A Bat-Optimized One-Class Support Vector Machine for Mineral Prospectivity Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological and Geochemical Data
2.2. Receiver Operating Characteristic (ROC) Curve, Area under the Cuve (AUC), and Youden Index
2.3. OCSVM
2.4. Bat-Optimized OCSVM
3. Mapping Mineral Prospectivity
3.1. Geological Background and Mineralization
3.2. Evidence Map Layers
3.3. Mineral Target Extraction
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayton, P.; Schӧlkopf, B.; Tarassenko, L.; Anuzis, P. Support vector novelty detection applied to jet engine vibration spectra. In Proceedings of the Advances in Neural Information Processing Systems 13 (NIPS’ 2000), Denver, CO, USA, 27 November–2 December 2000; pp. 946–952. [Google Scholar]
- Schӧlkopf, B.; Platt, J.; Shawe-Taylor, J.; Smola, A.; Williamson, R. Estimating the support of a high-dimensional distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef]
- Davy, M.; Godsill, S.J. Detection of abrupt spectral changes using support vector machines—An application to audio signal segmentation. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (IEEE ICASSP-02), Orlando, FL, USA, 13–17 May 2002; pp. 1313–1316. [Google Scholar]
- Lengelle, R.; Capman, F.; Ravera, B. Abnormal events detection using unsupervised one-class SVM–Application to audio surveillance and evaluation. In Proceedings of the 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS 2011), Klagenfurt, Austria, 30 August–2 September 2011; pp. 124–129. [Google Scholar]
- Shin, H.J.; Eom, D.H.; Kim, S.S. One-class support vector machines—An application in machine fault detection and classification. Comput. Ind. Eng. 2005, 48, 395–408. [Google Scholar]
- Mahadevan, S.; Shah, S.L. Fault detection and diagnosis in process data using one-class support vector machines. J. Process Control 2009, 19, 1627–1639. [Google Scholar] [CrossRef]
- Fergani, B.; Davy, M.; Houacine, A. Speaker diarization using one-class support vector machines. Speech Commun. 2008, 50, 355–365. [Google Scholar] [CrossRef]
- Mourão-Miranda, J.; Hardoon, D.R.; Hahn, T.; Marquand, A.F.; Williams, S.C.R.; Shawe-Taylor, J.; Brammer, M. Patient classification as an outlier detection problem: An application of the One-Class Support Vector Machine. NeuroImage 2011, 58, 793–804. [Google Scholar] [CrossRef] [Green Version]
- Strobbe, T.; Wyffels, F.; Verstraeten, R.; De Meyer, R.; Van Campenhout, J. Automatic architectural style detection using one-class support vector machines and graph kernels. Autom. Constr. 2016, 69, 1–10. [Google Scholar] [CrossRef]
- Roodposhti, M.S.; Safarrad, T.; Shahabi, H. Drought sensitivity mapping using two one-class support vector machine algorithms. Atmos. Res. 2017, 193, 73–82. [Google Scholar] [CrossRef]
- Saari, J.; Strömbergsson, D.; Lundberg, J.; Thomson, A. Detection and identification of windmill bearing faults using a one-class support vector machine (SVM). Measurement 2019, 137, 287–301. [Google Scholar] [CrossRef]
- Harrou, F.; Dairi, A.; Taghezouit, B.; Sun, Y. An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class support vector machine. Sol. Energy 2019, 179, 48–58. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wu, W. Mapping mineral prospectivity by using one-class support vector machine to identify multivariate geological anomalies from digital geological survey data. Aust. J. Earth Sci. 2017, 44, 639–651. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wu, W. Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochem. Explor. Environ. Anal. 2017, 17, 231–238. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization-An overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Proceedings of the Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Granada, Spain, 12–14 May 2010; González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N., Eds.; Springer: Berlin, Germany, 2010; pp. 65–74. [Google Scholar]
- Sharawi, M.; Emary, E.; Saroit, I.A.; El-Mahdy, H. Bat swarm algorithm for wireless sensor networks lifetime optimization. Int. J. Sci. Res. 2012, 3, 655–664. [Google Scholar]
- Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef]
- Goyal, S.; Patterh, M.S. Wireless sensor network localization based on bat algorithm. Int. J. Emerg. Technol. Comput. Appl. Sci. IJETCAS 2013, 4, 507–512. [Google Scholar]
- Yang, X.S.; Karamanoglu, M.; Fong, S. Bat algorithm for topology optimization in microelectronic applications. In Proceedings of the First International Conference on Future Generation Communication Technologies, London, UK, 12–14 December 2012; pp. 150–155. [Google Scholar]
- Chen, Y.L. Mineral potential mapping with a restricted Boltzmann machine. Ore Geol. Rev. 2015, 71, 749–760. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wu, W. A prospecting cost-benefit strategy for mineral potential mapping based on ROC curve analysis. Ore Geol. Rev. 2016, 74, 26–38. [Google Scholar] [CrossRef]
- Chen, Y.L.; Wu, W. Mapping mineral prospectivity using an extreme learning machine regression. Ore Geol. Rev. 2017, 80, 200–213. [Google Scholar] [CrossRef]
- Liu, F.S.; Zhang, M.L. Complete quality management of the new-round land resources survey. Chin. Geol. 1999, 267, 20–21. (In Chinese) [Google Scholar]
- Zhang, J.; Marszalek, M.; Lazebnik, S.; Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study. Int. J. Comput. Vis. 2007, 73, 213–238. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Wu, F.Y.; Wilde, S.A.; Zhai, M.G.; Lu, X.P.; Sun, D.Y. Zircon U-Pb ages and tectonic implications of Early Paleozoic granitoids at Yanbian, Jilin Province, northeast China. Island Arc 2004, 13, 484–505. [Google Scholar] [CrossRef]
- Wu, F.; Lin, J.; Wilde, S.A.; Zhang, Q.; Yang, J. Nature and significance of early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 2005, 233, 103–119. [Google Scholar] [CrossRef]
- Yu, J.J.; Wang, F.; Xu, W.L.; Gao, F.H.; Pei, G.P. Early Jurassic mafic magmatism in the Lesser Xing’an-Zhangguangcai Range, NE China, and its tectonic implications: Constraints from zircon U-Pb chronology and geochemistry. Lithos 2012, 142–143, 256–266. [Google Scholar] [CrossRef]
- Wu, P.F.; Sun, D.Y.; Wang, T.H.; Gou, J.; Li, R.; Liu, W.; Liu, X.M. Chronology, geochemical characteristic and petrogenesis analysis of diorite in Helong of Yanbian area, northeastern China. Geol. J. China Univ. 2013, 19, 600–610. (In Chinese) [Google Scholar]
- Yan, D.; Li, N.; Xu, M.; Miao, M.M. Mineralization characteristics and genesis of the Bailiping silver deposit in Helong City, Jilin Province. Jilin Geol. 2015, 34, 36–41. (In Chinese) [Google Scholar]
- Wan, W.Z.; Wang, J.B.; Feng, X.Y.; Zhang, H.; Jia, N.; Zhang, Y.L. Geological features and prospecting directions of the Heanhe gold deposit in the Helong area, Jilin Province, China. Jilin Geol. 2010, 29, 71–75. (In Chinese) [Google Scholar]
- Pan, Y.D.; Xu, B.J.; Sun, Y.; Hou, L. Geological features of the Jinchengdong gold deposit in Helong City, Jilin Province, China. Jilin Geol. 2016, 35, 30–35. (In Chinese) [Google Scholar]
The Algorithm for the Bat-Optimized OCSVM Model |
---|
Input: |
Binary data {x1, x2, …, xn}; |
Binary ground truth data {d1, d2, …, dn}. |
Output: |
Anomaly scores {f(x1), f(x2), …, f(xn)}. |
Algorithm: |
Initialization (): |
Randomly initialize the location and velocity of each bat zl and vl, (l = 1, 2, …, L); |
Define pulse frequency fl at zl, (l = 1, 2, …, L); |
Initialize emission rate rl and the loudness Al, (l = 1, 2, …, L). |
Evaluation (): |
Initialize the OCSVM model using zl, (l = 1, 2, …, L); |
Train the OCSVM model on the binary data {x1, x2, …, xn}; |
Compute the anomaly score of unit cell i using Equation (5), (i = 1, 2, …, n); |
Compute the AUC of the OCSVM model initialized by zl (l = 1, 2, …, L) using Equation (1). |
While (t < T): |
Adjust the frequency of each bat fl using Equation (6) (l = 1, 2, …, L); |
Update the velocity and location of each bat zl and vl using Equations (7) to (8) (l = 1, 2, …, L); Call Evaluation (). |
If (random < rl): |
Select a location among the best locations; |
Generate a local location around the selected best location; |
Generate a new location according to Equation (9); Call Evaluation (). |
): |
Accept the new locations; |
Increase rl and reduce Al according to Equation (10); |
Rank the bats and find the current best . |
Output the results. |
Linear Evidence | MYI | OBW (km) |
---|---|---|
Regional structure | 0.09887 | 0.5 |
Troctolite boundary | 0.04405 | 0.8 |
Mottled monzonite boundary | −0.01642 | 0.1 |
Porphyritic monzonite boundary | −0.03696 | 0.8 |
Stage II porphyritic monzonite boundary | −0.1287 | 0.1 |
Porphyritic biotite granodiorite boundary | 0.08729 | 0.1 |
Porphyritic granodiorite boundary | 0.2019 | 0.6 |
Fine-grained monzonite boundary | 0.1264 | 0.1 |
Medium-fine-grained monzonite boundary | −0.09409 | 0.1 |
Medium-fine-grained diorite boundary | 0.1831 | 1.0 |
Element | AUC | ZAUC | Element | AUC | ZAUC | Element | AUC | ZAUC |
---|---|---|---|---|---|---|---|---|
Ag | 0.5268 | 0.3416 | Cu | 0.7222 | 2.8661 | Sb | 0.5802 | 1.0037 |
As | 0.6195 | 1.4889 | Hg | 0.5949 | 1.1835 | W | 0.6561 | 1.9531 |
Au | 0.6893 | 2.3958 | Mo | 0.7159 | 2.7727 | Zn | 0.6537 | 1.9217 |
Bi | 0.6620 | 2.0295 | Ni | 0.7619 | 3.4986 | |||
Co | 0.7007 | 2.5540 | Pb | 0.4327 | –0.9248 |
Element | MYI | OT | Element | MYI | OT | Element | MYI | OT |
---|---|---|---|---|---|---|---|---|
Au | 0.3483 | 0.6421 | Bi | 0.3357 | 0.1996 | Co | 0.3989 | 7.3378 |
Cu | 0.3889 | 11.0669 | Mo | 0.36406 | 1.1283 | Ni | 0.4715 | 10.5810 |
σ | 0.05 | 0.1 | 0.5 | 1.0 | 5.0 | 10.0 | 50.0 | 100.0 | 500.0 | |
---|---|---|---|---|---|---|---|---|---|---|
Score | ||||||||||
Minimum | −300 | −300 | −200 | −60 | −5 | −5 | −5 | −5 | −5 | |
Maximum | 2000 | 1600 | 1200 | 460 | 95 | 95 | 95 | 95 | 95 |
Statistics | AUC | ZAUC | MYI | OT | PGA (%) | Benefit (%) | PMT (s) |
---|---|---|---|---|---|---|---|
OCSVM0 | 0.8268 | 4.8032 | 0.5092 | 89.8292 | 29.61 | 93 | 47.73 |
OCSVM1 | 0.8567 | 5.6029 | 0.6214 | 144.3031 | 18.66 | 86 | n/a |
OCSVM2 | 0.8649 | 5.8639 | 0.5763 | 9.2496 | 19.84 | 93 | 24,856.56 |
OCSVM3 | 0.8644 | 5.8483 | 0.5846 | 101.4408 | 14.22 | 86 | 39,314.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wu, W.; Zhao, Q. A Bat-Optimized One-Class Support Vector Machine for Mineral Prospectivity Mapping. Minerals 2019, 9, 317. https://doi.org/10.3390/min9050317
Chen Y, Wu W, Zhao Q. A Bat-Optimized One-Class Support Vector Machine for Mineral Prospectivity Mapping. Minerals. 2019; 9(5):317. https://doi.org/10.3390/min9050317
Chicago/Turabian StyleChen, Yongliang, Wei Wu, and Qingying Zhao. 2019. "A Bat-Optimized One-Class Support Vector Machine for Mineral Prospectivity Mapping" Minerals 9, no. 5: 317. https://doi.org/10.3390/min9050317
APA StyleChen, Y., Wu, W., & Zhao, Q. (2019). A Bat-Optimized One-Class Support Vector Machine for Mineral Prospectivity Mapping. Minerals, 9(5), 317. https://doi.org/10.3390/min9050317