Geochemical Characteristics of A-Type Granite near the Hongyan Cu-Polymetallic Deposit in the Eastern Hegenshan-Heihe Suture Zone, NE China: Implications for Petrogenesis, Mineralization and Tectonic Setting
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
4. Mineralization and Alteration in Ore Bodies
5. Analytical Methods
5.1. Zircon U-Pb Dating Analysis
5.2. Zircon Lu-Hf Isotopes Analysis
5.3. Whole-Rock Major and Trace Element Analyses
6. Results
6.1. Zircon U-Pb Ages
6.2. Zircon Trace Element, Ti-in-Zircon Temperature and Oxygen Fugacity
6.3. Zircon Lu–Hf Isotopes
6.4. Whole-Rock Major and Trace Element Analyses
7. Discussion
7.1. Genetic Type and Magmatic Oxygen Fugacity
7.2. Petrogenesis and Implications for Mineralization
7.3. Extensional Setting for Cu-Polymetallic Mineralization
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loiselle, M.C.; Wones, D.R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abstr. Prog. 1979, 11, 468. [Google Scholar]
- Eby, G.N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology 1992, 20, 641–644. [Google Scholar] [CrossRef]
- Hong, D.W.; Huang, H.Z.; Xiao, Y.J.; Xu, H.M. Permian alkaline granites in center Inner Mongolia and their geodynamic significance. Acta Geol. Sin. 1994, 68, 219–230. (In Chinese) [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Li, H.M.; Jahn, B.M.; Wilde, S. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chem. Geol. 2002, 187, 143–173. [Google Scholar] [CrossRef]
- Wu, S.P.; Wang, M.Y.; Qi, K.J. Present situation of researches on A-type granites: A review. Acta Petrol. Mineral. 2007, 26, 57–66, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Li, H.; Watanabe, K.; Yonezu, K. Geochemistry of A-type granites in the Huangshaping polymetallic deposit (South Hunan, China): Implications for granite evolution and associated mineralization. J. Asian Earth Sci. 2014, 88, 149–167. [Google Scholar] [CrossRef]
- Li, H.; Palinkaš, L.A.; Watanabe, K.; Xi, X.S. Petrogenesis of Jurassic A-type granites associated with Cu-Mo and W-Sn deposits in the central Nanling region, South China: Relation to mantle upwelling and intra-continental extension. Ore Geol. Rev. 2018, 92, 449–462. [Google Scholar] [CrossRef]
- Liu, P.; Mao, J.W.; Santosh, M.; Bao, Z.A.; Zeng, X.Z.; Jia, L.H. Geochronology and petrogenesis of the Early Cretaceous A-type granite from the Feie’shan W-Sn deposit in the eastern Guangdong Province, SE China: Implications for W-Sn mineralization and geodynamic setting. Lithos 2018, 300, 330–347. [Google Scholar] [CrossRef]
- Wang, X.D.; Xu, D.M.; Lv, X.B.; Wei, W.; Mei, W.; Fan, X.J.; Sun, B.K. Origin of the Haobugao skarn Fe-Zn polymetallic deposit, Southern Great Xing’an range, NE China: Geochronological, geochemical, and Sr-Nd-Pb isotopic constraints. Ore Geol. Rev. 2018, 94, 58–72. [Google Scholar] [CrossRef]
- Cisse, M.; Lü, X.B.; Algeo, T.J.; Cao, X.F.; Li, H.; Wei, M.; Yuan, Q.; Chen, M. Geochronology and geochemical characteristics of the Dongping ore-bearing granite, North China: Sources and implications for its tectonic setting. Ore Geol. Rev. 2017, 89, 1091–1106. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; Oliveira, D.C. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos 2007, 93, 215–233. [Google Scholar] [CrossRef]
- Qiu, J.T.; Yu, X.Q.; Santosh, M.; Zhang, D.H.; Chen, S.Q.; Li, J.P. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Miner. Depos. 2013, 48, 545–556. [Google Scholar] [CrossRef]
- Frost, C.D.; Frost, B.R. Reduced rapakivi-type granites: The tholeiite connection. Geology 1997, 25, 647–650. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Ferry, J.M.; Waston, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 2011, 480, 79–82. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. Ce and Eu anomales in zircon as proxies for oxidation state of magmas. Geochim. Cosmochim. Acta 2012, 97, 70–87. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Hanchar, J.M.; VanWestrenen, W. Rare earth element behavior in zircon-melt systems. Elements 2007, 3, 37–42. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta 2005, 69, 637–648. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, M.J.; Hanghøj, K.; Schwartz, J.J. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology 2007, 35, 643–646. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, F.Y.; Wilde, S.A.; Xie, L.W.; Yang, Y.H.; Liu, X.M. Tracing magma mixing in granite genesis: In situ U–Pb dating and Hf-isotope analysis of zircons. Contrib. Mineral. Petrol. 2007, 153, 177–190. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Diffusion in zircon. Rev. Mineral. Geochem. 2003, 53, 113–143. [Google Scholar] [CrossRef]
- Maughan, D.T.; Keith, J.D.; Christiansen, E.H.; Pulsipher, T.; Hattori, K.; Evans, N.J. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Miner. Depos. 2002, 37, 14–37. [Google Scholar] [CrossRef]
- Ma, X.H.; Chen, B.; Yang, M.C. Magma mixing origin for the Aolunhua porphyry related to Mo-Cu mineralization, eastern Central Asian Orogenic belt. Gondwana Res. 2013, 24, 1152–1171. [Google Scholar] [CrossRef]
- Sun, W.D.; Liang, H.Y.; Ling, M.X.; Zhan, M.Z.; Ding, X.; Zhang, H.; Yang, X.Y.; Li, Y.L.; Ireland, T.R.; Wei, Q.R.; et al. The link between reduced porphyry copper deposits and oxidized magmas. Geochim. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.J.; Loucks, R.R.; Fiorentini, M.L.; McCuaig, T.C.; Evans, N.J.; Yang, Z.M.; Hou, Z.Q.; Kirkland, C.L.; Parra-Avila, L.A.; Kobussen, A. Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. Soc. Econ. Geol. Spec. Publ. 2016, 19, 329–347. [Google Scholar]
- Shi, G.H.; Miao, L.C.; Zhang, F.Q.; Jian, P.; Fan, W.M.; Liu, D.Y. The age and its district tectonic implications on the Xilinhaote A-type granites, Inner Mongolia. Chin. Sci. Bull. 2004, 49, 384–389. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Xu, L.Q.; Kang, X.L. Age dating of alkali granite in Jingesitai area of Dong Ujingqin Banner, Inner Mongolia, and its significance. Geol. Chin. 2009, 36, 988–995. (In Chinese) [Google Scholar] [CrossRef]
- Guo, K.C.; Zhang, W.L.; Yang, X.P.; Wang, L.; Shi, D.Y.; Yu, H.T.; Su, H. Origin of early Permian A-type granite in the Wudaogou area, Heihe City. J. Jilin Univ. (Earth Sci. Ed.) 2011, 41, 1077–1083, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yang, K. Ore-forming Characters and Depositing Orientation of Metal Deposit in the Dong Ujimqin, Inner Mongolia. Master’s Thesis, China University of Geosciences in Wuhan, Wuhan, China, 2013. [Google Scholar]
- Mao, J.W.; Pirajno, F.; Cook, N. Mesozoic metallogeny in East China and corresponding geodynamic settings—An introduction to the special issue. Ore Geol. Rev. 2011, 43, 1–7. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Xu, H.; Zang, Y.; Wang, T. Mineralogy, ore-forming fluids and geochronology of the Shangmachang and Beidagou gold deposits, Heilongjiang province, NE China. J. Geochem. Explor. 2018, 188, 137–155. [Google Scholar] [CrossRef]
- Chen, B.; Jahn, B.M.; Tian, W. Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd–Sr isotope compositions of subduction and collision-related magmas and forearc sediments. J. Asian Earth Sci. 2009, 34, 245–257. [Google Scholar] [CrossRef]
- Zhang, X.H.; Xue, F.H.; Yuan, L.L.; Wilde, S.A. Late Permian appinite–granite complex from northwestern Liaoning, North China craton: Petrogenesis and tectonic implications. Lithos 2012, 155, 201–217. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhao, C.B.; Zhang, F.F.; Liu, J.J.; Wang, J.P.; Peng, R.M.; Liu, B. SIMS zircon U-Pb and molybdenite Re-Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu-Mo deposit and granitoids in NE China and their geological significance. Gondwana Res. 2015, 28, 1228–1245. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Mao, J.W.; Wu, X.L.; Ouyang, H.G. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance. J. Asian Earth Sci. 2015, 103, 212–228. [Google Scholar] [CrossRef]
- Wei, R.H.; Gao, Y.F.; Xu, S.C.; Xin, H.T.; Santosh, M.; Liu, Y.F.; Lei, S.H. The volcanic succession of Baoligaomiao, central Inner Mongolia: Evidence for Carboniferous continental arc in the central Asian orogenic belt. Gondwana Res. 2017, 51, 234–254. [Google Scholar] [CrossRef]
- Wu, G.; Chen, Y.C.; Sun, F.Y.; Liu, J.; Wang, G.R.; Xu, B. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance. J. Asian Earth Sci. 2015, 97, 229–250. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.J.; Liu, L.Q. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, pertrography, geochemistry and Nd-Sr-Hf isotopes. Lithos 2013, 179, 293–319. [Google Scholar] [CrossRef]
- Mao, J.W.; Wang, Y.T.; Zhang, Z.H.; Yu, J.J.; Niu, B.G. Geodynamic settings of Mesozoic large-scale mineralization in North China adjacent areas. Sci. Chin. Ser. D 2003, 46, 838–851. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wang, Y.H.; Liu, J.J.; Wang, J.P.; Zhao, C.B.; Song, Z.W. Origin of the Wunugetushan porphyry Cu–Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions. J. Asian Earth Sci. 2016, 117, 208–224. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Zhang, L.C. Re-Os geochronology of porphyry molybdenum deposit in southern segment of Da Hinggan Mountains, Northeast China. J. Earth Sci. 2010, 21, 390–401. [Google Scholar] [CrossRef]
- Yang, Y.S. Metallogenic Specialization of Gold, Copper and Molybdenum Mineralized Igneous Rocks in Middle-Northern Great Xing’an Range and Metallogenic Prediction in Hongyan Area. Ph.D. Thesis, China University of Geosciences in Wuhan, Wuhan, China, 2017. [Google Scholar]
- Hassan, M.H.; Reinhard, K.; Tomoyuki, S. Genetically related Mo-Bi-Ag and U-F mineralization in A-type granite, Gabal Gattar, Eastern Desert, Egypt. Ore Geol. Rev. 2014, 62, 181–190. [Google Scholar] [CrossRef]
- Bunyamin, A. Geochemical associations between fluorite mineralization and A-type shoshonitic magmatism in the Keban-Elazig area, East Anatolia, Turkey. J. Afr. Earth Sci. 2015, 11, 222–230. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying at internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.00. A Geochronological toolkit for microsoft excel. Berkeley Geochronol. Center Spec. Publ. 2003, 3, 1–70. [Google Scholar]
- Qiu, J.T.; Song, W.J.; Jiang, C.X.; Wu, H.; Dong, R.M. CGDK: An extensible CorelDRAW VBA program for geological drafting. Comput. Geosci. 2013, 51, 34–48. [Google Scholar] [CrossRef]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.G.; Yang, L.; Zhang, W.; Tong, X.R.; Lin, L.; Zong, K.Q.; Li, M. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Woodhead, J.; Herget, J.; Shelley, M.; Eggins, S.; Kemp, R. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem. Geol. 2004, 209, 121–135. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Wingate, M.T.D.; Chung, S.L.; Liu, Y.; Lin, G.C.; Li, W.X. Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia? Precambr. Res. 2006, 146, 1–15. [Google Scholar] [CrossRef]
- Hiess, J.; Nutman, A.P.; Bennett, V.C.; Holden, P. Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chem. Geol. 2008, 247, 323–338. [Google Scholar] [CrossRef] [Green Version]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Myers, J.; Eugster, H.P. The system Fe-Si-O: Oxygen buffer calibrations to 1500 K. Contrib. Mineral. Petrol. 1983, 82, 75–90. [Google Scholar] [CrossRef]
- Soderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematic of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Chauvel, C.; Albarede, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.E.; Achterbergh, E.V.; O’Reilly, S.Y.; Shee, S.R. The Hf isotope composition of cratonicmantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircons chemistry and magma genesis in SE China: In situ analysis of Hf isotopes, Pingtan and Tonglu igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Strecheissen, A. To each plutonic rock its proper name. Earth Sci. Rev. 1976, 12, 1–33. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocen calc-alkaline volcanic rocks from the Kastamounu area, northern Turkey. Contrib. Miner. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace-element discrimination diagrams for the tectonic interpretation of granitic-rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Patino Douce, A.E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. Lond. Spec. Publ. 1999, 168, 55–75. [Google Scholar] [CrossRef]
- Huang, H.Q.; Li, X.H.; Li, W.X.; Li, Z.X. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China. Geology 2011, 39, 903–906. [Google Scholar] [CrossRef]
- Patino Douce, A.E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 1997, 25, 743–746. [Google Scholar] [CrossRef]
- Dall’Agnol, R.; Frost, C.D.; Ramo, O.T. IGCP Project 510 “A-type granites and related rocks through time”: Project vita, results, and contribution to granite research. Lithos 2012, 151, 1–16. [Google Scholar] [CrossRef]
- Han, Y.G.; Zhang, S.H.; Pirajno, F.; Zhou, X.W.; Zhao, G.C.; Qu, W.J.; Liu, S.H.; Zhang, J.M.; Liang, H.B.; Yang, K. U-Pb and Re-Os isotopic systematics and zircon Ce4+/Ce3+ ratios in the Shiyaogou Mo deposit in eastern Qinling, central China: Insights into the oxidation state of granitoids and Mo (Au) mineralization. Ore Geol. Rev. 2013, 55, 29–47. [Google Scholar] [CrossRef]
- Zhang, X.H.; Yuan, L.L.; Xue, F.H.; Zhang, Y. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: Magmatic monitor of Mesozoic decratonization and craton–orogen boundary. Lithos 2012, 144, 12–23. [Google Scholar] [CrossRef]
- Touret, J.L.R. Fluid inclusions and pressure-temperature estimates in deep-seated rocks. In Chemical Transport in Metasomatic Processes; Helgeson, H.C., Ed.; NATO ASI Series: Brussels, Belgium, 1987; Volume 218, pp. 91–121. [Google Scholar]
- Wei, R.H.; Gao, Y.F.; Xu, S.C.; Santosh, M.; Xin, H.T.; Zhang, Z.M.; Li, W.L.; Liu, Y.F. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia. Lithos 2018, 308, 242–261. [Google Scholar] [CrossRef]
- Lee, C.T.A.; Leeman, W.P.; Canil, D.; Canil, D.; Li, Z.X.A. Similar V/Sc systematics MORB and arc basalts: Implications for the oxygen fugacities of their mantle source regions. J. Petrol. 2005, 46, 2313–2336. [Google Scholar] [CrossRef]
- Sun, W.D.; Huang, R.F.; Li, H.; Hu, Y.B.; Zhang, C.C.; Sun, S.J.; Zhang, L.P.; Ding, X.; Li, C.Y.; Zartman, R.E. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Zhang, X.H.; Yuan, L.L.; Xue, F.H.; Yan, X.; Mao, Q. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling. Gondwana Res. 2015, 28, 311–327. [Google Scholar] [CrossRef]
- Fitton, J.G.; James, D.; Lccman, W.P. Basic magmatism associated with the late Cenozoic extension in the western United States: Compositional variations in space and time. Geophys. Res. 1991, 13, 693–711. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, X.; Xue, F.; Liu, F. Juvenile crustal recycling in an accretionary orogen: Insights from contrasting early permian granites from central Inner Mongolia, North China. Lithos 2016, 264, 524–539. [Google Scholar] [CrossRef]
- Landenberger, B.; Collins, W.J. Derivation of A-type granites from a dehydrated charnockitic lower crust: Evidence from the Chaelundi Complex, Eastern Australia. J. Petrol. 1996, 37, 145–170. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhou, M.F.; Li, J.W.; Wu, F.Y. Association of neoproterozoic A-and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chem. Geol. 2008, 257, 1–15. [Google Scholar] [CrossRef]
- Mengason, M.J.; Candela, P.A.; Piccoli, P.M. Molybdenum, tungsten and manganese partitioning in the system pyrrhotite–Fe–S–O melt–rhyolite melt: Impact of sulfide segregation on arc magma evolution. Geochim. Cosmochim. Acta 2011, 75, 7018–7030. [Google Scholar] [CrossRef]
- Jugo, P.; Candela, P.; Piccoli, P. Magmatic sulfides and Au: Cu ratios in porphyry deposits: An experimental study of copper and gold partitioning at 850 °C, 100 MPa in a haplogranitic melt–pyrrhotite–intermediate solidsolution–gold metal assemblage, at gas saturation. Lithos 1999, 46, 573–589. [Google Scholar] [CrossRef]
- Yang, X.M.; Lentz, D.R.; Sylvester, P.J. Gold contents of sulfide minerals in granitoids from southwestern New Brunswick, Canada. Miner. Depos. 2006, 41, 369–386. [Google Scholar] [CrossRef]
- Thompson, J.F.H.; Sillitoe, R.H.; Baker, T.; Lang, J.R.; Mortensen, J. Intrusion-related gold deposits associated with tungsten-tin provinces. Miner. Depos. 1999, 34, 323–334. [Google Scholar] [CrossRef]
- Burnham, C.W. Magmas and hydrothermal fluids. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; JohnWiley and Sons: New York, NY, USA, 1997; pp. 63–123. [Google Scholar]
- Mao, C.; Lu, X.B.; Chen, C.; Cao, M.Y.; Gun, M.S.; Liao, P.C.; Jia, Q.Y. Melt-fluid inclusions study of Shanshenfu granite and its mineralization significance in Hongyan Town, Inner Mongolia. Earth Sci. 2016, 41, 139–152, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.H.; Gao, S.; Ge, W.C.; Wu, F.Y.; Yang, J.H.; Wilde, S.A.; Li, M. Geochronology of the mesozoic volcanic rocks in the Great Xing’an Range, northeastern China: Implications for subduction-induced delamination. Chem. Geol. 2010, 276, 144–165. [Google Scholar] [CrossRef]
- Mei, W.; Lv, X.B.; Liu, Z.; Tang, R.K.; Ai, Z.L.; Wang, X.D.; Cisse, M. Geochronological and geochemical constraints on the ore-related granites in Huanggang deposit, Southern Great Xing’an Range, NE China and its tectonic significance. Geosci. J. 2015, 19, 53–67. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Zhang, H.Y.; Yao, M.J.; Wang, J.P.; Yang, Y.Q. S-Pb isotopic geochemistry, U-Pb and Re-Os geochronology of the Huanggangliang Fe–Sn deposit, Inner Mongolia, NE China. Ore Geol. Rev. 2014, 59, 109–122. [Google Scholar] [CrossRef]
- Ruan, B.X.; Lv, X.B.; Yang, W.; Liu, S.T.; Yu, Y.M.; Wu, C.M.; Munir, M.A.A. Geology, geochemistry and fluid inclusions of the Bianjiadayuan Pb-Zn-Ag deposit, Inner Monglia, NE China: Implications for tectonic setting and metallogeny. Ore Geol. Rev. 2015, 71, 121–137. [Google Scholar] [CrossRef]
- Blight, J.H.S.; Crowley, Q.G.; Petterson, M.G.; Cunningham, D. Granites of the southern Mongolia Carboniferous arc: New geochronological and geochemical constraints. Lithos 2010, 116, 35–52. [Google Scholar] [CrossRef]
- Blight, J.H.S.; Petterson, M.G.; Crowley, Q.G.; Cunningham, D. The Oyut Ulaan volcanic group: Stratigraphy, magmatic evolution and timing of Carboniferous arc development in SE Mongolia. J. Geol. Soc. Lond. 2010, 167, 491–509. [Google Scholar] [CrossRef]
- Litvinovsky, B.A.; Tsygankov, A.A.; Jahn, B.M.; Katzir, Y.; Be’eri-Shlevin, Y. Origin and evolution of overlapping calc-alkaline and alkalinemagmas: The late palaeozoic post-collisional igneous province of transbaikalia (Russia). Lithos 2011, 125, 845–874. [Google Scholar] [CrossRef]
- Zhou, J.B.; Han, J.; Zhao, G.C.; Zhang, X.Z.; Cao, J.L.; Pei, S.H.; Wang, B. The emplacement time of the Hegenshan Ophiolite: Constraints from the unconformably overlying paleozoic strata. Tectonophysics 2015, 622, 398–415. [Google Scholar] [CrossRef]
- Pei, S.H.; Zhou, J.B.; Li, L. U–Pb ages of detrital zircon of the Paleozoic sedimentary rocks: New constraints on the emplacement time of the Hegenshan ophiolite, NE China. J. Asian Earth Sci. 2016, 130, 75–87. [Google Scholar] [CrossRef]
- Eizenhöfer, P.R.; Zhao, G.; Sun, M.; Zhang, J.; Han, Y.G.; Hou, W. Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications. Geol. Soc. Am. Bull. 2015, 127, 1422–1436. [Google Scholar] [CrossRef]
- Han, J.; Zhou, J.B.; Wang, B.; Cao, J.L. The final collision of the CAOB: Constraint from the zircon U–Pb dating of the Linxi Formation, Inner Mongolia. Geosci. Front. 2015, 6, 211–225. [Google Scholar] [CrossRef]
- Janasi, V.; Vlach, S.R.F.; Campos Neto, M.; Ulbrich, H.H.G.J. Associated A-type subalkaline and high-K calc-alkaline granites in the Itu granite province, southeastern Brazil: Petrological and tectonic significance. Can. Mineral. 2009, 47, 1505–1526. [Google Scholar] [CrossRef]
- Li, D.P.; Chen, Y.L.; Wang, Z.; Hou, K.; Liu, C.Z. Detrital zircon U–Pb ages, Hf isotopes and tectonic implications for Palaeozoic sedimentary rocks from the Xing-Meng Orogenic Belt, Middle-East part of Inner Mongolia, China. Geol. J. 2011, 46, 63–81. [Google Scholar] [CrossRef]
- Lamb, M.A.; Badarch, G. Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia; new geochemical and petrographic constraints. Geol. Soc. Am. Mem. 2001, 194, 117–149. [Google Scholar]
- Whalen, J.B.; McNicoll, V.J.; van Staal, C.R.; Lissenberg, C.J.; Longstaffe, F.J.; Jenner, G.A.; van Breeman, O. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians: An example of a rapidly evolving magmatic system related to slab break-off. Lithos 2006, 89, 377–404. [Google Scholar] [CrossRef]
- Bonin, B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 2004, 78, 1–24. [Google Scholar] [CrossRef]
Spot | Trace Elements (ppm) | Isotopic Ratio | Apparent Age (Ma) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U | Th | Th/U | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 206Pb/238U | 1σ | 207Pb/235U | 1σ | 207Pb/206Pb | 1σ | |
Sample SF-1 | |||||||||||||||
SF1-1 | 635 | 337 | 0.53 | 0.3362 | 0.0039 | 0.0472 | 0.0002 | 0.0517 | 0.0006 | 297 | 1.7 | 294 | 4.0 | 272 | 21.3 |
SF1-2 | 591 | 349 | 0.59 | 0.3425 | 0.0046 | 0.0475 | 0.0002 | 0.0523 | 0.0007 | 299 | 1.9 | 299 | 4.6 | 298 | −2.8 |
SF1-3 | 817 | 683 | 0.84 | 0.3341 | 0.0035 | 0.0473 | 0.0002 | 0.0512 | 0.0005 | 298 | 1.8 | 293 | 3.8 | 250 | 24.1 |
SF1-4 | 656 | 345 | 0.53 | 0.3413 | 0.0046 | 0.0475 | 0.0001 | 0.0521 | 0.0007 | 299 | 1.6 | 298 | 4.6 | 300 | 31.5 |
SF1-5 | 1413 | 809 | 0.57 | 0.3434 | 0.0024 | 0.0473 | 0.0001 | 0.0526 | 0.0004 | 298 | 1.6 | 300 | 3.0 | 322 | 14.8 |
SF1-6 | 495 | 262 | 0.53 | 0.3403 | 0.0052 | 0.0475 | 0.0002 | 0.0519 | 0.0008 | 299 | 1.8 | 297 | 5.1 | 283 | 30.6 |
SF1-7 | 1130 | 738 | 0.65 | 0.3468 | 0.0029 | 0.0476 | 0.0002 | 0.0528 | 0.0004 | 300 | 2.0 | 302 | 3.4 | 320 | 16.7 |
SF1-8 | 988 | 482 | 0.49 | 0.3463 | 0.0031 | 0.0476 | 0.0002 | 0.0528 | 0.0005 | 300 | 1.8 | 302 | 3.5 | 320 | 20.4 |
SF1-9 | 822 | 430 | 0.52 | 0.3465 | 0.0033 | 0.0476 | 0.0002 | 0.0528 | 0.0005 | 300 | 1.9 | 302 | 3.7 | 320 | 20.4 |
SF1-10 | 1202 | 673 | 0.56 | 0.3418 | 0.0024 | 0.0475 | 0.0002 | 0.0522 | 0.0004 | 299 | 2.0 | 299 | 3.0 | 295 | 14.8 |
SF1-11 | 191 | 144 | 0.76 | 0.3417 | 0.0124 | 0.0473 | 0.0002 | 0.0523 | 0.0019 | 298 | 2.0 | 298 | 11.1 | 298 | 79.6 |
SF1-12 | 719 | 283 | 0.39 | 0.3428 | 0.0046 | 0.0475 | 0.0002 | 0.0523 | 0.0007 | 299 | 1.8 | 299 | 4.6 | 298 | −2.8 |
Sample SF-5 | |||||||||||||||
SF5-1 | 613 | 326 | 0.53 | 0.3459 | 0.0037 | 0.0476 | 0.0002 | 0.0527 | 0.0005 | 300 | 1.9 | 302 | 3.9 | 317 | 22.2 |
SF5-2 | 215 | 148 | 0.69 | 0.3457 | 0.0103 | 0.0475 | 0.0002 | 0.0527 | 0.0015 | 299 | 1.8 | 302 | 9.2 | 317 | 69.4 |
SF5-3 | 698 | 481 | 0.69 | 0.3456 | 0.0044 | 0.0475 | 0.0002 | 0.0528 | 0.0006 | 299 | 2.0 | 301 | 4.4 | 320 | 25.9 |
SF5-4 | 680 | 214 | 0.31 | 0.3413 | 0.004 | 0.0473 | 0.0001 | 0.0524 | 0.0006 | 298 | 1.6 | 298 | 4.1 | 302 | 25.9 |
SF5-5 | 1062 | 490 | 0.46 | 0.3397 | 0.0027 | 0.0475 | 0.0002 | 0.0519 | 0.0004 | 299 | 1.7 | 297 | 3.2 | 280 | 18.5 |
SF5-6 | 239 | 144 | 0.6 | 0.3451 | 0.0087 | 0.0475 | 0.0002 | 0.0526 | 0.0013 | 299 | 1.8 | 301 | 7.9 | 309 | 55.6 |
SF5-7 | 1077 | 67 | 0.06 | 0.3433 | 0.0025 | 0.0472 | 0.0001 | 0.0527 | 0.0004 | 298 | 1.6 | 300 | 3.1 | 317 | 23.1 |
SF5-8 | 201 | 95 | 0.47 | 0.3472 | 0.0142 | 0.0476 | 0.0001 | 0.0531 | 0.0022 | 300 | 1.7 | 303 | 12.5 | 332 | 92.6 |
SF5-9 | 1407 | 651 | 0.46 | 0.3501 | 0.0024 | 0.0472 | 0.0001 | 0.0538 | 0.0003 | 297 | 1.6 | 305 | 3.1 | 365 | 13.0 |
SF5-10 | 583 | 243 | 0.42 | 0.3407 | 0.0058 | 0.0472 | 0.0001 | 0.0523 | 0.0009 | 297 | 1.7 | 298 | 5.5 | 298 | 41.7 |
SF5-11 | 1213 | 646 | 0.53 | 0.3422 | 0.0027 | 0.0473 | 0.0001 | 0.0525 | 0.0004 | 298 | 1.6 | 299 | 3.2 | 306 | 12.0 |
Spot | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | ΣREE | Ti | δCe | δEu | TTi | lg(fo2) | FMQ Buffer | △FMQ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | °C | ||||||
Sample SF-1 | ||||||||||||||||||||||
SF1-1 | 1.57 | 268 | 1.39 | 21.3 | 53.9 | 0.6 | 333 | 119 | 1451 | 510 | 2244 | 417 | 3937 | 663 | 10,019 | 16.3 | 39.2 | 0.01 | 837 | −10.1 | −13.7 | 3.6 |
SF1-2 | 2.23 | 103 | 1.63 | 18.4 | 39.1 | 0.32 | 224 | 82.2 | 1050 | 395 | 1808 | 346 | 3297 | 566 | 7931 | 33.2 | 11.7 | 0.01 | 917 | −11.5 | −12.2 | 0.7 |
SF1-3 | 0.88 | 44.6 | 1.23 | 15.5 | 27.3 | 1.78 | 135 | 43.3 | 506 | 182 | 829 | 159 | 1586 | 284 | 3815 | 58.3 | 9.3 | 0.09 | 990 | −9.9 | −11.1 | 1.2 |
SF1-4 | 6.60 | 92.0 | 2.77 | 15.9 | 15.0 | 0.47 | 95.2 | 33.9 | 450 | 176 | 854 | 172 | 1798 | 321 | 4026 | 22.6 | 4.7 | 0.04 | 872 | −16.7 | −13.1 | −3.6 |
SF1-5 | 0.11 | 161 | 0.74 | 19.8 | 58.6 | 0.26 | 348 | 126 | 1590 | 570 | 2490 | 457 | 4227 | 679 | 10,727 | 19.1 | 120.8 | 0.01 | 854 | −5.2 | −13.4 | 8.2 |
SF1-6 | 210 | 750 | 84.6 | 433 | 154 | 2.44 | 280 | 67.4 | 674 | 217 | 934 | 179 | 1774 | 312 | 5861 | 24.6 | 1.2 | 0.04 | 882 | −21.3 | −12.9 | −8.4 |
SF1-7 | 0.24 | 116 | 0.5 | 9.2 | 44.4 | 1.84 | 251 | 86.8 | 1097 | 385 | 1700 | 316 | 2933 | 475 | 7416 | 19.2 | 73.2 | 0.05 | 855 | −7.0 | −13.4 | 6.4 |
SF1-8 | 0.04 | 137 | 0.75 | 7.9 | 27.8 | 0.59 | 186 | 70.9 | 947 | 350 | 1602 | 306 | 2990 | 504 | 7130 | 8.6 | 174.8 | 0.03 | 773 | −7.4 | −15.1 | 7.7 |
SF1-9 | 0.49 | 152 | 1.45 | 14.3 | 27.2 | 0.61 | 163 | 59.1 | 757 | 281 | 1317 | 261 | 2633 | 443 | 6110 | 9.3 | 39.0 | 0.03 | 781 | −12.6 | −14.9 | 2.3 |
SF1-10 | 0.07 | 191 | 0.34 | 7.6 | 21.2 | 0.33 | 162 | 67.4 | 904 | 338 | 1576 | 297 | 2838 | 452 | 6855 | 13.9 | 270.5 | 0.02 | 820 | −3.6 | −14.1 | 10.5 |
SF1-11 | 5.14 | 147 | 2.31 | 18.6 | 33.7 | 0.28 | 208 | 81.2 | 1073 | 406 | 1859 | 362 | 3546 | 585 | 8322 | 16.7 | 9.2 | 0.01 | 840 | −15.4 | −13.7 | −1.7 |
SF1-12 | 0.02 | 72.7 | 0.17 | 4.3 | 17.9 | 0.53 | 110 | 43.5 | 589 | 229 | 1105 | 224 | 2242 | 367 | 5005 | 14.2 | 276.0 | 0.04 | 823 | −3.4 | −14.0 | 10.6 |
Sample SF-5 | ||||||||||||||||||||||
SF5-1 | 3.49 | 99.6 | 2.87 | 32.7 | 42.1 | 1.53 | 198 | 60.2 | 707 | 237 | 1038 | 204 | 1995 | 334 | 4952 | 33.6 | 6.8 | 0.05 | 919 | −13.5 | −12.2 | −1.3 |
SF5-2 | 0.50 | 184 | 0.49 | 9.6 | 30.9 | 0.11 | 180 | 69.9 | 936 | 358 | 1607 | 321 | 3265 | 500 | 7462 | 32.5 | 80.7 | 0.00 | 915 | −4.3 | −12.3 | 8.0 |
SF5-3 | 12.2 | 212 | 6.04 | 35.3 | 36.1 | 0.24 | 199 | 75.3 | 987 | 369 | 1676 | 336 | 3362 | 528 | 7822 | 12.1 | 5.3 | 0.01 | 807 | −18.9 | −14.4 | −4.5 |
SF5-4 | 5.38 | 183 | 2.59 | 22.3 | 36.9 | 0.49 | 232 | 92.7 | 1142 | 382 | 1685 | 338 | 3349 | 488 | 7954 | 9.2 | 10.6 | 0.02 | 780 | −17.6 | −14.9 | −2.7 |
SF5-5 | 0.16 | 135 | 0.11 | 6.7 | 20.7 | 0.51 | 168 | 63.6 | 876 | 320 | 1488 | 290 | 2977 | 431 | 6777 | 20.4 | 215.0 | 0.03 | 861 | −2.7 | −13.3 | 10.6 |
SF5-6 | 0.31 | 161 | 1.34 | 17.9 | 38.1 | 0.27 | 216 | 76.6 | 962 | 347 | 1561 | 320 | 3247 | 502 | 7450 | 18.9 | 53.8 | 0.01 | 853 | −8.3 | −13.4 | 5.1 |
SF5-7 | 57.0 | 260 | 19.2 | 84.4 | 38.8 | 1.45 | 171 | 57.9 | 748 | 271 | 1258 | 255 | 2667 | 409 | 6241 | 9.8 | 1.7 | 0.05 | 786 | −24.2 | −14.8 | −9.4 |
SF5-8 | 1.14 | 156 | 0.83 | 13.9 | 30.1 | 0.69 | 188 | 74.1 | 970 | 357 | 1595 | 324 | 3276 | 473 | 7459 | 18.4 | 34.8 | 0.03 | 850 | −10.0 | −13.5 | 3.5 |
SF5-9 | 0.36 | 87.4 | 0.42 | 6.8 | 15.1 | 0.27 | 82.6 | 27.8 | 370 | 134 | 627 | 135 | 1424 | 225 | 3135 | 173 | 48.3 | 0.02 | 1158 | - | - | - |
SF5-10 | 0.20 | 20.0 | 0.35 | 3.4 | 6.19 | 1.98 | 42.1 | 13.2 | 160 | 60.9 | 285 | 59.2 | 651 | 107 | 1410 | 33.5 | 16.4 | 0.38 | 918 | −10.2 | −12.2 | 2.0 |
SF5-11 | 4.03 | 109 | 1.65 | 14.6 | 30.1 | 0.78 | 204 | 78.5 | 1068 | 403 | 1890 | 376 | 3683 | 585 | 8444 | 4.8 | 9.2 | 0.03 | 721 | −21.0 | −16.3 | −4.7 |
Spot | 176Hf/177Hf a | 1σ | 176Lu/177Hf a | 1σ | 176Yb/177Hf a | 1σ | Age (Ma) | εHf (t) b | 1σ | TDM1 (Ma) c | TDM2 (Ma) d | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample SF-1 | ||||||||||||
SF1-1 | 0.282995 | 0.000015 | 0.002996 | 0.000008 | 0.086319 | 0.000235 | 297 | 7.9 | 0.74 | 384 | 507 | −0.91 |
SF1-4 | 0.282982 | 0.000014 | 0.002209 | 0.000051 | 0.061855 | 0.001585 | 299 | 7.4 | 0.70 | 395 | 533 | −0.93 |
SF1-7 | 0.283024 | 0.000015 | 0.004243 | 0.000064 | 0.115732 | 0.00164 | 300 | 8.9 | 0.75 | 353 | 450 | −0.87 |
SF1-8 | 0.283052 | 0.000016 | 0.003983 | 0.000026 | 0.117902 | 0.00081 | 300 | 9.9 | 0.76 | 307 | 394 | −0.88 |
SF1-9 | 0.283011 | 0.000014 | 0.003086 | 0.000051 | 0.089502 | 0.001556 | 300 | 8.4 | 0.72 | 362 | 476 | −0.91 |
SF1-11 | 0.282955 | 0.000013 | 0.00128 | 0.000005 | 0.032593 | 0.000132 | 298 | 6.5 | 0.70 | 424 | 587 | −0.96 |
SF1-12 | 0.282967 | 0.000014 | 0.002444 | 0.000009 | 0.068065 | 0.000324 | 299 | 6.9 | 0.73 | 420 | 563 | −0.93 |
Sample SF-5 | ||||||||||||
SF5-1 | 0.283011 | 0.000017 | 0.004065 | 0.000056 | 0.11864 | 0.001618 | 300 | 8.4 | 0.79 | 372 | 476 | −0.88 |
SF5-2 | 0.283020 | 0.000014 | 0.002091 | 0.000018 | 0.055445 | 0.0004 | 299 | 8.8 | 0.72 | 338 | 458 | −0.94 |
SF5-5 | 0.283029 | 0.000017 | 0.003066 | 0.000016 | 0.090641 | 0.000562 | 299 | 9.1 | 0.79 | 335 | 441 | −0.91 |
SF5-6 | 0.282941 | 0.000014 | 0.000794 | 0.000014 | 0.020234 | 0.000404 | 299 | 6.0 | 0.70 | 438 | 614 | −0.98 |
SF5-7 | 0.283002 | 0.000014 | 0.003232 | 0.000016 | 0.093923 | 0.000628 | 298 | 8.1 | 0.72 | 377 | 494 | −0.90 |
SF5-8 | 0.282948 | 0.000015 | 0.001153 | 0.000078 | 0.029802 | 0.002258 | 300 | 6.2 | 0.73 | 433 | 602 | −0.97 |
SF5-9 | 0.283015 | 0.000014 | 0.003446 | 0.00001 | 0.099972 | 0.000247 | 297 | 8.6 | 0.72 | 359 | 468 | −0.90 |
SF5-10 | 0.283025 | 0.000014 | 0.002295 | 0.000037 | 0.066671 | 0.001076 | 297 | 8.9 | 0.72 | 333 | 448 | −0.93 |
SF5-11 | 0.283028 | 0.000015 | 0.003929 | 0.00002 | 0.113707 | 0.000769 | 298 | 9.0 | 0.75 | 344 | 443 | −0.88 |
Sample | The Inner Phase | The Outer Phase | ||||
---|---|---|---|---|---|---|
SF-1 | SF-2 | SF-3 | SF-4 | SF-5 | SF-6 | |
SiO2 | 76.83 | 75.23 | 76.02 | 76.22 | 74.89 | 75.36 |
Al2O3 | 12.34 | 12.56 | 12.78 | 12.67 | 12.85 | 12.54 |
Fe2O3 | 1.51 | 1.48 | 1.37 | 1.64 | 2.13 | 1.95 |
CaO | 0.08 | 0.11 | 0.09 | 0.19 | 0.21 | 0.24 |
MgO | 0.14 | 0.12 | 0.11 | 0.16 | 0.09 | 0.12 |
Na2O | 3.71 | 4.08 | 3.87 | 3.67 | 4.23 | 4.13 |
K2O | 4.46 | 4.31 | 4.42 | 4.87 | 4.53 | 4.68 |
TiO2 | 0.15 | 0.27 | 0.19 | 0.17 | 0.25 | 0.31 |
MnO | 0.06 | 0.08 | 0.04 | 0.11 | 0.05 | 0.06 |
P2O5 | 0.03 | 0.08 | 0.04 | 0.06 | 0.11 | 0.08 |
LOI | 0.45 | 0.67 | 0.54 | 0.24 | 0.48 | 0.37 |
Total | 99.98 | 99.56 | 99.71 | 100.32 | 99.67 | 99.48 |
La | 52.3 | 22.6 | 45.5 | 58.8 | 27.2 | 40.1 |
Ce | 161 | 54.2 | 101.3 | 174.5 | 72.3 | 89.6 |
Pr | 14.75 | 6.58 | 13.2 | 15.1 | 7.22 | 12.6 |
Nd | 53.6 | 20.8 | 44.2 | 51.3 | 29.1 | 45.5 |
Sm | 12.8 | 5.13 | 9.35 | 11.26 | 7.32 | 9.81 |
Eu | 0.34 | 0.15 | 0.13 | 0.42 | 0.17 | 0.21 |
Gd | 10.72 | 5.82 | 7.62 | 10.11 | 9.61 | 6.97 |
Tb | 1.91 | 1.28 | 1.18 | 1.83 | 2.36 | 1.11 |
Dy | 12.3 | 10.44 | 7.61 | 12.28 | 13.12 | 6.5 |
Ho | 2.54 | 2.35 | 1.51 | 2.57 | 2.68 | 1.27 |
Er | 8.57 | 7.42 | 4.83 | 7.93 | 6.68 | 5.24 |
Tm | 1.25 | 1.11 | 0.68 | 1.17 | 0.97 | 0.72 |
Yb | 8.65 | 8.03 | 4.97 | 8.21 | 7.32 | 5.16 |
Lu | 1.4 | 1.28 | 0.83 | 1.32 | 1.15 | 0.88 |
Ga | 21.2 | 19.7 | 22.6 | 24.3 | 21.8 | 18.9 |
Rb | 177 | 153.5 | 172 | 181.5 | 167 | 148 |
Ba | 60.2 | 107 | 171 | 58.6 | 123 | 86 |
Th | 16.3 | 17.51 | 14.2 | 17.1 | 18.2 | 13.6 |
U | 3.79 | 3.65 | 3.48 | 2.87 | 3.67 | 3.13 |
Ta | 2.23 | 2.65 | 2.31 | 2.95 | 2.46 | 2.33 |
Nb | 43.7 | 49.1 | 44.3 | 48.2 | 46.2 | 44.7 |
Sr | 8.3 | 14.8 | 22.4 | 24.1 | 15.3 | 18.7 |
Zr | 358 | 435 | 647 | 248 | 487 | 276 |
Hf | 11.9 | 13.1 | 18.4 | 10.8 | 13.9 | 11.2 |
Y | 70.4 | 75.1 | 81.8 | 54.2 | 78.3 | 63.1 |
ΣREE | 342 | 147 | 243 | 357 | 187 | 226 |
ΔEu | 0.09 | 0.08 | 0.05 | 0.12 | 0.06 | 0.08 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, C.; Lü, X.; Chen, C. Geochemical Characteristics of A-Type Granite near the Hongyan Cu-Polymetallic Deposit in the Eastern Hegenshan-Heihe Suture Zone, NE China: Implications for Petrogenesis, Mineralization and Tectonic Setting. Minerals 2019, 9, 309. https://doi.org/10.3390/min9050309
Mao C, Lü X, Chen C. Geochemical Characteristics of A-Type Granite near the Hongyan Cu-Polymetallic Deposit in the Eastern Hegenshan-Heihe Suture Zone, NE China: Implications for Petrogenesis, Mineralization and Tectonic Setting. Minerals. 2019; 9(5):309. https://doi.org/10.3390/min9050309
Chicago/Turabian StyleMao, Chen, Xinbiao Lü, and Chao Chen. 2019. "Geochemical Characteristics of A-Type Granite near the Hongyan Cu-Polymetallic Deposit in the Eastern Hegenshan-Heihe Suture Zone, NE China: Implications for Petrogenesis, Mineralization and Tectonic Setting" Minerals 9, no. 5: 309. https://doi.org/10.3390/min9050309
APA StyleMao, C., Lü, X., & Chen, C. (2019). Geochemical Characteristics of A-Type Granite near the Hongyan Cu-Polymetallic Deposit in the Eastern Hegenshan-Heihe Suture Zone, NE China: Implications for Petrogenesis, Mineralization and Tectonic Setting. Minerals, 9(5), 309. https://doi.org/10.3390/min9050309