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Abstract: Principal slip zones (PSZs) are narrow (<10 cm) bands of localized shear deformation that
occur in the cores of upper-crustal fault zones where they accommodate the bulk of fault displacement.
Natural and experimentally-formed PSZs consistently show the presence of nanocrystallites in the
<100 nm size range. Despite the presumed importance of such nanocrystalline (NC) fault rock
in controlling fault mechanical behavior, their prevalence and potential role in controlling natural
earthquake cycles remains insufficiently investigated. In this contribution, we summarize the physical
properties of NC materials that may have a profound effect on fault rheology, and we review the
structural characteristics of NC PSZs observed in natural faults and in experiments. Numerous
literature reports show that such zones form in a wide range of faulted rock types, under a wide
range of conditions pertaining to seismic and a-seismic upper-crustal fault slip, and frequently
show an internal crystallographic preferred orientation (CPO) and partial amorphization, as well
as forming glossy or “mirror-like” slip surfaces. Given the widespread occurrence of NC PSZs in
upper-crustal faults, we suggest that they are of general significance. Specifically, the generally high
rates of (diffusion) creep in NC fault rock may play a key role in controlling the depth limits to the
seismogenic zone.

Keywords: nanograins; principal slip zone; crystallographic preferred orientation; amorphization;
mirror-slip surface; faults; earthquakes; localization

1. Introduction

Nanocrystalline materials are widespread in the Earth’s atmosphere, biosphere, and in the
subsurface [1–5], including in principal slip zones (PSZs) within natural faults [6–8]. PSZs are zones
of localized shear deformation that (have) accommodate(d) the bulk of displacement in the cores of
upper-crustal faults [9,10], which suggests that the physical properties of the ultrafine(nano)-grained
fault rock within PSZs plays an important role in controlling fault mechanical behavior or fault
rheology. From observations on metals and ceramics it is well known that nanophase materials,
characterized by grain sizes < 100 nm, frequently exhibit unusual deformation properties compared
with coarser-grained counterparts [11–13]. The reason for this is the loss of cohesive energy between
atoms comprising the grain as its size continues to decrease. In view of the generality of this nanograin
size effect, it is important to consider the potential physical implications of nanogranular fault rock.
Despite the emerging awareness on the importance of nanophase geomaterials in Earth sciences [1–8],
their prevalence in upper-crustal faults and potential role in natural earthquake cycles remains
insufficiently investigated.
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In this paper, we aim to elucidate the significance of nanocrystalline PSZs in Earth’s upper crust.
We start with background on fault mechanics and upper-crustal seismogenesis, and summarize some
key physical properties of nanophase materials which, when applied to fault rock, are expected to
be of major importance in controlling fault strength and stability. We go on to review the micro- and
nanostructural characteristics of natural and experimentally-formed nanocrystalline PSZs, and list
reports from the literature of PSZs characterized by grains <100 nm in size. Our work demonstrates
that nanocrystalline PSZs form under a wide range of conditions pertaining slow (a-seismic) and fast
(co-seismic) upper-crustal fault slip. Also, we observe that they are frequently characterized by an
internal crystallographic preferred orientation, and by the presence of amorphous materials and/or
glossy fault plane interfaces known as “mirror-slip” surfaces. Given the abundant observations of
nanocrystalline PSZs in field exposures of faults, as well as in experiments, we suggest that they are of
general importance to upper-crustal fault deformation. The physical properties of nanocrystalline fault
rock may play a key role in natural earthquake cycles, especially in controlling the depth distribution
of upper-crustal seismicity.

2. Fault Zones, Earthquakes, and the Seismogenic Zone

The presence of long-lived, localized zones of shear deformation in the crust, or fault zones,
implies that the fault rocks within are weaker than the surrounding country rocks and that their
weakness is persistent [14,15]. The strength of the upper-crust is classically approximated using a
Coulomb-type, brittle failure law, abruptly giving way to ductile deformation below ~15 to 20 km
depth (Figure 1a) [16,17]. A brittle-to-ductile transition at ~15 to 20 km depth is consistent with
geological and seismological observations of the base of the so-called “seismogenic zone”, i.e., the
depth interval in the upper-crust in which the bulk of upper-crustal earthquakes nucleate [18–25],
suggesting that at greater depths earthquake rupture nucleation is inhibited by intrinsically stable,
ductile or viscous flow in shear zones. A seismicity cut-off at shallower depths, typically observed at
~2–4 km, demarcates the upper limit of the seismogenic zone [24,26]. Field and laboratory studies of
fault deformation suggest that within the seismogenic zone, “multi-mechanism” or “frictional-viscous”
fault slip-involving coincident rate-sensitive (creep) and rate-insensitive (e.g., cataclasis) deformation
mechanisms-plays an important role (Figure 1b) [27–37]. However, in general, the microphysical
processes responsible for aseismic fault sliding above the seismogenic zone, and for seismogenic slip
within, remain poorly understood for most fault rock types.
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In the case of earthquakes, sliding along faults is achieved by unstable, periodic slip events
instead of by stable, continuous motion. This is similar to the jerky sliding motion that is frequently
observed in laboratory rock friction experiments, known as “stick-slip” [38]. Regular stick-slip behavior
can be easily envisioned using a spring-block model system, consisting of a rigid block or slider
on a nominally flat surface, driven via a spring of a certain stiffness. When the spring is pulled at
constant speed, an instability may develop depending on the frictional properties of the slider-surface
contact, the mass of the block, the spring stiffness, and the loading rate, resulting in intermittent
slider acceleration and stationary contact [39–42]. Ruina [41] showed that for regular stick-slip to
occur the slider-surface contact must decrease in strength with increasing displacement rate, hence be
“velocity-weakening”. In the opposite case “velocity-strengthening” occurs, which leads to a state
of stable sliding [41,43]. Thus, the seismogenic zone is believed to represent a depth interval in the
upper-crust where shear deformation of fault zones leads to unstable, velocity-weakening behavior, as
opposed to stable velocity-strengthening above and below (Figure 1c) [22,24,25,44].

Importantly, the velocity dependence of frictional strength is a material property of the sliding
medium which constitutes the slider-surface contact. Applying this to natural faults, the sliding
medium is represented by the granular wear product of cumulative slip along the fault, or “fault
gouge”, present in the fault core [45]. Field and drilling studies of active and inactive natural fault
zones frequently demonstrate the presence of a mm- to cm-wide principal slip zone (PSZ) in the
gouge-filled fault core that accommodates, or has accommodated, the bulk of displacement along
the fault [9,46–52]. Tectonic loading of a faulted rock volume, as occurs continuously in numerous
geologic settings (e.g., at tectonic plate boundaries), causes energy dissipation predominantly along
the PSZ [10,53]. In the case of slow (aseismic) fault sliding, quasi-static deformation of fault rock is
believed to be key [54–56], whereas at higher (seismic) slip rates frictional heat generated along the PSZ
plays an increasingly important role [57], leading to dynamic fault rupture processes such as melting,
decarbonation, and/or thermal pressurization [58–63].

3. The Physical Properties of Nanophase Materials

Material properties such as melting temperature or yield point frequently show drastic changes
when the grain size decreases to the nanometer-realm (<100 nm) [11–13]. The reason for this is
fundamental; a decreasing grain size implies a parabolic increase of the fraction of surface atoms
(Figure 2a), which have a much lower average binding energy compared with atoms in the bulk
phase. This means that when the grain size decreases to that of a few atoms or unit cells, it has
major implications for thermodynamic stability and reactivity of the individual particles [64–66].
For example, the melting point of Au particles is observed to decrease from ~1300 K to 700 K as the
grain size decreases from 20 nm to 5 nm [67] (Figure 2b). Observations on common rock-forming
minerals are scarcer. However, in the case of calcite, which is the dominant constituent of limestone,
the decomposition temperature decreases from ~1075 K to 950 K as the grain size decreases from 40 nm
to 20 nm [68] (Figure 2b). Size-dependence of the melting or decomposition temperature of fault rock
within a principal slip zone (PSZ) may have major implications for bulk fault rheology, for example at
elevated temperatures due to frictional heating.

Another unique aspect relevant to nanostructured polycrystals and fault rock is their huge
cumulative grain surface area, which naturally increases exponentially as the grain size continues
to decrease (Figure 2c). This has major implications not only for chemical reactivity but also for the
rheology of a material. For example, due to the short grain scale transport distances in nanostructured
materials [69], grain boundary diffusion driven mechanisms [70–72] are generally fast, enabling
superplastic deformation at much lower temperatures/higher strain rates than compared with in
coarser-grained materials [73–75]. The high grain boundary density also plays an important role in
dislocation-mediated plasticity. As the grain size decreases to the <100 nm size range, dislocations
are emitted and adsorbed efficiently at grain boundaries, leading to a decrease of the material yield
strength with decreasing grain size hence an “inverse Hall-Petch effect” [76–79] (Figure 2d). In this
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mechanism, dislocations traverse the crystallite within very brief time windows, achieving very large
strains while leaving a micro-/nanostructure characterized by “strain-free” nanograins [80–82].
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Figure 2. Key characteristics of nanoparticles and nanostructured materials. (a) A simple model
of hexagonal close-packed balls illustrating the effect of particle miniaturization. The fraction of
surface particles increases near-exponentially with decreasing number of outer shells, or particle size
(after [11,13]). (b) The melting temperature of Au [67] and the decomposition temperature of CaCO3 [68]
particles decrease sharply as particle size decreases within the nm-realm. (c) The cumulative surface
area of polycrystals increases exponentially as the grain size continues to decrease. (d) The empirical
relation between yield strength σy and grain size d, known as the Hall-Petch (HP) effect [76,77], reverses
for very small d (after [78,79]). The expression for σy in the inverse-HP regime is the model by Carlton
& Ferreira (2007) [79], where k is a constant and Pdis is the probability of a dislocation being absorbed
by a grain boundary.

4. Nanocrystalline Principal Slip Zones in Natural Faults and in Experiments

Observations of natural and experimentally-formed principal slip zones (PSZs) showing the
presence of <100 nm-sized grains are listed in respectively Tables 1 and 2. Below we summarize the
micro- and nanostructural characteristics of nanocrystalline PSZs, highlighting seminal reports of
field/drilling studies of natural faults and of laboratory studies. Much insight was obtained recently
from studies of glossy or “mirror-like” fault slip surfaces (MSSs) formed in experimentally simulated
faults composed of calcite fault gouge. These are described using a separate section. While we aspire to
provide as complete an overview as possible, we may have overlooked some of the studies performed
to date.

4.1. Nanocrystalline Principal Slip Zones in Exposures of Natural Faults

Faults that are exposed in an orientation normal to the fault plane display a cross-section through
the damage zone that has developed upon repeated fault displacement, including the principal slip
zone(s) (Figure 3a). Power and Tullis [83] used optical and transmission electron microscopy (TEM)
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to investigate sections prepared normal to the fault plane of rocks collected from the glossy fault
trace of the Dixie Valley thrust fault (USA). In a zone just ~0.2 mm wide, the fault trace or PSZ is
characterized by ultrafine grains down to 10 nm in size, and a uniform optical birefringence and
extinction. This optical effect may be observed in (ultra)thin sections using crossed nicols in a polarizing
light microscope (by rotating the microscope stage as shown in Supplementary Video S1) and is widely
used as indicative of a crystallographic preferred orientation (CPO). Chester & Goldsby [84] also
reported a nanocrystalline PSZ with a CPO, in fault core samples from the Punchbowl Fault (USA).
Field investigation revealed visually distinct, 0.15 to 0.55 m thick layers of fine-grained fault gouge
known as ultracataclasite, separated by what was identified as a “principal fracture surface” [46].
However, thin section analyses revealed that the ultracataclasite layers were separated by a zone of
finite width (constituting a principal slip zone), characterized by a strong uniform birefringence, and
the presence of grains down to 4 nm in size [7,84]. Other notable observations of naturally-formed
nanocrystalline PSZs have been made from drilling of seismically-active fault zones, such as the
Chelungpu Fault (Taiwan) [8,85] and the San Andreas Fault (USA) [86].
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fault plane, damage zone, fault core, and PSZ (after [10,47]). (b). Striated, glossy surface of the Corona
Heights Fault (USA) (courtesy of J. E. Samuelson).

Faults that are exposed parallel to the fault plane display the fault core, which is frequently
characterized by slip-parallel striations and a relatively erosion-resistant, “glossy” or “well-polished”
surface (Figure 3b) (Table 1). Such exposures have been reported as meter-scale outcrops in the field [87,
88], but also as cm-scale patches in drill core samples of active faults [85,86]. Siman-Tov et al. [87]
coined the term “fault mirrors” for highly light-reflective fault surfaces cutting carbonate rocks in the
Dead Sea transform region (Israel). They showed that the glossy fault plane is internally composed of
a thin (<1 µm) veneer of calcite grains of a size down to ~50 nm. However, a glossy or mirror-like
appearance has been described for fault surfaces composed of 0.1–1 µm-sized grains [85,89,90], and
do not reveal much about the grain size within. As pointed out by Siman-Tov et al., the specular
reflectivity occurs because the fault surface roughness has a wavelength shorter than that of visible
light (400 nm) [91].

Another notable observation that has been frequently reported on using samples from naturally
occurring nanocrystalline PSZs is the presence of (partly) amorphized material (Table 1). It may be
observed as cm-thick veins in the field [92], or as thin coatings surrounding mineral clasts when
observed using TEM [86,93,94]. Veins of glassy, amorphized rock known as pseudotachylytes, may
form as a result of frictional melting along faults, pointing to high (co-seismic) slip rates [45,95,96].
For this reason, melt-origin pseudotachylytes are frequently used as field indicators of paleo-earthquake
rupture [97,98]. However, the formation process is not implicit to the definition of pseudotachylytes,
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and they may form by other mechanisms than seismically-induced frictional melting [99]. Caution is
necessary on the interpretation of field exposures of faults showing the presence of amorphous veins.

Table 1. List of reports, in chronological order, of ≤100 nm-sized grains in the cores (principal slip
zones) of natural faults.

Location Dominant Host Rock
Mineralogy d (nm) CPO? Glossy

Surface?
Amorphous

Material? Source

Dixie Valley Thrust, USA quartz 10
√ √

Power & Tullis [83]
Punchbowl Fault, USA quartz, feldspar, clays 4

√
Chester & Goldsby [84]

Chelungpu Fault (TCDP
borehole C) quartz, clays 50 Ma et al. [8]

Nojima Fault Zone, Japan quartz, feldspar 30 Keulen et al. [100]
Iida-Matsukawa Fault, Japan quartz, feldspar 20

√
Ozawa & Takizawa [92]

San Andreas Fault (SAFOD
main hole) clays, quartz, feldspar 50

√ √
Janssen et al. [86]

Kfar Gladi Fault, Israel calcite 50
√

Siman-Tov et al. [87]
Corona Heights Fault, USA silica, quartz 10

√ √ √
Kirkpatrick et al. [88]

Gubbio Fault, Italy calcite, clays 50
√

Bullock et al. [101]
Mt. Maggio fault, Italy calcite 100 Collettini et al. [102]

Vado di Corno fault, Italy calcite, dolomite 50
√

Demurtas et al. [103]
Capolivieri-Porto Azurro

shear zone, Italy tourmaline 10–100 †
√

Viti et al. [90]

Hsiaotungshi fault system
(borehole), Taiwan quartz, clays 50–100

√ √
Kuo et al. [85]

Maclure Glacier, USA feldspar, quartz 10–100
√ √

Siman-Tov et al. [104]
Mt. Vettore Fault, Italy calcite, clays 50

√
Smeraglia et al. [105]

“d” is the minimum grain size observed. † Fault mirrors (glossy surfaces) are also reported, however here they are
composed mainly of >200 nm sized crystals. See the respective papers for details on localities, outcrops, and PSZ
formation conditions.

4.2. Nanocrystalline Principal Slip Zones Formed in Fault-Slip Experiments

Laboratory experiments aiming to investigate upper-crustal fault deformation are carried out by
imposing displacement along (initially) bare rock surfaces, or on a powdered sample layer representing
a simulated fault gouge. The technology used to conduct fault-slip experiments varies greatly [106–108].
However, for simplicity, here we distinguish between two types of fault-slip tests; (i) low-velocity
friction (LVF) tests, used to study slow fault-slip including the early (nucleation) stages of earthquake
rupture, and (ii) high-velocity friction (HVF) tests, used to study dynamic earthquake rupture processes.
Following Rowe & Griffith [98], slip rates (v) beyond ~10−4 m/s are “almost certainly dynamic”, so we
define HVF tests as using v ≥ 10−4 m/s, and LVF tests as using v < 10−4 m/s. There are numerous other
differences between LVF and HVF tests, in addition to the displacement rate used, that may affect
micro- and nanostructural development along the simulated fault, or its recovery after an experiment.
LVF tests typically achieve steady-state conditions of normal stress (σn) and temperature (T), but
reaching cumulative displacements of maximally a few centimeters (

∑
x = 10−3–10−2 m). HVF tests

may run for meters (
∑

x = 101–102 m), with frictional heat generated at the fault-slip interface playing
an important role.

Despite the major differences between LVF and HVF tests, simulated fault samples recovered
after an experiment typically show one or more, ultrafine-grained, shear plane-parallel bands of finite
width, located in the sample interior (“Y-shears”) or close to the loading piston interface (“boundary
shears”) [109,110] (Figure 4a–d). These shear bands mark a zone of abrupt grain size reduction with
respect to the host rock (Figure 4b,d), and accommodated the bulk of the imposed shear displacement,
i.e., representing experimentally-formed principal slip zones (PSZs). PSZ thicknesses may range from
~50–100 µm in samples recovered from LVF tests, to a few (tens of) microns in HVF deformed samples.
Yund et al. [111] used TEM to investigate PSZs developed in simulated fault gouges of siliceous and
carbonate compositions deformed in LVF and HVF rotary shear tests (Table 2). They reported grain
sizes down to ~10–50 nm in all samples investigated, and the presence of amorphized materials, except
in the carbonates. However, there are numerous (recent) reports of nanocrystalline PSZs formed in
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LVF and HVF experiments using simulated fault samples composed of carbonates [58,93,112–119],
many of which also showed the presence of amorphous materials (Table 2).

A crystallographic preferred orientation (CPO) was reported for nanocrystalline PSZs developed
in LVF tests using simulated gouges composed of calcite [113,114,118] and quartz [120] (Table 2).
The presence of a CPO may be inferred from uniform birefringence and extinction observed in thin
sections (Supplementary Video S1), or else demonstrated using selected area diffraction in TEM.
Electron backscatter diffraction is a powerful tool frequently used to quantify a CPO [121], however,
to our knowledge this remains difficult to apply to extremely fine-grained aggregates such as those
characterizing nanocrystalline PSZs (grain size << 100 nm). Recently, EBSD measurements were used
to quantify a CPO characterizing a PSZ composed of 200–300 nm-sized, polygonal grains, formed in
simulated calcite gouge sheared in HVF tests [122,123].
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Figure 4. Principal slip zones (PSZs) in simulated calcite(-rich) fault gouge formed in LVF (a,b) and
HVF experiments (c,d). (a) Plane polarized light micrograph of an ultra-thin section (parallel to
the slip vector, sample CaCO3-RT-dry of [113]). (b) Backscatter electron (BSE) micrograph prepared
using a focused ion beam scanning electron microscope (FIB-SEM) (normal to the slip vector, sample
lmst@150 ◦C of [124]). The central void is due to post-test dilation. (c) Cross-polarized light micrograph
showing a narrow, fine-grained slip zone (SZ) bound by a slip surface (SS). Taken with publisher’s
permission from [93]. (d) BSE micrograph. Taken from [115].



Minerals 2019, 9, 328 8 of 25

Table 2. List of reports, in chronological order, of <100 nm-sized grains in experimentally-formed principal slip zones.

Dominant Sample
Mineralogy vmax (m/s) σn (MPa)

∑
x (m) d (nm) CPO? Glossy

Surface(s)?
Amorphous

Material? Source

quartz 10−5 ~135 10−5 90
√
† Engelder [125]

quartz 10−2.5 7–50 10−1 10–15
√

Yund et al. [111]
quartz, feldspar 10−2.5–10−6 50–75 10−2–10−1 10–15

√
Yund et al. [111]

calcite 10−2.5 15 10−2 ~50 Yund et al. [111]
dolomite 10−2.5 75 10−1 ~50 Yund et al. [111]

calcite 10−2–100 1.1–13.4 100–101 10
√

Han et al. [58]
siderite, magnetite 100 0.6–1.3 101 20–30

√
Han et al. [112]

antigorite 100 24.5 100 ~50
√

Viti & Hirose [126]
quartz, feldspar 10−7–10−8 >103 10−3 8

√ √
Pec et al. [127,128]

calcite 10−7–10−5 50 10−3 5
√ √ √

†† Verberne et al. [113,114]
dolomite 100 28.4 10−1 10

√
Green II et al. [116]

quartz, feldspar 10−6–10−5 25 10−2–10−1 15–50
√

Hadizadeh et al. [129]
quartz, clays 100 1 101 10–50

√
Kuo et al. [130]

quartz, silica 10−6 >103 † 10−3 5
√ √

Toy et al. [120]
calcite 10−1–100 10 10−3–101 5–10

√ √
Spagnuolo et al. [115]

calcite 10−1 0.47–1.57 101 45
√

Siman−Tov et al. [117]
quartz 10−7–10−3 ‡ 92–287 10−3 10

√ √
Hayward et al. [131]

quartz, smectite 10−4–100 5 100 10–50
√

Aretusini et al. [132]
quartz, muscovite 10−8–10−5 120 10−4 10

√
Niemeijer [133]

quartz, muscovite 10−4 120 10−4 10
√

Niemeijer [133]
calcite 10−7–10−5 20–100 10−3–10−4 10 Mercuri et al. [119]
calcite 10−6–10−5 45 10−1–10−2 50

√ √
Delle Piane et al. [118]

quartz 10−4–10−1 2.5–5 100–101 10
√ √

Rowe et al. [134]

Grey shaded rows include data from LVF tests (here defined as tests employing v < 10−4 m/s). vmax = max. displacement rate; σn = (effective) normal stress;
∑

x = accumulated displacement;
d = min. grain size. Only the orders of magnitude of vmax and

∑
x are given. Glossy surfaces refer to the presence of “shiny” or “mirror-like” surfaces, regardless of continuity. For details

see the respective literature. † Attributed to beam damage. †† Attributed to unknown contamination. ‡ vmax here was estimated from unstable slip events.
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Mirror-Slip Surfaces in Principal Slip Zones Developed in Calcite Gouge

“Glossy”, “shiny”, or “mirror-like” slip surfaces (MSSs) have been observed in experiments using
a wide range of sample materials, characterized by a wide range of normal stresses (σn), displacement
rates (v), and cumulative displacements (

∑
x) (Table 2) (Figures 5 and 6). Recently, much attention

has been given to MSSs developed in simulated faults composed of calcite, mainly because of their
striking similarity with carbonate “fault mirrors” frequently observed in tectonically-active carbonate
terrains [87,135], and the question whether they may be indicators of past seismic slip.
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Figure 5. Principal slip zones with mirror-slip surfaces formed in simulated calcite gouge sheared in
HVF tests (v ≥ 10−4 ms−1). (a,b) Secondary electron (SE) micrographs. From [115]. (c) Sample fragment
recovered from an experiment conducted using 0.1 ≤ v ≤ 100 µms−1, σn

eff = 50 MPa, T = 550 ◦C,∑
x = 24.7 mm (unpublished data). (d) Top view onto the PSZ developed in an experiment conducted

at v = 100 µms−1 (sample CaCO3-550-vhigh of [122]). Inset shows a photo of the (fragmented) sample
recovered after the experiment.

In general, MSSs are characterized by extremely low surface roughness, especially in a direction
parallel to the shear direction [136,137]. They have been reported as multiple, elongated patches
aligned parallel to the shear direction (Figures 5a and 6a), or else as a single, continuous interface
marking the PSZ boundary (Figure 5c). The number and extent of MSSs were shown to increase with
increasing displacement and/or displacement rates, in HVF tests conducted at normal stresses up to
26 MPa [117,135,138], which led some authors to conclude that continuous MSSs may indeed serve
as indicators of past seismic slip in natural faults cutting carbonates. However, a continuous MSS
has also been observed in simulated calcite gouge sheared at v = 10 µms−1 (effective normal stress
20 MPa ≤ σn

eff
≤ 100 MPa, T ≈ 550 ◦C,

∑
x = 12.4 mm; Figure S2D of [122]). The role of effective normal

stress, and of cumulative displacement, on the formation of (patchy) MSSs with progressive shear
strain in LVF tests remains to be investigated. Pozzi et al. [139] recently reported on the microstructural
development of MSS-bearing PSZs with progressive shear strain in HVF experiments on simulated
calcite faults (σn = 25 MPa, v up to 1.4 m/s). Using polished sections prepared normal to the slip vector
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they observed that, after an initial stage of slip (Σx ≈ 7 cm), sharp discontinuities develop which are
interpreted to represent MSSs. The matured PSZ is observed to consist of 200–300 nm sized, polygonal
grains characterized by a crystallographic preferred orientation [123].

Minerals 2019, 9, 328 10 of 25 

 

interpreted to represent MSSs. The matured PSZ is observed to consist of 200–300 nm sized, 
polygonal grains characterized by a crystallographic preferred orientation [123]. 

 
Figure 6. Principal slip zone with mirror-slip surfaces formed in simulated calcite gouge sheared in 
LVF tests (v = 10−6 to 10−5 ms−1, see [140]). Secondary electron micrographs. (a) Taken at an angle of 52° 
to the shear plane. The patches that are elongated parallel to the shear direction represent MSSs. (b) 
Stretched nanofibers and (c) nanofibers within the bulk PSZ. (d) Alignment of nanospherules at the 
edge of an MSS. (a) to (d) are top views onto the shear plane. The micrographs shown in (a,d) are 
from sample SEMB of [140], taken using a FEI Nova Nanolab FIB-SEM. The micrographs in (b,c) are 
of samples sheared using a gas-medium deformation apparatus installed at the Geological Survey of 
Japan (Tsukuba, Japan), and taken using a JEOL-7400F FEG-SEM. 

Returning to patchy MSSs formed in LVF experiments using calcite gouge (v = 10−6 m/s, σneff = 50 
MPa, ∑x ≈ 5–6 mm), individually these show remarkable micro- and nanostructural characteristics 
(Figure 6a–d) [140]. The PSZ itself comprises a porous, sheet-like volume of ~100 nm-sized spherical 
particles, with internal, 0.1 to 1 μm-thick, dense planar coatings comprising the MSSs. The MSS 
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Figure 6. Principal slip zone with mirror-slip surfaces formed in simulated calcite gouge sheared in
LVF tests (v = 10−6 to 10−5 ms−1, see [140]). Secondary electron micrographs. (a) Taken at an angle of
52◦ to the shear plane. The patches that are elongated parallel to the shear direction represent MSSs.
(b) Stretched nanofibers and (c) nanofibers within the bulk PSZ. (d) Alignment of nanospherules at
the edge of an MSS. (a) to (d) are top views onto the shear plane. The micrographs shown in (a,d) are
from sample SEMB of [140], taken using a FEI Nova Nanolab FIB-SEM. The micrographs in (b,c) are
of samples sheared using a gas-medium deformation apparatus installed at the Geological Survey of
Japan (Tsukuba, Japan), and taken using a JEOL-7400F FEG-SEM.

Returning to patchy MSSs formed in LVF experiments using calcite gouge (v = 10−6 m/s,σn
eff = 50 MPa,∑

x ≈ 5–6 mm), individually these show remarkable micro- and nanostructural characteristics
(Figure 6a–d) [140]. The PSZ itself comprises a porous, sheet-like volume of ~100 nm-sized spherical
particles, with internal, 0.1 to 1 µm-thick, dense planar coatings comprising the MSSs. The MSS
patches are observed at different topographic levels within the PSZ (Figure 6a) and are internally
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composed of ~100 nm wide fibers that show marked extension and plastic bending when stretched
(Figure 6b–d). At locations where stretching led to nanofiber failure, necking structures are absent,
suggestive of a low stress-sensitivity of the ductile strain rate (a low “n-value”), or superplastic
behavior [140]. Nanofiber stretching in this way could only have occurred upon opening of the
microcracks at room conditions after the experiment. The nanofibers are locally observed away from
MSSs, i.e., within the porous volume constituting the broader PSZ (Figure 6c). Selected area diffraction
patterns, taken using TEM, of a single nanofiber as well as of the spherical particles comprising the bulk
PSZ, revealed a polycrystalline substructure composed of crystallites 5 to 20 nm in size, characterized
by a CPO [113,114,140]. The uniform width of the nanofibers and the spherical nanograin aggregates or
nanospherules, (both with diameter ~100 nm), combined with the alignment observed of nanospherules
at the edge of some MSSs (Figure 6d), suggest that the nanofibers represent linear nanospherule chains.

5. Discussion

The compilation of literature observations reported above (Tables 1 and 2) demonstrates that
nanocrystalline principal slip zones (NC PSZs) form in a wide range of rock types under a wide
range of normal stresses and displacement rates pertaining to co-seismic and sub-seismic fault-slip
in Earth’s upper-crust. This suggests that NC PSZs play an important role in controlling fault
sliding behavior, including earthquake rupture nucleation and dynamic propagation. Below we
discuss possible formation mechanisms of the PSZ nanostructures observed, as well as a comparison
between mirror-slip-surface-bearing PSZs developed in low-velocity friction (LVF; v < 10−4 ms−1)
and in high-velocity friction (HVF; v ≥ 10−4 ms−1) tests. We go on to discuss the role of NC PSZs in
controlling upper-crustal fault strength and stability, and we consider their broader significance in the
seismogenic zone.

5.1. Formation of PSZ Nanostructures, Amorphous Materials, and CPO

Under brittle conditions in a fault zone, grain size reduction occurs by cataclastic deformation
involving intragranular fracture, comminution and intergranular friction [100,141–143]. However,
below a certain critical grain size dcrit known as the grind limit, the stress required to initiate a fracture
in compression becomes too high so that plastic yielding occurs [144]. For quartz, dcrit ≈ 0.9 µm [100],
whereas for calcite dcrit ≈ 0.85 µm [145]. This means that the <100 nm-sized grains frequently observed
in fault-slip experiments must point to a mechanism of grain size reduction involving plastic yielding.
Using a model based on mode I Griffith failure [144,146] and low-temperature plasticity, Sammis and
Ben-Zion [147] showed that in the case of quartz in a compressive regime, shock loading and subcritical
crack growth may produce particles down to 3 nm in size. However, specifically for LVF experiments
which employ displacement rates of µm/s and reach just millimeters of cumulative displacement
over the timespan of a few hours, the formation of crystallites down to 5 nm in size combined with
the presence of amorphous materials and a crystallographic preferred orientation (CPO) (Table 2),
remains intriguing.

Focusing on simulated calcite faults (Figures 4–6), the internal polycrystalline substructure
observed in PSZs nanograins formed in LVF [113,114,140] as well as HVF experiments [93] bears
a striking similarity to microstructures found in shocked ductile metals [148,149]. As in metals,
the high ductility of calcite [150,151] may therefore allow the observed ~5–20 nm substructure to
form by progressive development of nano-cell walls from dense dislocation networks and tangles
generated by low temperature crystal-plasticity (e.g., r(104) slip or e(108) twinning [152]). Following
from this, we speculate that plastic deformation and/or fracturing and abrasion occurring at parent
grain surfaces led to the detachment of ~100 nm sized nanocrystalline clusters or fragments from
these micron-sized parent grains [148,149]. The nanograins produced in turn rounded, to form the
rolling, grain-neighbor-swapping nanospherules comprising the porous nanogranular PSZ [140].
To further unravel the formation mechanism of nanocrystallites and nanospherules in calcite gouge is
a challenging task which requires more elaborate experiments and micro-/nanostructural analyses.
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Amorphous materials may form by melt quenching, mechanical deformation, chemical reactions or
a coupling between the latter two. Here, we focus on those materials derived from sub-solidus derived
processes. For a thought-provoking investigation into chemo-mechanical- vs. melt-derived amorphous
solids the reader is referred to Pec et al. [127]. In general, solid-state amorphization is attributed
to arise from (1) the introduction of externally-derived mechanical instabilities (e.g., dislocations),
(2) externally-forced volume expansion at constant temperature or (3) thermal expansion during
heating at constant pressure [65,153]. By contrast, mechano-chemical interactions may produce
amorphous materials as a result of the reduction of chemical species. This is particularly relevant in
carbonate fault rocks where decarbonation reactions release CO2 that can subsequently be reduced to
(amorphous) carbon phases. Several natural [154–156] and experimental [93,115,118,140] studies of
carbonate fault rocks have reported the occurs of amorphous carbon, often intimately associated with
nanogranular calcites. The exact chemical pathways for CO2 reduction to amorphous carbon remain,
however, debated [115,156,157]. Additionally, in natural systems fluids can facilitate the precipitation
of amorphous solids [158], making it difficult to discriminate internally- from externally-controlled
formation mechanisms. Sub-solidus-derived amorphous materials are also widely reported in
silicate-dominated systems (Table 2). The detailed mechanism(s) of amorphization, and more generally
the impact of differences in atomic order on mechanical properties [159], on fault rheology, remains
subject of further study.

Aside from the formation of nanocrystallites and amorphization within a PSZ, this does not
explain the development of an internal CPO. Pozzi et al. [123] suggested that grain-size insensitive
(GSI) creep mechanisms (dislocation creep) may explain CPO formation in a PSZ composed of
200–300 nm-sized grains formed in calcite gouge sheared at v = 1.4 m/s, at σn = 25 MPa. However,
in the case of CPO-bearing PSZs formed in LVF tests, the porous structure observed in the bulk
PSZ (Figure 6) is suggestive of nanogranular flow, which is not known for generating, or retaining
a pre-existing, CPO. One potential mechanism for CPO formation in (nano-)granular flow may be
through oriented interface attachment (OA), which is widely reported as a mechanism by which
nanocrystallites can rapidly coalesce to form single crystals in numerous nanomaterials [160–162],
including in calcite [163]. The thermodynamic driving force for particle coalescence in an OA event
originates from crystallographic orientation-dependent, interatomic Coulombic interactions arising
from both the surface atoms, and of atoms within the interior of the approaching nanoparticles [164,165].
Particle coalescence leads to a reduction of total surface energy [120], which, in the case of calcite
would lead to an alignment of the lowest energy (104) plane [166], consistent with observations of
simulated calcite faults deformed in LVF tests [113,114,140].

5.2. MSS-Bearing PSZs as Indicators for Past Seismic Slip?

Microstructural studies of simulated dolomite and limestone faults sheared in HVF experiments
suggest the following characteristics of “glossy”, “shiny” or “mirror-like” slip surfaces:

(i) They form only at high mechanical work input rates or power densities (
.

W = µ·σ
e f f
n ·v, where µ is

the coefficient of fault friction) [135,138].
(ii) They are at least in part responsible for the strong dynamic weakening often seen in samples

sheared at co-seismic slip rates [137].
(iii) They are associated with dynamic recrystallization caused by heating at co-seismic slip rates [167].

However, the mirror-like surface patches formed in LVF experiments show very similar striated
form and nanoscale topography [114,140] to those formed in HVF experiments, suggesting at least some
degree of shared origin regardless of the areal extent or of shearing velocity. Moreover, a continuous
MSS marking the PSZ has also been observed in simulated calcite gouge sheared at 0.1 ≤ v ≤ 100 µms−1

(Figure 5c), which showed steady-state µ-values of ~0.5–0.6 (see [122,168] for data from experiments
conducted under similar T-σn

eff-v conditions). These observations strongly suggest that MSSs are not
related to any dynamic weakening mechanisms, and that their seismic origin remains debatable at
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best. Rather, as pointed out by Pozzi et al. [139], MSSs seem to demarcate a rheological discontinuity
between an ultrafine-grained zone, which internally deforms via thermally-activated and grain-size
dependent deformation mechanisms, i.e., the PSZ, and the adjacent, coarser-grained wall rock, which
deforms by brittle processes (grain fracturing). The fact that patchy MSSs formed in LVF tests are found
at different topographic levels throughout the PSZ (Figure 6a) indicate that they probably formed as
isolated patches rather than as a single, through-going film. Furthermore, at some locations within
the broader nanogranular PSZ volume, nanofibers are observed outside MSSs, or bridging between
the MSS and the porous PSZ (Figure 6b,c). Combining these observations, we hypothesize that, with
further increasing displacement, nanofibers within the bulk PSZ will ultimately align to form a single
through-going MSS.

From rotary shear experiments on cylindrical cores of dolomite and limestone performed at
v = 0.002–0.96 m/s and σn

eff = 0.25–6.9 MPa, Boneh et al. [138] showed that shiny striated slip-surface
patches started to develop only at

.
W-values in excess of 30 kW/m2. The cumulative area covered

by these patches increased with increasing
.

W, ultimately producing a continuous, highly-reflective
principal slip surface. Using experiments on simulated gouge prepared from dolostone, performed
at v = 0.001–1.13 m/s and σn

eff = 13–26 MPa, Fondriest et al. [135] showed that shiny surfaces only
developed at

.
W values > 40 kW/m2, covering an area of the sample that progressively increases with

increasing displacement. By contrast, the shiny patches developed in simulated calcite gouge reported
in LVF tests (Figure 6) [114,140] formed at

.
W = µ·σ

e f f
n ·v = 50 MPa× (0.7± 0.1)× 10−6 m/s = 35± 5 W/m2,

i.e., 2 to 5 orders of magnitude lower than considered necessary for them to form in HVF experiments.
This demonstrates that such shiny striates surfaces do not exclusively form at the high-power densities
(>30–40 kW/m2) associated with HVF experiments and with co-seismic slip rates. The implication
is that mirror-like PSZs cannot be used as field indicators of past co-seismic slip in carbonates rocks
without additional geological or microstructural evidence. The role of normal stress and cumulative
displacement achieved in controlling the continuity of MSSs should be investigated further.

The development of highly-reflective PSZs in HVF experiments performed by Smith et al. [167],
using simulated calcite gouge (v > 0.1 m/s, σn

eff = 2–26 MPa,
∑

x > 1 m) was shown to be associated with
the presence of dynamically recrystallized grains characterized by a CPO, adjacent to the slipping zone,
while the PSZ itself was composed of statically recrystallized grains. Dynamic recrystallization here
refers to the growth of internal strain- or defect-free grains during shear, whereas static recrystallization
refers to such growth upon piston arrest and cooling after the experiment. In the experiments by Smith
et al. [167], recrystallization and CPO formation were attributed to the attainment of high temperatures
(650–900 ◦C) reflecting heat dissipated from the PSZ during localized frictional slip at co-seismic
rates [167,169]. Static recrystallization of PSZ grains was inferred to have played a role in experiments
performed by Verberne et al. [122], on simulated calcite gouge sheared at v = 100 µm/s (T = 550 ◦C,
σn

eff = 50 MPa,
∑

x = 10.4 mm) (Figure 5d). Grain growth upon cooling after the experiment suggests
that the grain size within the PSZ may have been smaller during shear. MSS-bearing PSZs developed
in LVF tests (v < 10−4 ms−1) using calcite gouge showed no evidence for conventional dynamic or static
recrystallization, either in or adjacent to the PSZ, nor is this likely to have occurred considering the low
slip rates, temperatures, and

.
W-values applying to these tests. The implication is that the presence of a

statically recrystallized PSZ, with adjacent dynamically recrystallized grains, may indeed offer a useful
constraint to past high-velocity slip, at least in limestones [167,170].

5.3. The Role of Nanocrystalline PSZs in Controlling Fault Stability

As mentioned in Section 2 above, in the case of earthquakes, fault sliding is believed to occur
by stick-slip motion [38], caused by potentially unstable “velocity(v)-weakening” properties of the
fault sliding medium [39–41,43]. The physical processes responsible for v-weakening behavior
of gouge-filled faults are only recently beginning to be elucidated. Based on observations from
fault analogue experiments using powdered halite-muscovite mixtures, Niemeijer & Spiers [33,171]
developed a micromechanical model for shear deformation of granular fault rock. They showed that
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competition between dilatant granular flow and compaction by water-assisted diffusive mass transfer
leads to an increase in steady-state porosity with increasing shear rate, and v-weakening behavior [171].
However, any time-sensitive, Arrhenius-type deformation mechanism will, when in competition with
time-insensitive dilatation or granular flow, produce v-weakening. This mechanism of competitive
dilatation and compaction may well explain thermally-activated transitions in the v-dependence of
friction seen in a wide range of fault rock types [168,172–174]. The extended “Chen-Niemeijer-Spiers”
(CNS) model developed recently [175] is capable of quantitatively reproducing a wide range of
laboratory fault gouge friction data using physically-based input parameters [176,177], therewith
providing a powerful tool for numerical earthquake-cycle simulators [178].

To produce v-weakening in the CNS model, the rate of intergranular compaction (
.
εcp) and

dilatation by granular flow (
.
εgr) within the deforming gouge zone must be within the same order of

magnitude, i.e.,
∣∣∣ .
εgr

∣∣∣ ≈ ∣∣∣ .
εcp

∣∣∣. Under conditions where either process dominates stable v-strengthening
occurs. In the case of intergranular creep by water-assisted diffusive mass transfer, relevant for
compaction of microgranular calcite up to 150 ◦C [179], the compactive strain rate

.
εcp is described

using [72]
.
εcp = A·

σΩ
RTd3 ·DCS· f (ϕ) (1)

where A is a constant, σ is the (effective) axial stress, Ω is the molecular volume of the solid, D is the
diffusion coefficient, C is the solubility of the solute, d is grain size, and f (ϕ) is a porosity function
(Table 3). In view of the inverse cubic dependence on d Equation (1), in the case of <100 nm sized
particles in nanocrystalline PSZs, compaction by water-assisted diffusive mass transfer is expected to
be very fast, even at relatively low temperatures.

Table 3. Values/expressions used for the terms appearing in Equation (1).

Term Formula/Value Source

A 576/3π ≈ 61 Pluymakers & Spiers [180]
σ 50 × 106 Pa Verberne et al. [140]
d 1 × 10−7 m Figure 6
T 291 to 423 K Verberne et al. [140]
Ω 3.69 × 10−5 m3 mol−1 Zhang et al. [179]

f(φ) f (φ) ≈ 2φ/(1−2φ)2
≈ 1.1 Pluymakers & Spiers [180]

Water-assisted diffusive mass transfer:

D
D = D0 exp

(
−

Q
RT

)
D = 1 × 10−10 m2

·s−1 at T = 298 K
Q = 1.5 × 104 J·mol−1

Nakashima [181]

C
C =

√
Ks

log Ks =

−171.9605− 0.077993T + 2839.319
T + log T

Plummer & Busenberg [182]

S 1 to 2 × 10−9 m Verberne et al. [140]

Solid-state grain boundary diffusion:

DS
DS = (DS)0 exp

(
−

Qd
RT

)
(DS)0 = 1.5 × 10−9 m3

·s−1

Qd = 2.67 × 105 J·mol−1
Farver & Yund [183]

In the case of solid-state grain boundary diffusion C = 1.

In Figure 7 we plot Equation (1) for the case of granular calcite, assuming grain sizes in the range from
5 nm to 1 µm. We also indicate the conditions of temperature (25–150 ◦C) and intergranular dilatation
rate (

∣∣∣ .
εgr

∣∣∣ ≈ 10−2100 s−1) characterizing the PSZ developed in LVF experiments on simulated calcite faults
(Figure 4a,b and Figure 6) [140]. This shows that for 100 to 500 nm-sized grains

∣∣∣ .
εgr

∣∣∣ ≈ ∣∣∣ .
εcp

∣∣∣ (Figure 7a),
implying that under the conditions of normal stress and temperature used here (Table 3) v-weakening
may be observed. Combined with the ~100 nm-sized nanospherules and -fibers observed in the broader
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PSZ (Figure 6), this suggest that the mechanism of competitive dilation and compaction [33,171] can
explain the thermally-activated transition from stable v-strengthening to unstable v-weakening seen at
~100 ◦C in experiments on simulated calcite(-rich) fault gouge [114,124,168,184,185]. For grains <100 nm
size, this mechanism is not expected to be relevant when assuming intergranular creep by water-assisted
diffusive mass transfer. However, equation 1 can also be used to assess creep rates assuming solid-state
diffusion involving mass transfer through a grain boundary of thickness S [70]. This shows that for grain
sizes down to 10 nm,

.
εcp ≈ 10−3 s−1 at temperatures > 650 ◦C (Figure 7b). Such high temperatures are

common in HVF experiments, suggesting that the mechanism of competitive compaction and dilation
may also play a role at co-seismic slip rates. This is consistent with claims that superplastic deformation
of nanogranular fault rock controls (dynamic) fault rupture [93,116,186].
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size d. (a). Water-assisted diffusive mass transfer. The grey shaded area indicates the conditions
characterizing the PSZ developed in LVF experiments using simulated calcite gouge (Figure 4a,b and
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Notwithstanding all of the above, the micromechanical framework underlying the CNS
model [171,175] is of course highly idealized. The model assumptions are reasonable at low slip
rates, but break down when frictional heating and associated dynamic fault rupture processes come
into play [57,61,62]. Another potentially problematical aspect is the knowledge and quantification
of the relevant intergranular creep mechanisms. In view of the unusual deformation properties
of nanocrystalline materials (Figure 2), extrapolation of data from compaction experiments using
microcrystalline samples to the nanometer realm may be unreasonable. Parameter values and expressions
such as listed in Table 3 have to be re-assessed in the case of nanocrystalline fault rock.

5.4. Implications for Natural Faulting in the Seismogenic Zone

In the above we have shown that the Chen-Niemeijer-Spiers (CNS) model describing competitive
dilatant nanogranular flow and nanospherule/-fiber compaction may explain the transition from
stable velocity strengthening to potentially unstable velocity weakening at temperatures ~80–100 ◦C
seen in calcite fault rock [114,124,168,184,185]. This transition is consistent with the location of the
upper seismogenic limit at shallow depths (~2–4 km) in tectonically-active limestone terrains, such
as those characterizing the Mediterranean region [187–189]. Velocity weakening hence seismogenic
fault slip on nanogranular PSZs becomes possible because (water-assisted) diffusive mass transfer
is dramatically accelerated by the nanogranular nature of the slip zone rock that forms. Given the
abundant observations of nanogranular fault surfaces in fault rocks of all types (Tables 1 and 2), and
the fast diffusion rates in nanostructured materials [11,69,75], the mechanism of dilatation versus
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compaction, applied to sheared nanogranular fault rock, may be generally relevant in controlling the
upper limit of the seismogenic zone.

In the CNS model framework, a comparison between fault rock creep rates and fault zone shear
strain rates may yield clues on the depth to the limits seismogenic zone, i.e., taking the condition
that

∣∣∣ .
εgr

∣∣∣ ≈ ∣∣∣ .
εcp

∣∣∣ may lead to unstable seismogenic fault-slip [33,140,171]. To illustrate this, we used
Equation (1) for the case of calcite (Table 3) to plot grain size vs. depth curves for different

.
εcp, assuming

a geothermal gradient of 30 ◦C/km and a density of 2700 kg/m−3 (Figure 8). Crustal fault zone shear
strain rates remain poorly constrained, mainly because of the lack of observations on the width of the
actively deforming zone [190]. Nonetheless, using the “commonly cited value” for upper-crustal fault
zone shear strain rates of ~10−14 s−1 [190,191] for

.
εgr in Equation (1) (Figure 8), shows that solid state

creep may be relevant in grains <100 nm in size at ~3–4 km depth. This is close to the upper limit of
the seismogenic zone in tectonically-active carbonate terrains [187–189]. However, importantly, in the
above analysis using the compaction-dilation model, the processes controlling nanograin formation
and the role of grain growth are ignored. Especially the latter potentially presents a major limitation,
since at greater depths/temperatures static as well as dynamic recrystallization of PSZ grains are
expected to play a role [147,192]. Future models aiming to describe the physical processes leading
to dynamic fault rupture should take into account the progressive development of fault rocks with
increasing shear strain, i.e., specifically, the competition between grain growth and grain size reduction
the PSZ.
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6. Conclusions

Nanocrystalline fault rock is consistently observed in natural and experimentally-formed principal
slip zones (PSZs) and is frequently associated with the presence of a crystallographic preferred
orientation (CPO), (partly) amorphized materials, and ultra-smooth interfaces known as “glossy”,
“shiny” or “mirror-like” slip surfaces (MSSs). Experiments conducted under a wide range of normal
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stresses, temperatures, and displacement rates demonstrate that these features can be produced over a
wide range of conditions pertaining to upper-crustal fault-slip, covering co-seismic and sub-seismic
displacement rates. Simple calculations using constitutive equations for compaction by water-assisted
diffusive mass transfer, combined with existing models for velocity-weakening shear of gouge-filled
faults, show that nanogranular fault rock plays a key role in controlling the depth to the upper-limit of
the seismogenic zone. In view of the unusual deformation properties of nanocrystalline (NC) materials,
an important task in Earth sciences is to improve insights on the rheology of NC PSZs, or of nanophased
geomaterials in general.
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