Pore Connectivity Characterization of Lacustrine Shales in Changling Fault Depression, Songliao Basin, China: Insights into the Effects of Mineral Compositions on Connected Pores
Abstract
:1. Introduction
2. Samples and Experiments
2.1. Samples
2.2. Experiments
2.2.1. TOC and XRD
2.2.2. FE-SEM
2.2.3. MICP
2.2.4. LPGA
2.2.5. SFI
3. Results
3.1. Mineral Compositions and TOC Content
3.2. Pore characterization
3.2.1. FE-SEM Imaging and Image Processing Analysis
3.2.2. Full-Size Pore Size Distribution
3.2.3. Tortuosity
3.3. Spontaneous Fluid Imbibition
4. Discussion
4.1. Pore Connectivity Obtained from SFI Slopes and Tortuosity Values
4.2. Effects of Matrix Compositions on Pore Connectivity
5. Conclusions
- (1)
- FE-SEM images show that the most observed pores in the Shahezi shales are clay minerals related to interP pores and OM pores. The primary pore width calculated by combining LPGA and MICP data is in the range of 0.3–0.7 nm and 3–20 nm.
- (2)
- The n-decane and DI water SFI slopes (0.34–0.55 and 0.22–0.38) indicate a mixed wetting nature and relatively better-connected hydrophobic pores than hydrophilic pores in the Shahezi shales.
- (3)
- The limited pore connectivity of the Shahezi shales is identified by the dominant pore widths (0.3–20 nm), low DI water SFI slopes (around 0.25), high geometric tortuosity (4.75–8.89) and effective tortuosity (1212–6122).
- (4)
- The pore connectivity, affected by both the OM and inorganic compositions, varies among the shale lithofacies and follows the connectivity order of calcareous shale > argillaceous shale > siliceous shale. The high concentration of clay and calcite (over 20 wt %) significantly controls the pore connectively of the Shahezi shale in the CFD.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loucks, R.; Reed, R.; Ruppel, S.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Solano, N.; Bustin, R.M.; Bustin, A.M.M.; Chalmers, G.R.L.; He, L.; Melnichenko, Y.B.; Radlinski, A.P.; Blach, T.P. Pore structure characterization of North American shale gas reservoirs: Using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103, 606–616. [Google Scholar] [CrossRef]
- Wang, G.; Ju, Y.; Yan, Z.; Li, Q. Pore structure characteristics of coal-bearing shale using fluid invasion methods: A case study in the Huainan–Huaibei Coalfield in China. Mar. Pet. Geol. 2015, 62, 1–13. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Jarvie, D.M. Morphology, genesis and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79, 848–861. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Strapoc, D.; Acosta, W.S.; Rupp, J. Variations in pore characteristics in high volatile bituminous coals; implications for coalbed gas content. Int. J. Coal Geol. 2008, 76, 205–216. [Google Scholar] [CrossRef]
- Chalmers, G.R.L.; Bustin, R.M.; Power, I.M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron/transmission electron microscopy image analyses: Examples from the Barnett Woodford, Haynesville, Marcellus and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Karayiğit, A.İ.; Mastalerz, M.; Oskay, R.G.; Buzkan, İ. Bituminous coal seams from underground mines in the Zonguldak Basin (NW Turkey): Insights from mineralogy, coal petrography, Rock-Eval pyrolysis, and meso- and microporosity. Int. J. Coal Geol. 2018, 199, 91–122. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bull. 2015, 92, 87–125. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Bowker, K.A. Barnett shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bull. 2007, 91, 523–533. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Mastalerz, M.; He, L.; Melnichenko, B.Y.; Rupp, J.A. Porosity of coal and shale: Insights from gas adsorption and SANS/USANS techniques. Energy Fuels 2012, 26, 5109–5120. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Milliken, K.L.; Rudnicki, M.; Awwiller, D.N.; Zhang, T. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull. 2013, 97, 177–200. [Google Scholar] [CrossRef]
- Furmann, A.; Mastalerz, M.; Bish, D.; Schimmelmann, A.; Pedersen, P.K. Porosity and pore size distribution in mudrocks from the Belle Fourche and Second White Specks formations in Alberta, Canada. AAPG Bull. 2016, 100, 1265–1288. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, Z.; Ji, W.; Zhang, C.; Yuan, Y.; Chen, L.; Yin, L. Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, South China: Evidence from SEM digital images and fractal and multifractal geometries. Mar. Pet. Geol. 2016, 72, 122–138. [Google Scholar] [CrossRef]
- Cao, T.T.; Song, Z.G.; Wang, S.B.; Cao, X.X.; Li, Y.; Xia, J. Characterizing the pore structure in the Silurian and Permian shales of the Sichuan Basin, China. Mar. Pet. Geol. 2015, 61, 140–150. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.X.; Liu, K.Y.; Tan, J.Q.; Gao, F.L.; Wang, P.F. Pore structure characterization for organic-rich lower Silurian shale in the upper Yangtze platform, South China: A ssible mechanism for pore development. J. Nat. Gas Sci. Eng. 2017, 46, 1–15. [Google Scholar] [CrossRef]
- Chen, S.; Tang, D.; Tao, S.; Xu, H.; Li, S.; Zhao, J.; Ren, P.; Fu, H. In-situ stress measurements and stress distribution characteristics of coal reservoirs in major coalfields in China: Implication for coalbed methane (CBM) development. Int. J. Coal Geol. 2017, 182, 66–84. [Google Scholar] [CrossRef]
- Lee, M.C.; Richard, J.H.; Hywel, J.S.; Thomas, R. Dual porosity modelling of the coupled mechanical response of coal to gas flow and adsorption. Int. J. Coal Geol. 2019, 205, 115–125. [Google Scholar]
- İnan, S.; Al Badairy, H.; İnan, T.; Al Zahrani, A. Formation and occurrence of organic matter-hosted porosity in shales. Int. J. Coal Geol. 2018, 199, 39–51. [Google Scholar] [CrossRef]
- Jiang, F.J.; Chen, D.; Wang, Z.F.; Xu, Z.Y.; Chen, J.; Liu, L.; Huyan, Y.Y.; Liu, Y. Pore characteristic analysis of a lacustrine shale: A case study in the Ordos Basin. NW China. Mar. Pet. Geol. 2016, 73, 554–571. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.X.; Liu, K.Y.; Wang, P.F.; Ji, W.M.; Gao, F.L.; Li, P.; Hu, T.; Zhang, B.; Huang, H.X. Effect of lithofacies on gas storage capacity of marine and continental shales in the Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 36, 773–785. [Google Scholar] [CrossRef]
- Sun, M.D.; Yu, B.S.; Hu, Q.H.; Yang, R.; Zhang, Y.F.; Li, B. Pore connectivity and tracer migration of typical shales in south China. Fuel 2017, 203, 32–46. [Google Scholar] [CrossRef]
- Curtis, M.E.; Sondergeld, C.H.; Ambrose, R.J.; Rai, C.S. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull. 2012, 96, 665–677. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Liang, L. Experimental study on the pore structure characteristics of the Upper Ordovician Wufeng Formation shale in the southwest portion of the Sichuan Basin, China. J. Nat. Gas. Sci. Eng. 2015, 22, 530–539. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Liu, H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2015, 115, 378–384. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.C.; Wang, X.Z.; Tang, X.; Chen, Y.C.; Jiang, L.L.; Gong, X. Nanoscale pore structure and fractal characteristics of a marine-continental transitional shale: A case study from the lower Permian Shanxi Shale in the southeastern Ordos Basin, China. Mar. Pet. Geol. 2017, 88, 54–68. [Google Scholar] [CrossRef]
- Tang, X.L.; Jiang, Z.X.; Jiang, S.; Li, Z. Heterogeneous nanoporosity of the Silurian Longmaxi Formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Mar. Pet. Geol. 2016, 78, 99–109. [Google Scholar] [CrossRef]
- Hu, Q.H.; Liu, X.G.; Gao, Z.Y.; Liu, S.G.; Zhou, W.; Hu, W.X. Pore structure and tracer migration behavior of typical American and Chinese shales. Pet. Sci. 2015, 12, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.Y.; Hu, Q.H. Estimating permeability using median pore-throat radius obtained from mercury intrusion porosimetry. J. Geophys. Eng. 2013, 10, 025014. [Google Scholar] [CrossRef]
- Hu, Q.H.; Ewing, R.P.; Rowe, H.D. Low nanopore connectivity limits gas production in Barnett formation. J. Geophys. Res.-Solid Earth 2015, 120, 8073–8087. [Google Scholar] [CrossRef]
- Hu, Q.H.; Gao, X.; Gao, Z.; Ewing, R.; Dultz, S.; Kaufmann, J. Pore accessibility and connectivity of mineral and kerogen phases for shales. In Proceedings of the Unconventional Resources Technology Conference, Denver, CO, USA, 25–27 August 2014; pp. 1188–1204. [Google Scholar]
- Lan, Q.; Dehghanpour, H.; Wood, J.; Sanei, H. Wettability of the Montney Tight Gas Formation. SPE Reserv. Eval. Eng. 2015, 18, 417–431. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, S.; Jiang, Z.; Zhang, K.; Chen, L. Investigating the spontaneous imbibition characteristics of continental Jurassic Ziliujing Formation shale from the northeastern Sichuan Basin and correlations to pore structure and composition. Mar. Pet. Geol. 2018, 98, 697–705. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Hu, Q.H. Wettability of Mississippian Barnett Shale samples at different depths: Investigations from directional spontaneous imbibition. AAPG Bull. 2016, 100, 101–114. [Google Scholar] [CrossRef]
- Gao, Z.; Hu, Q. Pore structure and spontaneous imbibition characteristics of marine and continental shales in China. AAPG Bull. 2018, 102, 1941–1961. [Google Scholar] [CrossRef]
- Yang, R.; Hao, F.; He, S.; He, C.C.; Guo, X.S.; Yi, J.Z.; Hu, H.Y.; Zhang, S.W.; Hu, Q.H. Experimental investigations on the geometry and connectivity of pore space in organic-rich Wufeng and Longmaxi shales. Mar. Pet. Geol. 2017, 84, 225–242. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, J.; Wang, L.H.; Wang, J.Q.; Jiang, Z.; Song, Y.F.; Wang, C.C.; Wang, Y.F.; Jin, C. Characterization of typical 3D pore networks of Jiulaodong formation shale using nanotransmission X-ray microscopy. Fuel 2016, 170, 84–91. [Google Scholar] [CrossRef]
- Saif, T.; Lin, Q.Y.; Bijeljic, B.; Martin, J.B. Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel 2017, 197, 562–574. [Google Scholar] [CrossRef]
- Liu, H.L.; Seaton, N.A. Determination of the connectivity of porous solids from nitrogen sorption measurements III. Solids containing large mesopores. Chem. Eng. Sci. 1994, 49, 1869–1878. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhang, L.; Seaton, N.A. Determination of the connectivity of porous solids from nitrogen sorption measurements II. Generalization. Chem. Eng. Sci. 1992, 47, 4393–4404. [Google Scholar] [CrossRef]
- Liu, H.L.; Lai, B.T.; Chen, J.H. Unconventional spontaneous imbibition into shale matrix: Theory and a methodology to determine relevant parameters. Transp. Porous Media 2016, 111, 41–57. [Google Scholar] [CrossRef]
- Seaton, N.A. Determination of the connectivity of porous solids from nitrogen sorption measurements. Chem. Eng. Sci. 1991, 46, 1895–1909. [Google Scholar] [CrossRef]
- Armatas, G.S.; Salmas, C.E.; Louloudi, M.; Androutsopoulos, G.P.; Pomonis, P.J. Relationships among pore size, connectivity, dimensionality of capillary condensation, and pore structure tortuosity of functionalized mesoporous silica. Langmuir 2003, 19, 3128–3136. [Google Scholar] [CrossRef]
- Hu, Q.; Ewing, R.P.; Dultz, S. Low pore connectivity in natural rock. J. Contam. Hydrol. 2012, 133, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Song, Y.; Li, Z.; Xiong, F.; Chen, L.; Zhang, X.; Chen, Z.; Moortgat, J. Quantitative characterization of pore connectivity using NMR and MIP: A case study of the Wangyinpu and Guanyintang shales in the Xiuwu basin, Southern China. Int. J. Coal Geol. 2018, 197, 53–65. [Google Scholar] [CrossRef]
- Ning, C.; Jiang, Z.; Gao, Z.; Su, S.; Li, T.; Wang, G.; Chen, L. Characteristics and controlling factors of reservoir space of mudstone and shale in Es3x in the Zhanhua Sag. Mar. Pet. Geol. 2017, 88, 214–224. [Google Scholar] [CrossRef]
- Ghanbari, E.; Dehghanpour, H. The fate of fracturing water: A field and simulation study. Fuel 2016, 163, 282–294. [Google Scholar] [CrossRef]
- Dehghanpour, H.; Zubair, H.A.; Chhabra, A.; Ullah, A. Liquid Intake of Organic Shales. Energy Fuels 2012, 26, 5750–5758. [Google Scholar] [CrossRef]
- Jiang, S.; Tang, X.L.; Cai, D.S.; Xue, G.; He, Z.L.; Long, S.X.; Peng, Y.M.; Gao, B.; Xu, Z.Y.; Dahdah, N. Comparison of marine, transitional, and lacustrine shales: A case study from the Sichuan Basin in China. J. Pet. Sci. Eng. 2017, 150, 334–347. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Zhang, J.; Qiao, D.; Jiang, W.; Zhang, J. National Survey and Assessment of Shale Gas Resource Potential in China; Geologic Publishing House: Beijing, China, 2012; pp. 8–92. (In Chinese) [Google Scholar]
- Jiang, S.; Xu, Z.; Feng, Y.; Zhang, J.; Cai, D.; Chen, L.; Wu, Y.; Zhou, D.S.; Bao, S.J.; Long, S.X. Geologic characteristics of hydrocarbon-bearing marine, transitional and lacustrine shales in china. J. Asian Earth Sci. 2015, 115, 404–418. [Google Scholar] [CrossRef]
- Lu, R.J. The Evaluation of Deep Source Rocks in Changling Fault Depression of Songliao Southern Basin. Ph.D. Thesis, Northeast Petroleum University, Daqing, China, 2011. (In Chinese). [Google Scholar]
- Sun, D. The Prediction of Source Rocks Distribution and the Research of Hydrocarbon Generation Potential of Changling Fault Depression. Ph.D. Thesis, Northeast Petroleum University, Daqing, China, 2014. (In Chinese). [Google Scholar]
- Tang, Y.; Yang, R.Z.; Zhu, J.; Yin, S.; Fan, T.; Dong, Y.; Hou, Y. Analysis of continental shale gas accumulation conditions in a rifted basin: A case study of Lower Cretaceous shale in the southern Songliao Basin, northeastern China. Mar. Pet. Geol. 2019, 101, 389–409. [Google Scholar] [CrossRef]
- Hao, F.; Zou, H.Y.; Lu, Y.C. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Z.K.; Jiang, Z.X.; Gao, F.L.; Zhang, Y.H.; Yu, H.L.; Xiao, L.; Yang, Y.D. The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression, Songliao Basin, China. Minerals 2019, 9, 127. [Google Scholar] [CrossRef]
- Gao, F.L.; Song, Y.; Li, Z.; Xiong, F.Y.; Chen, L.; Zhang, Y.H.; Liang, Z.K.; Zhang, X.X.; Chen, Z.Y.; Joachim, M. Lithofacies and reservoir characteristics of the Lower Cretaceous continental Shahezi Shale in the Changling Fault Depression of Songliao Basin, NE China. Mar. Pet. Geol. 2018, 98, 401–421. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, Z.Y.; Shao, M.L. Formation of carbon dioxide and hydrocarbon gas reservoirs in the Changling fault depression, Songliao Basin. Pet. Explor. Dev. 2011, 38, 52–58. [Google Scholar]
- Wu, H.Y.; Liang, X.D.; Xiang, C.F.; Wang, Y.W. Characteristics of petroleum accumulation in syncline of the Songliao basin and discussion on its accumulation mechanism. Sci. China 2007, 50, 702–709. [Google Scholar] [CrossRef]
- Lin, J.H.; Jiang, T.; Song, L.B.; Cao, Y.; Xia, D.; Wang, Y. The origin and gas vertical distribution of the Harjin mixed-gas reservoir. Acta Pet. Sin. 2010, 34, 927–932. [Google Scholar]
- Gao, Z.Y.; Hu, Q.H. Initial water saturation and imbibition fluid affect spontaneous imbibition into Barnett shale samples. J. Nat. Gas Sci. Eng. 2016, 34, 541–551. [Google Scholar] [CrossRef]
- Graue, A.; Fernø, M.A. Water mixing during spontaneous imbibition at different boundary and wettability conditions. J Pet. Sci. Eng. 2011, 78, 586–595. [Google Scholar] [CrossRef]
- Mason, G.; Fischer, H.; Morrow, N.R.; Ruth, D.W.; Wo, S. Effect of sample shape on counter-current spontaneous imbibition production vs time curves. J. Petrol. Sci. Eng. 2009, 66, 83–97. [Google Scholar] [CrossRef]
- Jiao, K.; Ye, Y.H.; Liu, S.G.; Ran, B.; Deng, B.; Li, Z.W.; Li, J.X.; Yong, Z.Q.; Sun, W. Characterization and Evolution of Nanoporosity in Superdeeply Buried Shales: A Case Study of the Longmaxi and Qiongzhusi Shales from MS Well #1, North Sichuan Basin, China. Energy Fuels 2018, 32, 191–203. [Google Scholar]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Mescou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Yang, R.; Hu, Q.H.; He, S.; Hao, F.; Guo, X.S.; Yi, J.Z.; He, X.P. Pore structure, wettability and tracer migration in four leading shale formations in the Middle Yangtze Platform, China. Mar. Pet. Geol. 2018, 89, 415–427. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Hu, Q.H. Investigating the Effect of Median Pore-Throat Diameter on Spontaneous Imbibition. J. Porous Media 2015, 18, 1231–1238. [Google Scholar] [CrossRef]
- Dehghanpour, H.; Lan, Q.; Saeed, Y.; Fei, H.; Qi, Z. Spontaneous Imbibition of Brine and Oil in Gas Shales: Effect of Water Adsorption and Resulting Microfractures. Energy Fuels 2013, 27, 3039–3049. [Google Scholar] [CrossRef]
- Hu, M.Q.; Persoff, P.; Wang, J.S.Y. Laboratory measurement of water imbibition into low-permeability welded tuff. J. Hydrol. 2001, 242, 64–78. [Google Scholar] [CrossRef]
- Ma, S.; Morrow, N.R.; Zhang, X. Generalized scaling of spontaneous imbibition data for strongly water-wet systems. J. Petrol. Sci. Eng. 1997, 18, 165–178. [Google Scholar]
- Guo, C.; Xu, J.; Wu, K.; Wei, M.; Liu, S. Study on gas flow through nano pores of shale gas reservoirs. Fuel 2015, 143, 107–117. [Google Scholar] [CrossRef]
- Ghanizadeh, A.; Clarkson, C.R.; Aquino, S.; Ardakani, O.H.; Sanei, H. Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization. Fuel 2015, 153, 664–681. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Cole, D.R. Characterization and analysis of porosity and pore structures. Rev. Mineral. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef]
- Pommer, M.; Milliken, K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas Pores across Thermal Maturity, Eagle Ford. AAPG Bull. 2015, 99, 1713–1744. [Google Scholar] [CrossRef]
- Hsieh, P.A.; Tracy, J.V.; Neuzil, C.E.; Bredehoeft, J.D.; Silliman, S.E. A transient laboratory method for determining the hydraulic properties of ‘tight’rocks—I. Theory. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts; Pergamon: Oxford, UK, 1981; pp. 245–252. [Google Scholar]
- Cui, X.; Bustin, A.M.M.; Bustin, R.M. Measurements of gas permeability and diffusivity of tight reservoir rocks: Different approaches and their applications. Geofluids 2009, 9, 208–223. [Google Scholar] [CrossRef]
- Jia, B.; Feng, R.; Tsau, J.S.; Barati, R. Multiphysical Flow Behavior in Shale and Permeability Measurement by Pulse-Decay Method. In Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs; Elsevier: Amsterdam, The Netherlands, 2019; pp. 301–324. [Google Scholar]
- Javadpour, F.; Fisher, D.; Unsworth, M. Nanoscale gas flow in shale gas sediments. J. Can. Pet. Technol. 2007, 46, 55–61. [Google Scholar] [CrossRef]
- Hughes, J.D. Energy: A reality check on the shale revolution. Nature 2013, 494, 307–308. [Google Scholar] [CrossRef]
- Hensen, E.J.; Smit, B. Why clays swell. J. Phys. Chem. B. 2002, 106, 12664–12667. [Google Scholar] [CrossRef]
- Odusina, E.; Sondergeld, C.; Rai, C. An NMR study on shale wettability. In Proceedings of the Canadian Unconventional Resources Conference, Calgary, AL, Canada, 15–17 November 2011; pp. 1–15. [Google Scholar]
- Shen, Y.; Ge, H.; Li, C.; Yang, X.; Ren, K.; Yang, Z.; Su, S. Water imbibition of shale and its potential influence on shale gas recovery—A comparative study of marine and continental shale formations. J. Nat. Gas Sci. Eng. 2016, 35, 1121–1128. [Google Scholar] [CrossRef]
- Li, T.; Jiang, Z.; Li, Z.; Wang, P.; Xu, C.; Liu, G.; Su, S.; Ning, C. Continental shale pore structure characteristics and their controlling factors: A case study from the lower third member of the Shahejie Formation, Zhanhua Sag, Eastern China. J. Nat. Gas Sci. Eng. 2017, 45, 670–692. [Google Scholar] [CrossRef]
Sample ID | Depth Beneath to Surface (m) | Lithofacies | Total Organic Carbon (wt %) | Mineral Composition (wt %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Dolomite | Pyrite | Siderite | Clay | Mixed Illite-Smectite | Illite | Chlorite | ||||
TS-6-1 | 3696.00–3696.03 | Argillaceous Shale | 1.09 | 21.1 | 8.9 | 1.2 | 1.6 | 2.3 | 0.8 | 63.2 | 72 | 19 | 9 |
TS-6-3 | 3734.30–3743.32 | Siliceous Shale | 2.27 | 36.1 | 13.2 | 3.8 | 0.5 | 1.8 | - | 45.2 | 66 | 23 | 11 |
TS-6-4 | 3738.00–3738.05 | Siliceous Shale | 4.64 | 38.5 | 7.2 | 2.7 | 2.1 | 2.2 | 0.8 | 45 | 74 | 16 | 10 |
TS-6-5 | 3759.00–3759.02 | Calcareous Shale | 2.12 | 30.1 | 5.2 | 30.5 | - | - | 3.1 | 30.1 | 67 | 20 | 13 |
TS-6-7 | 3765.00–3765.03 | Argillaceous Shale | 4.75 | 29.6 | 8.3 | 0.9 | 2.4 | 1.8 | 0.3 | 50.9 | 79 | 13 | 8 |
TS-6-8 | 3787.30–3787.33 | Argillaceous Shale | 2.18 | 30.5 | 9.6 | 2.9 | 1.3 | 2.6 | - | 51.3 | 75 | 16 | 9 |
Sample ID | Lithofacies | Pore Type | Number of Pores | Percentage (%) | Pore Size (nm) | Fractal Dimension | ||
---|---|---|---|---|---|---|---|---|
Min Value | Max Value | Mean | ||||||
TS-6-4 | Siliceous Shale | OM pore | 67 | 30.73 | 30.7 | 890.5 | 113.6 | 1.68 |
InterP pore | 116 | 53.21 | 57.8 | 458.7 | 90.1 | 1.24 | ||
IntraP pore | 35 | 16.06 | 45.9 | 210.8 | 54.2 | 1.08 | ||
TS-6-5 | Calcareous Shale | OM pore | 0 | 0 | - | - | - | - |
InterP pore | 44 | 63.77 | 192.9 | 336.5 | 181.7 | 1.17 | ||
IntraP pore | 25 | 36.23 | 78.5 | 423.9 | 193.1 | 1.21 | ||
TS-6-7 | Argillaceous Shale | OM pore | 132 | 22.68 | 42.6 | 155.9 | 56.3 | 1.52 |
InterP pore | 336 | 57.73 | 78.4 | 801.7 | 224.6 | 1.72 | ||
IntraP pore | 114 | 19.59 | 55.9 | 231.6 | 89.3 | 1.38 |
Sample ID | CO2 Physisorption | N2 Physisorption | Mercury Injection Capillary Pressure | Total Pore Surfaces Areas (m2/g) | Total Pore Volumes (cm3/100 g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
DFT Surface Area (m2/g) | DFT Pore Volume (cm3/100 g) | BET Surface Area (m2/g) | BJH Pore Volume (cm3/100 g) | Average Pore Size (nm) | Surface Area (m2/g) | Pore Volume (cm3/100 g) | Porosity (%) | Tortuosity | Le/L | |||
TS-6-1 | 6.478 | 0.12 | 2.413 | 0.38 | 9.85 | 0.010 | 0.29 | 1.29 | 5922 | 8.74 | 8.901 | 0.79 |
TS-6-3 | 8.223 | 0.18 | 2.815 | 0.40 | 8.85 | 0.009 | 0.61 | 2.42 | 2495 | 7.77 | 11.047 | 1.19 |
TS-6-4 | 14.843 | 0.26 | 3.523 | 0.49 | 7.99 | 0.007 | 0.39 | 3.01 | 1879 | 7.52 | 18.373 | 1.14 |
TS-6-5 | 6.385 | 0.44 | 3.871 | 0.75 | 6.13 | 0.005 | 0.19 | 1.86 | 2112 | 6.27 | 10.261 | 1.38 |
TS-6-7 | 8.532 | 0.36 | 2.389 | 0.51 | 7.04 | 0.009 | 0.28 | 2.08 | 2458 | 7.15 | 10.93 | 1.15 |
TS-6-8 | 13.752 | 0.33 | 2.546 | 0.49 | 13.68 | 0.007 | 0.25 | 3.22 | 2160 | 8.34 | 16.305 | 1.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liang, Z.; Jiang, Z.; Yu, H.; Yang, Y.; Xiao, L. Pore Connectivity Characterization of Lacustrine Shales in Changling Fault Depression, Songliao Basin, China: Insights into the Effects of Mineral Compositions on Connected Pores. Minerals 2019, 9, 198. https://doi.org/10.3390/min9030198
Li Z, Liang Z, Jiang Z, Yu H, Yang Y, Xiao L. Pore Connectivity Characterization of Lacustrine Shales in Changling Fault Depression, Songliao Basin, China: Insights into the Effects of Mineral Compositions on Connected Pores. Minerals. 2019; 9(3):198. https://doi.org/10.3390/min9030198
Chicago/Turabian StyleLi, Zhuo, Zhikai Liang, Zhenxue Jiang, Hailong Yu, Youdong Yang, and Lei Xiao. 2019. "Pore Connectivity Characterization of Lacustrine Shales in Changling Fault Depression, Songliao Basin, China: Insights into the Effects of Mineral Compositions on Connected Pores" Minerals 9, no. 3: 198. https://doi.org/10.3390/min9030198
APA StyleLi, Z., Liang, Z., Jiang, Z., Yu, H., Yang, Y., & Xiao, L. (2019). Pore Connectivity Characterization of Lacustrine Shales in Changling Fault Depression, Songliao Basin, China: Insights into the Effects of Mineral Compositions on Connected Pores. Minerals, 9(3), 198. https://doi.org/10.3390/min9030198