Hydrochloric Acidic Processing of Titanite Ore to Produce a Synthetic Analogue of Korobitsynite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. TSP Production
3.2. SKR Synthesis
4. Discussion
5. Conclusions
- (1)
- Almost all apatite deposits of the Khibiny massifs contain sufficient reserves of (apatite)-nepheline-titanite ore, which forms lens-like bodies up to 50 m thick and above 5 km long. This is a good titanium source that can be tapped without the traditional flotation schema, but by using only acidic cleaning from soluble impurities of apatite and nepheline and insoluble clinopyroxenes (±microcline and amphiboles);
- (2)
- A new technology of hydrochloric acidic processing of titanite is now developed. It allows extraction about 90 wt% of Ti and Si into hydrated titanosilicate precipitate, TSP, while Ca and Sr remain in the chloride solution;
- (3)
- Hydrated TSP is a novel handy precursor for SKR synthesis by means of reaction with alkaline Na-rich hydrothermal solution at 200 ± 5 °C for 3 days;
- (4)
- The obtained crystalline products differ from currently known synthetic compounds TR01 [24] by Nb presence and corresponding structural features, being close to natural korobitsynite;
- (5)
- The possibilities of SKR use include selective sorption of Sr (in contrast with IE-911, ETS-4, and SIV that favored Cs) and, mainly, photocatalytic applications, in particular, production of self-cleaning, sterilizing and anti-fouling building materials and coverings.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mann, N.R.; Todd, T.A. Removal of Cesium from Acidic Radioactive Tank Waste by Using Ionsiv IE-911. Sep. Sci. Technol. 2005, 39, 2351–2371. [Google Scholar] [CrossRef]
- Milyutin, V.V.V.; Nekrasova, N.A.A.; Yanicheva, N.Y.Y.; Kalashnikova, G.O.O.; Ganicheva, Y.Y.Y.Y. Sorption of cesium and strontium radionuclides onto crystalline alkali metal titanosilicates. Radiochemistry 2017, 59, 65–69. [Google Scholar] [CrossRef]
- Britvin, S.N.; Gerasimova, L.G.; Ivanyuk, G.Y.; Kalashnikova, G.O.; Krzhizhanovskaya, M.G.; Krivovivhev, S.V.; Mararitsa, V.F.; Nikolaev, A.I.; Oginova, O.A.; Panteleev, V.N.; et al. Application of titanium-containing sorbents for treating liquid radioactive waste with the subsequent conservation of radionuclides in Synroc-type Titanate ceramics. Theor. Found. Chem. Eng. 2016, 50, 598–606. [Google Scholar] [CrossRef]
- Sudheesh, N.; Shukla, R.S. Rhodium exchanged ETS-10 and ETS-4: Efficient heterogeneous catalyst for hydroaminomethylation. Appl. Catal. A Gen. 2014, 473, 116–124. [Google Scholar] [CrossRef]
- Busca, G. Heterogeneous Catalytic Materials: Solid State Chemistry, Surface Chemistry and Catalytic Behaviour; Elsevier: Amsterdam, The Netherlands; Oxford, UK, 2014; ISBN 978-0-444-59524-9. [Google Scholar]
- Lopes, C.B.; Otero, M.; Coimbra, J.; Pereira, E.; Rocha, J.; Lin, Z.; Duarte, A. Removal of low concentration Hg2+ from natural waters by microporous and layered titanosilicates. Microporous Mesoporous Mater. 2007, 103, 325–332. [Google Scholar] [CrossRef]
- Yanicvheva, N.Y.; Ganicheva, Y.Y.; Kasikov, A.G.; Yakovenchuk, V.N.; Nikolaev, A.I.; Kalashnikova, G.O.; Ivanyuk, G.Y. The Method of Modified Pharmacosiderite-Type Titanosilicate Obtaining. Russian Patent RU-2625118, 11 July 2017. [Google Scholar]
- Kuznicki, S.M.; Bell, V.A.; Nair, S.; Hillhouse, H.W.; Jacubinas, R.M.; Braunbarth, C.M.; Toby, B.H.; Tsapatsis, M. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 2001, 412, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Perez-Carvajal, J.; Aranda, P.; Ruiz-Hitzky, E. Titanosilicate-sepiolite hybrid nanoarchitectures for hydrogen technologies applications. J. Solid State Chem. 2019, 270, 287–294. [Google Scholar] [CrossRef]
- Pérez-Carvajal, J.; Lalueza, P.; Casado, C.; Téllez, C.; Coronas, J. Layered titanosilicates JDF-L1 and AM-4 for biocide applications. Appl. Clay Sci. 2012, 56, 30–35. [Google Scholar] [CrossRef]
- Llabrés i Xamena, F.X.; Calza, P.; Lamberti, C.; Prestipino, C.; Damin, A.; Bordiga, S.; Pelizzetti, E.; Zecchina, A. Enhancement of the ETS-10 titanosilicate activity in the shape-selective photocatalytic degration of large aromatic molecules by controlled defect production. J. Am. Chem. Soc. 2003, 125, 2264–2271. [Google Scholar] [CrossRef]
- Guan, G.; Kida, T.; Kusakabe, K.; Kimura, K.; Abe, E.; Yoshida, A. Photocatalytic reactivity of noble metal-loaded ETS-4 zeolites. Inorg. Chem. Commun. 2004, 7, 618–620. [Google Scholar] [CrossRef]
- Uma, S.; Rodrigues, S.; Martyanov, I.N.; Klabunde, K.J. Exploration of photocatalytic activities of titanosilicate ETS-10 and transition metal incorporated ETS-10. Microporous Mesoporous Mater. 2004, 67, 181–187. [Google Scholar] [CrossRef]
- Krisnandi, Y.K.; Howe, R.F. Effects of ion-exchange on the photoreactivity of ETS-10. Appl. Catal. A Gen. 2006, 307, 62–69. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Tsukamoto, D.; Hirai, T. Selective photocatalytic transformations on microporous titanosilicate ETS-10 driven by size and polarity of molecules. Langmuir 2008, 24, 12569–12663. [Google Scholar] [CrossRef]
- Macphee, D.E.; Folli, A. Photocatalytic concretes—The interface between photocatalysis and cement chemistry. Cem. Concr. Res. 2016, 85, 48–54. [Google Scholar] [CrossRef]
- Tyukavkina, V.V.; Gerasimova, L.G.; Semushin, V.V. Properties of compositions based on cement and modified nanodispersed titanium dioxide. Inorg. Mater. Appl. Res. 2019, 10, 122–126. [Google Scholar] [CrossRef]
- Tyukavkina, V.V.; Gerasimova, L.G.; Tsyryateva, A.V. Synthetic titanosilikatny additives for special cement composites. Perspektivnye Materialy 2019, 4, 40–48. [Google Scholar] [CrossRef]
- Gerasimova, L.; Nikolaev, A.; Maslova, M.; Shchukina, E.; Samburov, G.; Yakovenchuk, V.; Ivanyuk, G. Titanite Ores of the Khibiny Apatite-Nepheline-Deposits: Selective Mining, Processing and Application for Titanosilicate Synthesis. Minerals 2018, 8, 446. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pekov, I.V.; Zadov, A.E.; Voloshin, A.V.; Subbotin, V.V.; Soroktina, N.V.; Rastsvetaeva, R.K.; Krivovichev, S.V. Minerals of the Labuntsovite Group; Nauka: Moscow, Russia, 2003; ISBN 5-02-006441-6. (In Russian) [Google Scholar]
- Rastsvetaeva, R.K.; Chukanov, N.V.; Pekov, I.V. Crystal structure of a new mineral, titanium analogue of orthorhombic nenadkevichite. Dok. RAN 1997, 357, 364–367. (In Russian) [Google Scholar]
- Pekov, I.V.; Chukanov, N.V.; Khomyakov, A.P.; Rastsvetaeva, R.K.; Kucherinenko, Y.V.; Nedel’ko, V.V. Korobitsynite Na3-x(Ti,Nb)2[Si4O12](OH,O)2∙3–4H2O—a new mineral from Lovozero Massif, Kola Peninsula. ZVMO 1999, 3, 72–79. (In Russian) [Google Scholar]
- Zolotarev, A.A. Crystal Chemistry of the Lovozerite and Labuntsovite Group Minerals. Ph.D. Thesis, St. Petersburg University, St. Petersburg, Russia, 2007. [Google Scholar]
- Cadoni, M.; Ferraris, G. Microporous titanosilicates—Synthesis and structural characterization of a new orthorhombic-type labuntsovite. Eur. J. Mineral. 2007, 19, 217–222. [Google Scholar] [CrossRef]
- Kozlova, E.A.; Kozhevnikova, N.S.; Cherepanova, S.V.; Lyubina, T.P.; Gerasimov, E.Y.; Kaichev, V.V.; Vorontsov, A.V.; Tsybulya, S.V.; Rempel, A.A.; Parmon, V.N. Photocatalytic oxidation of ethanol vapors under visible light on CdS–TiO2 nanocatalyst. J. Photochem. Photobiol. A Chem. 2012, 250, 103–109. [Google Scholar] [CrossRef]
- Sedneva, T.A.; Belikov, M.L.; Belyaevskii, A.T. Synthesis and study of photocatalytic oxide nanocomposites of titanium (IV) and cobalt (II). Theor. Found. Chem. Eng. 2016, 50, 498–507. [Google Scholar] [CrossRef]
- Shankar, M.V.; Ye, J.H. Green-Chemical Synthesis of ETS-4 Zeotypes for Photocatalytic Hydrogen Production. Adv. Mater. Res. 2012, 584, 366–370. [Google Scholar] [CrossRef]
No | T, °C | TiO2:SiO2 | TiO2:Na2O | TiO2:KOH | pH |
---|---|---|---|---|---|
1 | 20 | 1:5 | 1:4.5 | – | 12.03 |
2 | 50 | 1:5 | 1:4.5 | – | 12.04 |
3 | 20 | 1:5 | 1:4.5 | 1:1 | 12.71 |
4 | 50 | 1:5 | 1:4.5 | 1:1 | 12.69 |
No | Filtrate | Titanosilicate Product | |||
---|---|---|---|---|---|
pH | Volume, mL | SiO2, g/L | Na(K), g/L | ||
1 | 12.57 | 53 | 56.09 | 46.0 (0) | SKR >> ATS |
2 | 12.52 | 56 | 51.68 | 46.4 (0) | SKR > ATS |
3 | 12.75 | 53 | 44.54 | 42.8 (11.5) | ATS > SKR |
4 | 12.75 | 53 | 55.96 | 46.0 (12.0) | ATS >> SKR |
Constituent | H2O | Na2O | K2O | Al2O3 | SiO2 | Cl | TiO2 | Nb2O5 |
---|---|---|---|---|---|---|---|---|
SKR | 15.52 | – | 0.67 | 42.22 | - | 41.10 | 0.44 | |
ATS | 12.77 | 2.5 | 0.63 | 34.41 | 0.13 | 49.16 | 0.42 | |
Na5(Ti3Nb)[Si4O12]2O2(OH)2·7H2O | 12.51 | 13.45 | 41.71 | 20.80 | 11.53 |
No | S, m2/g | V, cm3/g | DBJH, nm | SC, mg/g | E, % | ||
---|---|---|---|---|---|---|---|
Sr2+ | Cs+ | Visible Light | UV Light | ||||
1 | 6.5 ± 0.1 | 0.0272 ± 0.0005 | 18.1 ± 0.1 | 56 | 4 | 31.48 | 44.62 |
2 | 8.9 ± 0.1 | 0.0372 ± 0.0001 | 17.7 ± 0.1 | 54 | 4 | 16.01 | 36.79 |
3 | 14.5 ± 0.1 | 0.0632 | 18.1 ± 0.1 | 68 | 18 | 24.24 | 46.5 |
4 | 18.7 ± 0.1 | 0.0795 ± 0.0002 | 17.7 ± 0.1 | 94 | 30 | 17.22 | 39.49 |
Mixture of IE-911, ETS-4 and SIV | SIV | SKR | ETS-4 | Rutile | Degussa P25 | |
---|---|---|---|---|---|---|
Weight, g | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
E, % | 68.72 | 42.63 | 31.48 | 18.95 | 5.79 | 4.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimova, L.G.; Nikolaev, A.I.; Shchukina, E.S.; Maslova, M.V.; Kalashnikova, G.O.; Samburov, G.O.; Ivanyuk, G.Y. Hydrochloric Acidic Processing of Titanite Ore to Produce a Synthetic Analogue of Korobitsynite. Minerals 2019, 9, 315. https://doi.org/10.3390/min9050315
Gerasimova LG, Nikolaev AI, Shchukina ES, Maslova MV, Kalashnikova GO, Samburov GO, Ivanyuk GY. Hydrochloric Acidic Processing of Titanite Ore to Produce a Synthetic Analogue of Korobitsynite. Minerals. 2019; 9(5):315. https://doi.org/10.3390/min9050315
Chicago/Turabian StyleGerasimova, Lidia G., Anatoly I. Nikolaev, Ekaterina S. Shchukina, Marina V. Maslova, Galina O. Kalashnikova, Gleb O. Samburov, and Gregory Yu. Ivanyuk. 2019. "Hydrochloric Acidic Processing of Titanite Ore to Produce a Synthetic Analogue of Korobitsynite" Minerals 9, no. 5: 315. https://doi.org/10.3390/min9050315
APA StyleGerasimova, L. G., Nikolaev, A. I., Shchukina, E. S., Maslova, M. V., Kalashnikova, G. O., Samburov, G. O., & Ivanyuk, G. Y. (2019). Hydrochloric Acidic Processing of Titanite Ore to Produce a Synthetic Analogue of Korobitsynite. Minerals, 9(5), 315. https://doi.org/10.3390/min9050315