Multi-Analysis Characterisation of a Vernacular House in Doha (Qatar): Petrography and Petrophysics of its Construction Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction Materials
2.2. Petrographic Microscopy (PM)
2.3. X-Ray Diffraction (RXD)
2.4. Effective Porosity (Pe)
2.5. Water Absorption
2.6. Bulk Density (ρb)
2.7. Ultrasonic Pulse Velocity (Vp)
2.8. Colour
2.9. Handheld X-Ray Fluorescence
3. Results
3.1. In-situ Measurements and Observations
3.2. Petrographic Microscopy (PM)
3.3. X-Ray Diffraction (XRD)
3.4. Effective Porosity (Pe), Water Absorption and Bulk Density (ρb)
3.5. Ultrasonic Pulse Velocity (Vp)
3.6. Colour
3.7. Handheld X-Rayfluorescence
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carter, E.J.; Andrews, E.; Andrew, K. The provenance, petrology and sedimentology of building stone in Bromyard, Herefordshire, UK. Proc. Geol. Assoc. 2017, 128, 480–499. [Google Scholar] [CrossRef]
- Guzmán, P.C.; Pereira Roders, A.R.; Colenbrander, B.J.F. Measuring links between cultural heritage management and sustainable urban development: An overview of global monitoring tools. Cities 2017, 60 Pt A, 192–201. [Google Scholar] [CrossRef]
- Mustafa, S.; Arshad Khan, M.; Rustam Khan, M.; Sousa, L.M.O.; Hameed, F.; Saleem Mughal, M.; Niaz, A. Building stone evaluation—A case study of the sub-Himalayas, Muzaffarabad region, Azad Kashmir, Pakistan. Eng. Geol. 2016, 209, 56–69. [Google Scholar] [CrossRef]
- Montalbán Pozas, B.; Neila González, F.J. Housing building typology definition in a historical area based on a case study: The Valley, Spain. Cities 2018, 72 Pt A, 1–7. [Google Scholar] [CrossRef]
- Damas Mollá, L.; Uriarte, J.A.; Aranburu, A.; Bodego, A.; Balciscueta, U.; García Garmilla, F.; Antigüedad, I.; Morales, T. Systematic alteration survey and stone provenance for restoring heritage buildings: Punta Begoña Galleries (Basque-Country, Spain). Eng. Geol. 2018, 247, 12–26. [Google Scholar] [CrossRef]
- Zornoza-Indart, A.; Lopez-Arce, P. Stone. In Long-Term Performance and Durability of Masonry, 1st ed.; Ghiassi, B., Lourenço, P.B., Eds.; Structures Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2019; pp. 59–88. [Google Scholar]
- Da Conceição Ribeiro, R.C.; Marques Ferreira de Figueiredo, P.; Silva Barbutti, D. Multi-Analytical Investigation of Stains on Dimension Stones in Master Valentim’s Fountain, Brazil. Minerals 2018, 8, 465. [Google Scholar] [CrossRef]
- Zoghlami, K.; Martín-Martín, J.D.; Gómez-Gras, D.; Navarro, A.; Parcerisa, D.; Rosell, J.R. The building stone of the roman city of Dougga (Tunisia): Provenance, petrophysical characterisation and durability. C. R. Geosci. 2017, 349, 402–411. [Google Scholar] [CrossRef]
- Habibi, T.; Ponedelnik, A.A.; Yashalova, N.N.; Ruban, D.A. Urban geoheritage complexity: Evidence of a unique natural resource from Shiraz city in Iran. Resour. Policy. 2018, 59, 85–94. [Google Scholar] [CrossRef]
- Marescotti, P.; Brancucci, G.; Sasso, G.; Solimano, M.; Marin, V.; Muzio, C.; Salmona, P. Geoheritage Values and Environmental Issues of Derelict Mines: Examples from the Sulfide Mines of Gromolo and Petronio Valleys (Eastern Liguria, Italy). Minerals 2018, 8, 229. [Google Scholar] [CrossRef]
- Gräf, V.; Jamek, M.; Rohatsch, A.; Tschegg, E. Effects of thermal-heating cycle treatment on thermal expansion behavior of different building stones. Int. J. Rock Mech. Min. Sci. 2013, 64, 228–235. [Google Scholar] [CrossRef]
- Sanchez-Moral, S.; Cañaveras, J.C.; Benavente, D.; Fernandez-Cortes, A.; Cuezva, S.; Elez, J.; Jurado, V.; Rogerio-Candelera, M.A.; Saiz-Jimenez, C. A study on the state of conservation of the Roman Necropolis of Carmona (Sevilla, Spain). J. Cult. Herit. 2018, 34, 185–197. [Google Scholar] [CrossRef]
- Zalooli, A.; Freire-Lista, D.M.; Khamehchiyan, M.; Reza Nikudel, M.; Fort, R.; Ghasemi, S. Ghaleh-khargushi rhyodacite and Gorid andesite from Iran, characterization, uses and durability. Environ. Earth Sci. 2018, 77, 15. [Google Scholar] [CrossRef]
- Murru, A.; Freire-Lista, D.M.; Fort, R.; Varas-Muriel, M.J.; Meloni, P. Evaluation of post-thermal shock effects in Carrara marble and Santa Caterina di Pittinuri limestone. Constr. Build. Mater. 2018, 186, 1200–1211. [Google Scholar] [CrossRef]
- Varas, M.J.; Alvarez de Buergo, M.; Perez-Monserrat, E.; Fort, R. Decay of the restoration render mortar of the church of San Manuel and San Benito, Madrid, Spain: Results from optical and electron microscopy. Mater. Charact. 2008, 59, 1531–1540. [Google Scholar] [CrossRef]
- Bednarik, M.; Moshammer, B.; Heinrich, M.; Holzer, R.; Laho, M.; Rabeder, J.; Uhlir, C.; Unterwurzacher, M. Engineering geological properties of Leitha Limestone from historical quarries in Burgenland and Styria, Austria. Eng. Geol. 2014, 176, 66–78. [Google Scholar] [CrossRef]
- Cárdenes Van den Eynde, V.; Mateos, F.J.; Paradelo, R. Degradability of building stone: Influence of the porous network on the rate of dissolution of carbonate and evaporitic rocks. J. Cult. Herit. 2016, 14, 89–96. [Google Scholar] [CrossRef]
- De Wever, P.; Baudin, F.; Pereira, D.; Cornée, A.; Egoroff, G.; Page, K. The importance of Geosites and Heritage Stones in Cities. Geoheritage 2016, 9, 561–575. [Google Scholar] [CrossRef]
- Freire-Lista, D.M.; Fort, R. Historical city centres and traditional building stones as heritage: The Barrio de las Letras, Madrid (Spain). Geoheritage 2018, 1–15. [Google Scholar] [CrossRef]
- Lokier, S.W.; Bateman, M.D.; Larkin, N.R.; Rye, P.; Stewart, J.R. Late Quaternary sea-level changes of the Persian Gulf. Quat. Res. 2005, 84, 69–81. [Google Scholar] [CrossRef]
- Evans, G.; Kirkham, A.; Carter, R.A. Quaternary Development of the United Arab Emirates Coast: New Evidence from Marawah Island, Abu Dhabi. GeoArabia 2002, 7, 441–458. [Google Scholar] [CrossRef]
- Al-Saad, H. Lithostratigraphy of the Middle Eocene Dammam Formation in Qatar, Arabian Gulf: Effects of sea-level fluctuations along a tidal environment. J. Asian Earth Sci. 2005, 25, 781–789. [Google Scholar] [CrossRef]
- Karagkounis, N.; Latapie, B.; Sayers, K.; Reddy Mulinti, S. Geology and geotechnical evaluation of Doha rock formations. Geotech. Res. 2016, 3, 119–136. [Google Scholar] [CrossRef]
- Tenconi, M.; Karatasios, I.; Bala’awi, F.; Kilikoglou, V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J. Cult. Herit. 2018, 33, 100–116. [Google Scholar] [CrossRef]
- Boostani, A.; Fratini, F.; Misseri, G.; Rovero, L.; Tonietti, U. A masterpiece of early Islamic architecture: The Noh-Gonbad Mosque in Balkh, Afghanistan. J. Cult. Herit. 2018, 32, 248–256. [Google Scholar] [CrossRef]
- Veiga, M.R.; Santos Silva, A. Mortars. In Long-Term Performance and Durability of Masonry, 1st ed.; Ghiassi, B., Lourenço, P.B., Eds.; Structures Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2019; pp. 169–208. [Google Scholar]
- Drdácký, M.; Fratini, F.; Frankeová, D.; Slížková, Z. The Roman mortars used in the construction of the Ponte di Augusto (Narni, Italy)—A comprehensive assessment. Constr. Build. Mater. 2013, 38, 1117–1128. [Google Scholar] [CrossRef]
- Aalil, I.; Beck, K.; Brunetaud, X.; Cherkaoui, K.; Chaaba, A.; Al mukhtar, M. Deterioration analysis of building calcarenite stone in the House of Venus in the archaeological site of Volubilis (Morocco). Constr. Build. Mater. 2016, 125, 1127–1141. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Mesquita, N.; Trovão, J.; Soares, F.; Tiago, I.; Coelho, C.; Paiva de Carvalho, H.; Gil, F.; Catarino, L.; Piñar, G.; et al. Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. J. Cult. Herit. 2018, 36, 275–285. [Google Scholar] [CrossRef]
- Al-Kholaifi, M. Traditional architecture in Qatar, 1st ed.; National Council for Culture, Arts and Heritage, Museums & Antiquities Dept.: Doha, Qatar, 2006; 260p. [Google Scholar]
- Eddisford, D.; Carter, R. The vernacular architecture of Doha, Qatar. Post-Med. Archaeol. 2017, 51, 81–107. [Google Scholar] [CrossRef]
- Jaidah, I.; Bourennane, M. The History of Qatari Architecture: From 1800 to 1950; Skira Editore S.p.A.: Milano, Italy, 2009. [Google Scholar]
- Eddisford, D.; Roberts, K. Origins of Doha Project: Season 2 Historic Building Survey Report. 2014. Available online: https://originsofdoha.files.wordpress.com/2015/03/origins-of-doha-and-qatar-season-2-building-survey-report.pdf (accessed on 18 February 2018).
- Nagy, S. Social and Spatial Process: An Ethnographic Study of Housing in Qatar. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 1997. [Google Scholar]
- Nagy, S. Social diversity and changes in the form and appearance of the Qatari house. Visual Anthropol. 1998, 10, 281–304. [Google Scholar] [CrossRef]
- Kahraman, G.; Carter, R. Adaptation of heritage architecture in Al Asmakh, Doha: Insights into an urban environment of the Gulf. Post-Med. Archaeol. 2009, in press. [Google Scholar] [CrossRef]
- Natural Stone Test Methods—Determination of Real Density and Apparent Density and of Total and Open Porosity; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2007; No. 1936.
- Natural Stone Test Methods—Determination of Sound Speed Propagation; Asociación Española de Normalización y Certificación (AENOR): Madrid, Spain, 2005; No. 14579.
- Folk, R.L. Practical petrographic classification of limestones. Bull. Amer. Assoc. Petrol. Geol. 1959, 43, 1–38. [Google Scholar]
- Folk, R.L. Spectral subdivision of limestone types. Amer. Assoc. Petrol. Geol. Mem. 1962, 1, 62–84. [Google Scholar]
- Dunham, R.J. Classification of carbonate rocks according to depositional textures. Amer. Assoc. Petrol. Geol. Mem. 1962, 1, 108–121. [Google Scholar]
- Donna, L.; Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; Ordóñez, S.; García-del-Cura, M.A. Multivariate statistical techniques for evaluating the effects of brecciated rock fabric on ultrasonic wave propagation. Int. J. Rock Mech. Min. Sci. 2008, 45, 609–620. [Google Scholar] [CrossRef]
- Vasanelli, E.; Colangiuli, D.; Calia, A.; Sileo, M.; Aiello, M.A. Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone. Ultrasonics 2015, 60, 33–40. [Google Scholar] [CrossRef]
- Ali Jafari, M.; Seyfabadi, J.; Shokri, M.R. Internal bioerosion in dead and live hard corals in intertidal zone of Hormuz Island (Persian Gulf). Mar. Pollut. Bull. 2016, 105, 586–592. [Google Scholar] [CrossRef]
- Boussaa, D. Al Asmakh historic district in Doha, Qatar: From an urban slum to living heritage. J. Archit. Conserv. 2014, 20, 2–15. [Google Scholar] [CrossRef]
- Elsen, J. Microscopy of historic mortars—A review. Cem. Concr. Res. 2006, 36, 1416–1424. [Google Scholar] [CrossRef]
- Caroselli, M.; Cavallo, G.; Felici, A.; Luppichini, S.; Nicoli, G.; Aliverti, L.; Jean, G. Gypsum in Ticinese stucco artworks of the 16–17th century: Use, characterization, provenance and induced decay phenomena. J. Archaeolog. Sci. Rep. 2019, 24, 208–219. [Google Scholar] [CrossRef]
- Reeder, R.J. (Ed.) Carbonates: Mineralogy and Chemistry. Reviews in Mineralogy; Mineralogy Society of America: Washington, DC, USA, 1983; Volume 11. [Google Scholar]
- Fiori, C.; Vandini, M.; Prati, S.; Chiavari, G. Vaterite in the mortars of a mosaic in the Saint Peter basilica, Vatican (Rome). J. Cult. Herit. 2009, 10, 248–257. [Google Scholar] [CrossRef]
- Fernández-Díaz, L.; Fernández-González, A.; Prieto, M. The role of sulfate groups in controlling CaCO3 polymorphism. Geochim. Cosmochim. Acta 2010, 74, 6064–6076. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Gonzalez-Muñoz, M.T.; Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 2007, 71, 1197–1213. [Google Scholar] [CrossRef]
- Pėrez-Monserrat, E.M.; Fort, R.; Cultrone, G.; Rincón, J.M.; Perla, A. Multidisciplinary study of glazed ceramics from Chamberí Metro Station (Madrid, Spain): A knowledge base with technological and heritage value. Appl. Clay Sci. in press.
- Freire, M.T.; Santos Silva, A.; Veiga, M.R.; de Brito, J. Studies in ancient gypsum based plasters towards their repair: Physical and mechanical properties. Constr. Build. Mater. 2019, 202, 319–331. [Google Scholar] [CrossRef]
- Apollonio, F.I.; Gaiani, M.; Baldissini, S. Color definiton of open-air Architectural heritage and Archaeology artworks with the aim of conservation. Digi. Appl. Archaeol. Cult. Herit. 2017, 7, 10–31. [Google Scholar] [CrossRef]
Samples | Effective Porosity (%) | Water Absorption (%) | Bulk Density (kg/m3) |
---|---|---|---|
Pe | ρb | ||
S1 | 30.0 ± 1.5 | 20.1 ± 2.39 | 1505 ± 100 |
S2 | 20.4 ± 1.5 | 10.4 ± 0.94 | 1978 ± 42 |
M1 | 30.0 ± 1.1 | 21.2 ± 0.85 | 1416 ± 3 |
M2 | 32.7 ± 2.2 | 24.2 ± 2.13 | 1354 ± 27 |
CM | 26.3 ± 3.3 | 20.7 ± 2.96 | 1280 ± 136 |
Samples | Vp(x) (m/s) | Vp(y) (m/s) | Vp(z) (m/s) | Vp(xyz) (m/s) |
---|---|---|---|---|
S1 | 2025 ± 159 | 2119 ± 83 | 2225 ± 60 | 2123 |
S2 | 3295 ± 314 | 3348 ± 450 | 3686 ± 317 | 3443 |
M1 | 1225 ± 93 | 1256 ± 72 | 1329 ± 17 | 1270 |
M2 | 1797 ± 121 | 2092 ± 204 | 2284 ± 96 | 1244 |
CM | 1050 ± 72 | 1383 ± 114 | 1438 ± 69 | 1290 |
Samples | Status | L | a * | b * | ΔE | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S1 | Dry | 98.0 | ± | 0.7 | −0.5 | ± | 0.2 | 2.7 | ± | 0.7 | 8.4 |
Wet | 97.3 | ± | 0.7 | −2.6 | ± | 1 | 10.9 | ± | 3.8 | ||
S2 | Dry | 90.3 | ± | 1.6 | −0.6 | ± | 0.4 | 4.2 | ± | 1.2 | 1.8 |
Wet | 88.6 | ± | 4.3 | −0.6 | ± | 2.2 | 3.5 | ± | 2.6 | ||
M1 | Dry | 93.4 | ± | 1.6 | −0.5 | ± | 0.5 | 5.2 | ± | 2.1 | 17.2 |
Wet | 85.7 | ± | 3.5 | 4 | ± | 1.7 | 20 | ± | 5.4 | ||
M2 | Dry | 97.5 | ± | 1.4 | −0.41 | ± | 0.4 | 2.0 | ± | 1.7 | 6.17 |
Wet | 93.6 | ± | 4.3 | 0.24 | ± | 1.41 | 6.8 | ± | 4 | ||
CM | Dry | 96.9 | ± | 1.1 | −0.5 | ± | 0.5 | 4.4 | ± | 1 | 11.3 |
Wet | 96.7 | ± | 4.3 | −3.9 | ± | 1.8 | 15.1 | ± | 7 |
Sample | Ca (%) | S (%) | Si (%) | Fe (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 34.75 | ± | 0.15 | 0.64 | ± | 0.1 | 4.65 | ± | 0.1 | 0.3 | ± | 0.01 |
S2 | 37.35 | ± | 0.18 | 1.86 | ± | 0.1 | 2.22 | ± | 0.1 | 0.13 | ± | 0.01 |
M1 | 19.37 | ± | 0.08 | 23.62 | ± | 0.1 | 3.55 | ± | 0.1 | 0.50 | ± | 0.01 |
M2 | 21.99 | ± | 0.08 | 25.89 | ± | 0.1 | 1.95 | ± | 0.1 | 0.27 | ± | 0.01 |
CM | 18.72 | ± | 0.07 | 23.14 | ± | 0.1 | 5.20 | ± | 0.1 | 0.33 | ± | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freire-Lista, D.M.; Kahraman, G.; Carter, R. Multi-Analysis Characterisation of a Vernacular House in Doha (Qatar): Petrography and Petrophysics of its Construction Materials. Minerals 2019, 9, 241. https://doi.org/10.3390/min9040241
Freire-Lista DM, Kahraman G, Carter R. Multi-Analysis Characterisation of a Vernacular House in Doha (Qatar): Petrography and Petrophysics of its Construction Materials. Minerals. 2019; 9(4):241. https://doi.org/10.3390/min9040241
Chicago/Turabian StyleFreire-Lista, David Martín, Gizem Kahraman, and Robert Carter. 2019. "Multi-Analysis Characterisation of a Vernacular House in Doha (Qatar): Petrography and Petrophysics of its Construction Materials" Minerals 9, no. 4: 241. https://doi.org/10.3390/min9040241
APA StyleFreire-Lista, D. M., Kahraman, G., & Carter, R. (2019). Multi-Analysis Characterisation of a Vernacular House in Doha (Qatar): Petrography and Petrophysics of its Construction Materials. Minerals, 9(4), 241. https://doi.org/10.3390/min9040241