholar]
- Stapel, E.E.; Verhoef, P.N.W. The Use of the Methylene Blue Adsorption Test in Assessing the Quality of Basaltic Tuff Rock Aggregate. Eng. Geol. 1989, 26, 233–246. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.B.; Fusi, N.; Castellanza, R. General Characterization of the Mechanical Behaviour of Different Volcanic Rocks with Respect to Alteration. Eng. Geol. 2014, 169, 1–13. [Google Scholar] [CrossRef]
- Giannakopoulou, P.P.; Petrounias, P.; Rogkala, A.; Tsikouras, B.; Stamatis, P.M.; Pomonis, P.; Hatzipanagiotou, K. The Influence of the Mineralogical Composition of Ultramafic Rocks on Their Engineering Performance: A Case Study from the Veria-Naousa and Gerania Ophiolite Complexes (Greece). Geosciences 2018, 8, 251. [Google Scholar] [CrossRef]
- EN 12620. Aggregates for Concrete; European Committee for Standardization: Brussels, Belgium, 2013. [Google Scholar]
- Benavente, D.; Garcia del Cura, M.A.; Garcia-Guinea, J.; Sanchez-Moral, S.; Ordóñez, S. Role of Pore Structure in Salt Crystallization in Unsaturated Porous Stone. J. Cryst. Growth. 2004, 260, 532–544. [Google Scholar] [CrossRef]
- Modestou, S.; Theodoridou, M.; Fournari, R.; Ioannou, I. Physico-Mechanical Properties and Durability Performance of Natural Building and Decorative Carbonate Stones from Cyprus. In Sustainable Use of Traditional Geomaterials in Construction Practice; Přikryl, R., Török, A., Gómez-Heras, M., Miskovsky, K., Theodoridou, M., Eds.; The Geological Society: London, UK, 2016; pp. 145–162. ISBN 9781862397187. [Google Scholar]
- Balboni, E.; Espinosa-Marzal, R.M.; Doehne, E.; Scherer, G.W. Can Drying and Re-Wetting of Magnesium Sulfate Salts lead to Damage of Stone? Environ. Earth Sci. 2011, 63, 1463–1473. [Google Scholar] [CrossRef]
- Gatchalian, D. Characterization of Aggregate Resistance to Degradation in Stone Matrix Asphalt Mixtures. Master’s Thesis, Texas A&M University, Texas, TX, USA, December 2005. [Google Scholar]
- Rismantojo, E. Permanent Deformation and Moisture Susceptibility Related Aggregate Tests for Use in Hot-Mix Asphalt Pavements. Ph.D. Thesis, Purdue University, West Lafayette, PA, USA, December 2002. [Google Scholar]
- Petrounias, P.; Rogkala, A.; Kalpogiannaki, M.; Tsikouras, B.; Hatzipanagiotou, K. Comparative Study of Physico-Mechanical Properties of Ultrabasic Rocks (Veria-Naousa Ophiolite) and Andesites from Central Macedonia (Greece). Bull. Geol. Soc. Gr. 2016, 50, 1989–1998. [Google Scholar]
- Dakwar, M.A. Evaluation of Durability of Existing Base Aggregates in Wisconsin Pavements. Master’s Thesis, University of Wisconsin Milwaukee, Milwaukee, WI, USA, May 2017. [Google Scholar]
- Titi, H.H.; Dakwar, M.A.; Sooman, M.; Tabatabai, H. Long Term Performance of Gravel Base Course Layers in Asphalt Pavements. Case Stud. Constr. Mater. 2018, 9, e00208. [Google Scholar] [CrossRef]
Material Type | Sample Code |
---|---|
Diabase/Basalt | D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12 |
Reef Limestone | L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12 |
Calcarenite Limestone | C1, C2, C3, C4, C5, C6 |
Sample Code | WA (%) | ρrd (Mg/m3) | MB (g/kg) | SE (%) | MS (%) | MD (%) |
---|---|---|---|---|---|---|
D1 | 2.1 | 2.62 | 2.2 | 28 | 34 | 18.0 |
D2 | 2.1 | 2.62 | 1.2 | 53 | 38 | 17.1 |
D3 | 2.1 | 2.68 | 1.0 | 63 | 33 | 17.6 |
D4 | 2.8 | 2.58 | 1.2 | 65 | 32 | 17.6 |
D5 | 2.5 | 2.60 | 1.5 | 41 | 24 | 16.3 |
D6 | 3.3 | 2.54 | 2.7 | 50 | 36 | 21.4 |
D7 | 2.4 | 2.63 | 1.5 | 83 | 20 | 16.3 |
D8 | 1.3 | 2.72 | 3.0 | 34 | 26 | 16.1 |
D9 | 2.0 | 2.70 | 2.7 | 36 | 31 | 17.8 |
D10 | 3.0 | 2.59 | 2.0 | 73 | 32 | 15.6 |
D11 | 2.6 | 2.60 | 1.5 | 64 | 42 | 20.6 |
D12 | 2.7 | 2.59 | 2.5 | 35 | 51 | 20.0 |
L1 | 3.0 | 2.52 | 0.2 | 77 | 63 | 36.1 |
L2 | 1.5 | 2.72 | 0.2 | 76 | 68 | 38.5 |
L3 | 1.5 | 2.68 | 0.5 | 75 | 29 | 15.5 |
L4 | 2.5 | 2.60 | 0.8 | 66 | 45 | 19.1 |
L5 | 1.0 | 2.64 | 0.2 | 87 | 14 | 14.4 |
L6 | 1.8 | 2.58 | 0.7 | 75 | 29 | 20.7 |
L7 | 1.4 | 2.62 | 1.0 | 72 | 47 | 36.5 |
L8 | 1.2 | 2.66 | 0.2 | 79 | 60 | 31.2 |
L9 | 2.4 | 2.56 | 2.5 | 63 | 41 | 32.2 |
L10 | 1.4 | 2.58 | 0.5 | 85 | 37 | 19.4 |
L11 | 0.3 | 2.70 | 2.0 | 67 | 39 | 23.8 |
L12 | 0.8 | 2.73 | 0.2 | 79 | 53 | 23.2 |
C1 | 1.5 | 2.60 | 1.0 | 77 | 45 | 19.7 |
C2 | 1.9 | 2.58 | 1.0 | 68 | 42 | 22.1 |
C3 | 1.2 | 2.61 | 1.2 | 78 | 40 | 19.3 |
C4 | 1.5 | 2.60 | 1.2 | 71 | 36 | 22.4 |
C5 | 1.7 | 2.60 | 1.7 | 74 | 42 | 18.6 |
C6 | 3.3 | 2.50 | 1.7 | 64 | 49 | 25.2 |
Samples | PXRD Analysis |
---|---|
D1 | Albite (33%), Chlorite (27%), Quartz (17%), Anorthite (9%), Calcite (5%), Augite (4%) |
D2 | Anorthite (22%), Albite (21%), Chlorite (17%), Actinolite (9%), Quartz (7%), Laumontite (6%), Augite (6%), Calcite (5%), Analcime (3%) |
D3 | Albite (39%), Chlorite (16%), Quartz (12%), Anorthite (11%), Actinolite (6%), Epidote (4%), Augite (4%), Magnetite (2%), Natrolite (2%) |
D4 | Anorthite (25%), Albite (22%), Chlorite (18%), Actinolite (8%), Laumontite (6%), Quartz (6%), Augite (4%), Calcite (4%), Analcime (2%), Chabazite (2%) |
D5 | Anorthite (26%), Actinolite (25%), Albite (15%), Laumontite (11%), Natrolite (5%), Chlorite (5%), Quartz (3%), Analcime (3%), Calcite (2%), Epidote (2%), Augite (2%) |
D6 | Albite (27%), Chlorite (22%), Anorthite (15%), Quartz (10%), Actinolite (8%), Augite (6%), Calcite (5%), Analcime (3%) |
D7 | Anorthite (26%), Actinolite (23%), Albite (22%), Chlorite (10%), Quartz (6%), Augite (4%), Analcime (3%) |
D8 | Chlorite (27%), Albite (27%), Anorthite (12%), Quartz (12%), Actinolite (8%), Calcite (4%), Augite (4%), Natrolite (2%) |
D9 | Albite (31%), Chlorite (24%), Anorthite (12%), Quartz (10%), Actinolite (9%), Epidote (4%), Augite (3%), Natrolite (2%) |
D10 | Anorthite (24%), Actinolite (22%), Chlorite (13%), Augite (12%), Albite (10%), Analcime (7%), Quartz (5%), Natrolite (3%), Chabazite (2%) |
D11 | Actinolite (24%), Albite (22%), Anorthite (17%), Chlorite (14%), Laumontite (8%), Augite (4%), Analcime (3%), Chabazite (2%), Quartz (2%), Natrolite (2%) |
D12 | Albite (29%), Chlorite (19%), Laumontite (15%), Actinolite (13%), Anorthite (11%), Augite (4%), Quartz (4%), Chabazite (2%) |
L1 | Calcite (61%), Dolomite (38%) |
L2 | Calcite (58%), Dolomite (39%) |
L3 | Dolomite (83%), Calcite (16%) |
L4 | Dolomite (76%), Calcite (24%) |
L5 | Calcite (98%) |
L6 | Calcite (95%), Dolomite (4%) |
L7 | Calcite (86%), Dolomite (6%), Muscovite (6%) |
L8 | Dolomite (49%), Calcite (47%), Muscovite (2%) |
L9 | Calcite (82%), Dolomite (9%) Muscovite (7%), Quartz (2%) |
L10 | Calcite (95%), Dolomite (3%) |
L11 | Calcite (61%), Dolomite (34%), Muscovite (4%) |
L12 | Dolomite (67%), Calcite (30%) |
C1 | Calcite (52%), Albite (17%), Quartz (12%), Anorthite (6%), Dolomite (4%), Titanite (3%), Chlorite (2%) |
C2 | Calcite (49%), Quartz (14%), Albite (14%), Anorthite (8%), Dolomite (5%), Titanite (3%), Muscovite (2%), Chlorite (2%) |
C3 | Calcite (47%), Albite (17%), Quartz (12%), Anorthite (8%), Dolomite (5%), Muscovite (4%), Chlorite (3%), Titanite (3%) |
C4 | Calcite (37%), Albite (19%), Quartz (15%), Anorthite (11%), Dolomite (5%), Muscovite (4%), Titanite (4%), Chlorite (3%) Actinolite (2%) |
C5 | Calcite (43%), Albite (18%), Quartz (12%), Anorthite (7%), Dolomite (7%), Titanite (3%), Muscovite (3%), Chlorite (2%), Actinolite (2%) |
C6 | Calcite (82%), Albite (3%), Montmorillonite (3%), Quartz 3%), Dolomite (2%), Titanite (2%) |
Property | SE | MB | WA | MS | MD | ρrd |
---|---|---|---|---|---|---|
SE | 1.00 | |||||
MB | −0.75 | 1.00 | ||||
p-value | 0.000 | |||||
WA | −0.32 | 0.34 | 1.00 | |||
p-value | 0.082 | 0.070 | ||||
MS | 0.17 | −0.30 | 0.02 | 1.00 | ||
p-value | 0.370 | 0.105 | 0.931 | |||
MD | 0.25 | −0.27 | −0.05 | 0.78 | 1.00 | |
p-value | 0.183 | 0.142 | 0.808 | 0.000 | ||
ρrd | −0.06 | −0.09 | −0.69 | −0.06 | −0.08 | 1.00 |
p-value | 0.751 | 0.633 | 0.000 | 0.741 | 0.657 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fournari, R.; Ioannou, I. Correlations between the Properties of Crushed Fine Aggregates. Minerals 2019, 9, 86. https://doi.org/10.3390/min9020086
Fournari R, Ioannou I. Correlations between the Properties of Crushed Fine Aggregates. Minerals. 2019; 9(2):86. https://doi.org/10.3390/min9020086
Chicago/Turabian StyleFournari, Revecca, and Ioannis Ioannou. 2019. "Correlations between the Properties of Crushed Fine Aggregates" Minerals 9, no. 2: 86. https://doi.org/10.3390/min9020086
APA StyleFournari, R., & Ioannou, I. (2019). Correlations between the Properties of Crushed Fine Aggregates. Minerals, 9(2), 86. https://doi.org/10.3390/min9020086