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Abstract: In this study, a new jet-stirring coupling flotation device that incorporates the advantages
of three conventional flotation machines (specifically, Jameson cell, mechanical flotation cell, flotation
column) was designed based on jet suction. The suction capacity of a double cosine self-aspirated
nozzle utilized by the device was analyzed under different feeding pressures, and the effects of
frother concentration, feeding pressure, suction capacity, and height of sampling location on the
bubble size distribution (BSD) were investigated using a high-speed video system. It was found
that a large amount of air was sucked into the flotation cell by the self-aspirated nozzle arranged in
a non-submerged manner, which met the requirements of flotation in terms of the suction amount
of air. The suction capacity showed a positive linear correlation with negative pressure inside the
nozzle. When the Methyl isobutyl carbinol (MIBC) concentration reached the critical coalescence
concentration (CCC), the bubble size stabilized at approximately 0.31 mm, which was smaller than the
bubble size produced by the conventional flotation machine. This indicated that bubbles suitable for
flotation were generated. D32 linearly decreased with increasing of feeding pressures and conversely
increased with increasing suction capacities and sampling location heights, independent of the
frother concentration.

Keywords: flotation; jet-stirring coupling flotation device; double cosine self-aspirated nozzle; suction
capacity; bubble size distribution

1. Introduction

Flotation devices are considered to be effective for fine coal slime separation processes [1,2],
and the research and development of flotation equipment are focused on achieving a large-scale,
high-efficiency, energy-saving, and environmentally friendly separation [3,4]. To date, three main types
of flotation machines have been widely used in different flotation process of minerals: mechanical
flotation machine [5], Jameson cell [6], and flotation column [7].

Extensive studies on the suction capacity and bubble size distribution (BSD) of traditional
mechanical flotation machines have indicated that these functions are easily influenced by the
structural parameters of an “impeller stator” [8], which has higher energy consumption due to
mechanical agitation [9] and larger bubbles, compared to nanobubble column flotation [10]. For the
Jameson cell, air in the suction mode is continuously pumped and carried by the velocity difference
between the high-speed pulp flow and air flow, where air is suctioned at low pressure around the
core area of the jet flow [11]; a large portion of the bubbles generated in the jet suction mode have a
small size [12], such as nanobubbles, and were two orders of magnitude smaller than conventional
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sized bubbles [10]. A Venturi type bubble generator can produce a large number of micro bubbles [13]
and the Jameson cell has a low energy consumption [14]. It has been found that a rotational flow
in the cyclonic-static micro-bubble flotation column is a benefit for the particles colliding with and
attaching to the bubbles, and the probability of particle attachment substantially increased [15].
A non-uniform filling method was proposed to optimize the flow field. Filling with a non-uniform
sieve in the cyclonic-static micro-bubble flotation column was proved to be more effective on bubble
size distribution equalization [16]. In addition, it was found that rotational flow improves the effect of
mineralization and increases the recovery of coarse coal particles in the cyclonic-static micro-bubble
flotation column [17]. Moreover, a nozzle equipped with a long throat and arranged in a submerged
manner was studied [18]. It was observed that the suction capacity of the nozzle increased with the
nozzle distance and cross-section ratio. Furthermore, it resulted in a high jet kinetic energy dissipation
rate. However, when exposed to air, either the suction capacity decreased significantly, or the nozzle
failed to work properly.

As we all know, the processes of collision, detachment, and attachment between the bubbles and
the coal particles complete the final coal slime flotation process [19]. The bubble is the main carrier of
the flotation process. The bubble size distribution has a significant influence on the selectivity of the
bubble and the ability to carry the target mineral [20]. Bubbles of different sizes have different abilities
to separate minerals, which directly affects the efficiency of the flotation equipment [21]. Therefore,
it is extremely important to measure the BSD of the flotation device. There are many factors that affect
the BSD, such as various frothers, frother concentration, impeller speed, aeration quantity, and solution
pH, which further affect the generation of mineralized bubbles [22,23]. Compared to water alone, the
addition of frother produces a narrower distribution and finer bubble size [24]. Various frother types
have different critical coalescence concentrations (CCCs). The impeller speed-bubble size tests show
that D32 is unaffected by increased impeller tip speed across the range of 4.6 to 9.2 m/s (representing
the industrial operating range), although D32 starts to increase below 4.6 m/s. The results suggest that
the bubble size and bubble size distribution (BSD) do not change with increasing impeller speed in
the quiescent zone of the flotation [25]. The bubble size increases with the increase of gas rate, and,
conversely, decreases with the increase in the impeller tip speed in the Denver mechanical flotation
cell [26]. As such, it is extremely important to measure the BSD and discuss its distribution regularity
to evaluate the gas dispersion capacity of the flotation equipment [27]. It is noteworthy that bubble
coalescence is completely prevented as the frother concentration reaches the CCC [28], and the bubble
Sauter mean diameter remains almost constant [24,29].

These studies have only focused on various aspects of a single flotation machine; however, they
failed to combine the characteristics of two or more flotation machines and conduct performance
tests. Therefore, in this study, we developed a new jet-stirring flotation device that combines the
advantageous characteristics of the three most common flotation machines. These advantages are
that the Jameson cell made full use of jet flow to eject a large amount of air and produce smaller size
bubbles; the stirring effect of a mechanical flotation cell made the slurry circulation effect better and the
flotation was more sufficient; and the rotational flow of cyclonic-static micro-bubble flotation column
improved the effect of mineralization and increased the mineral recovery rate. Further, we investigated
the suction performance of its double cosine self-aspirated nozzle under various feeding pressures.
The effects of the feeding pressure, frother concentration, suction capacity, and sampling location height
on the bubble size in the flotation cell were also investigated via a bubble size measurement system.

2. Jet-Stirring Coupling Flotation Device

2.1. Device Structure

The structural details of the jet-stirring coupling flotation device are shown in Figure 1. It mainly
comprises six components: (1) a double cosine self-aspirated nozzle for inhaling air, premixing air and
slurry, and a high-speed jet containing gas slurry; (2) a driving impeller fixed at the top of the axis for
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further dispersing bubbles and generating centrifugal force; in addition, the axis passes through the
top of the mixing tank positioned using a sealed bearing; (3) a stirring impeller fixed at the bottom of
the axis for adjusting the dispersion of mineral particles, the uniformity of bubbles, and the degree of
turbulence of the slurry; (4) a round mixing tank for mixing the slurry; (5) a draft tube for draining the
slurry to the stirring impeller; and (6) a canopy hood for dispersing the slurry evenly into the stirring
impeller and circulating tank.

The layout of the six double cosine self-aspirated nozzles is shown in the A-A view. The six
nozzles are arranged symmetrically along the center of the upper part of the mixing tank, which cuts
through the inner wall along the mixing tank. The center line of the nozzles is in the same horizontal
plane as that of the driving impeller.
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Figure 2 shows the structural schematic of the double cosine self-aspirated nozzle, the most
important part of the flotation device, which mainly comprises three components: (1) an ejector pipe
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for jetting high-speed slurry and injecting air flow, (2) a suction pipe for drawing in air from the
atmosphere, and (3) an outer nozzle for forming the suction and mixing zones between the ejector pipe
and outer nozzle. The cone angle of the cosine section of the ejector pipe and that of outer nozzle were
both designed to be 28◦ (β = tan−1

(
1
2 ×

Da−D
La

)
= 28

◦

). The outlet diameter of ejector pipe is 6 mm, and
that of the outer nozzle is 7 mm. The distance between the ejector pipe and outer nozzle is 20 mm.
The other structural parameters of the double cosine self-aspirated nozzle are given in Table 1. A stable
negative pressure environment formed in the suction zone will draw in a large amount of air when a
high-speed slurry jet is continuously ejected from the ejector pipe; then the air and slurry are strongly
premixed in the mixing zone within the nozzle.

Table 1. Structural parameters of the double cosine self-aspirated nozzle.

Length of Outer Nozzle
Cosine Section

Diameter of Outer
Nozzle Circular Tube

Section

Diameter of Outer
Nozzle Cosine Section

Outlet

Length of Ejector Pipe
Cosine Section

La/mm Da/mm D/mm Lb/mm
35 48 7 13

Diameter of Ejector
Pipe Cosine Section

Outlet

Outlet Distance
between Ejector Pipe

and Outer Nozzle

Cone Angle of Ejector
Pipe Cosine Section

Cone Angle of Outer
Nozzle Cosine Section

d/mm L/mm β/◦ d/mm
6 20 28 6

2.2. Working Process of Flotation Device

The driving impeller was driven by a gas-containing high-speed slurry flow jetted from the double
cosine self-aspirated nozzle, rotating in real time at the same angular velocity as the stirring impeller
and generating centrifugal force in the mixing tank. The slurry sprayed onto the driving impeller
was thrown onto the inner wall of the mixing tank to enhance the dispersion between the slurry and
bubbles; the slurry was in a spiral motion within the draft tube under the action of its own gravity and
centrifugal force and evenly distributed to the stirring impeller through the canopy hood. The large
bubbles were again cut into microbubbles by the high-speed rotating driving impeller and the stirring
impeller. In this process, the dispersion degree and collision probability of the slurry, agents (frother
and collector), and bubbles were enhanced, thereby improving the effect of bubble mineralization.

3. Experimental Evaluation

3.1. Experimental System

Figure 3 shows the overall experimental setup used in this study. The experiments for the
determination of the bubble size were conducted in the jet-stirring coupling flotation device, equipped
with an approximately 35 L circulating tank, provided with a false bottom in the cell; the distance
between the stirring impeller and the false bottom was set to 15 mm, and that between the false bottom
and circulating tank bottom was set to 10 mm. Other structural parameters of the flotation device are
outlined in Table 2.

The view chamber was set as an inclined (15◦) window, and used to disperse the bubbles into
a near monolayer [30–32]. A light filter was used to improve the uniformity of the light source to
provide a sharp contrast between the bubble edges and the background; the bubbles rose through
a vertical sampling tube with a 12 mm inner diameter into the viewing chamber filled with the test
medium (100 mm length, 150 mm width, and 20 mm depth) to observe bubbles at different points in
the circulating tank.
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Table 2. Structural parameters of the device.

Driving Impeller Stirring Impeller Circulating Tank Diameter
of Draft

Tube/mm

Distance between
Stirring Impeller

and False
Bottom/mm

Diameter
of Mixing
Tank/mmLength ×

Width/mm Diameter/mm Length ×
Width /mm Diameter/mm Length ×Width ×

Height/mm

30 × 35 150 30 × 75 150 250 × 250 × 600 70 25 160

An electromagnetic liquid flowmeter (range: 0.3–7 m3/h) and a diaphragm pressure gauge (range:
0–0.6 MPa) were installed on the pipeline at the outlet of the circulation pump for measuring the
working parameters in real time. An LZB-6-type glass rotameter was used to measure the suction
capacity (q, L/min) of the double cosine self-aspirated nozzle, and the negative pressure value (p, MPa)
of the nozzle was measured by the negative pressure meter. An ACS510-01 frequency converter (ABB
(China) Co., Ltd., Beijing, China) was used to control the working frequency of the circulating pump
and indirectly control the feeding pressure (P, MPa).

The slurry was cyclically pumped to the double cosine self-aspirated nozzle by the circulation
pump. As shown in Figure 3, the flow direction of the slurry in the flotation device and the circulating
tank is represented by the black dotted arrow, while that of the slurry outside the circulating tank is
represented by the black solid arrow. Since the six nozzles were of the same structure and arranged
symmetrically on the upper part of the flotation device, only a single-nozzle BSD test was conducted
in this study.

3.2. Experimental Conditions and Methods

Methyl isobutyl carbinol (MIBC, C6H14O, analytical pure, Shanghai Hansi Chemical Co., Ltd.,
Shanghai, China) was used as a frother, and its concentration is denoted as C (mmol/L). During the
whole testing process, the depth of the fluid remained unchanged in the circulating tank. The vertical
H coordinate axis was established for showing the sampling location height away from the horizontal
center line of the stirring impeller, as shown in Figure 3. The horizontal plane where the center line of
the stirring impeller is located is set as the coordinate origin, i.e., (H = 0 cm). The D32 at a different
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height of the sampling location were studied by moving the inlet of the sampling tube vertically up.
All tests were performed at room temperature (20 ± 1 ◦C) using tap water of pH 6.8 [33,34].

Images of the bubbles sliding up the inclined view chamber were captured using an i-SPEED
3 high-speed camera (CINV Optical Instruments Co., Ltd., Nanjing, China) at a rate of 4000 frames
per second and a typical image resolution of 768 × 576 px. To increase the accuracy of the BSD,
a minimum of 5000 bubbles were measured for each condition tested. Professional image analysis
software, Image-pro-plus, was used for correctly identifying bubble sizes, recording, and analyzing
the data.

3.3. Data Processing

The Sauter mean diameter (D32) is commonly used to evaluate the average value of the bubble
swarm, which was determined using Equation (1) [13,35].

D32 =

∑n
i=1 d3

i∑n
i=1 d2

i

, (1)

where n is the total number of bubbles sampled; di represents the diameter of the ith bubble.

4. Results and Discussion

4.1. Effect of Feeding Pressure on Suction Capacity and Negative Pressure in a Double Cosine
Self-Aspirated Nozzle

The suction capacity and negative pressure as a function of the feeding pressure in a double cosine
self-aspirated nozzle are presented in Figure 4. Within the studied feeding pressure range, the suction
capacity and absolute value of the negative pressure generally increased on increasing the feeding
pressure; this indicates that increasing the feeding pressure results in an increase in the speed difference
between the liquid and gas, as shown in Figure 5. It can be seen from Table 3 that the high-speed liquid
carries away a considerable amount of air from the suction pipe and creates a stable negative pressure
environment inside the nozzle. It can be seen from Figure 5 that once the feeding pressure rises higher
than 0.16 MPa, the velocity difference of liquid-air exceeds 14 m/s, indicating that the ejection ability of
liquid is greatly enhanced.
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Table 3. The velocity difference of liquid-air.

The Feeding
Pressure

The Volumetric
Flow Rate of Air

The Volumetric
Flow Rate of Liquid

The Air Flow
Velocity

The Liquid
Flow Velocity

The Velocity
Difference of

Liquid-Air

MPa m3/h m3/h m/s m/s m/s

0.04 0.012 0.788 0.044 7.746 7.70
0.06 0.014 0.883 0.050 8.679 8.63
0.07 0.020 0.974 0.070 9.574 9.50
0.08 0.032 1.058 0.115 10.399 10.28
0.09 0.035 1.109 0.123 10.901 10.78
0.10 0.055 1.172 0.195 11.520 11.32
0.12 0.060 1.271 0.212 12.493 12.28
0.14 0.084 1.357 0.297 13.338 13.04
0.16 0.093 1.456 0.329 14.312 13.98
0.18 0.200 1.534 0.708 15.078 14.37
0.20 0.285 1.631 1.008 16.032 15.02
0.22 0.340 1.695 1.203 16.661 15.46
0.24 0.400 1.772 1.415 17.418 16.00
0.26 0.460 1.836 1.628 18.047 16.42

There is a linear positive correlation between the suction capacity and negative pressure, as seen
in Figure 6. The curve was fitted using a linear function, and the coefficient of determination is as
high as 0.9815. The suction capacity increased with the increase in negative pressure, suggesting that
the improvement in the negative pressure environment inside the suction zone caused the nozzle to
draw in a large amount of gas required for flotation. This demonstrates the feasibility of arranging the
nozzle in a non-submerged manner and the rationality of the nozzle parameter design.
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4.2. Effect of Frother Concentration on Bubble Size Distribution

D32 as a function of the MIBC concentration for a constant suction capacity of 0.5 L/min,
P = 0.10 MPa, and H = 0 cm is shown in Figure 7. It can been seen from Figure 7 that D32 decreased with
the increase in the MIBC concentration until the CCC value of 0.111 mmol/L was reached [36,37]; above
this value, D32 was almost constant at approximately 0.31 mm. The comparison of D32 in flotation
machines at CCC is shown in Table 4. It can be seen from Table 4 that D32 of this device was smaller
than that of the conventional flotation machines.
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Table 4. Comparison of D32 in flotation machines at a critical coalescence concentration (CCC) of
methyl isobutyl carbinol (MIBC).

Flotation Machine D32/mm References

Mechanical flotation cell 0.80–0.90 [26,28]
Jameson cell 0.65–0.70 [34,38]

Column flotation 0.75–0.80 [39,40]

The BSDs of three representative frother concentrations of 0.096, 0.111, and 0.127 mmol/L are
presented in the inset of Figure 7. As observed, the percentage of small bubbles increases with the
frother concentration, and the peak position of each curve gradually shifts toward the smaller bubble
size with an increasing MIBC concentration.

Figure 8 presents the orientation of the frother molecules at the air/water interface, and effect of
different frother concentrations adsorbed on the surface of bubbles during the collision, coalescence,
and separation of bubbles. It can be seen from Figure 8 that a lower frother concentration adsorbed
on the surface of bubbles easily, causing them to coalesce and generate larger bubbles from smaller
bubbles during bubble collision; conversely, a higher frother concentration effectively prevents bubble
coalescence during the process of bubble collision. It was demonstrated that MIBC reduced the
surface tension of the solution [26]; its molecular structure consists of a hydrophilic polar group and
a hydrophobic hydrocarbon chain. When the polar groups are arranged in the liquid phase and
non-polar groups are arranged in the gas phase [24], the MIBC molecules are adsorbed on the surface
of bubbles as an oriented layer to form a more stable “protective layer” at the air/water interface.
The number of molecules adsorbed on the surface of the bubbles increases with the MIBC concentration,
resulting in further reduction in the solution surface tension; hence, D32 also further reduced. At lower
frother concentrations, the bubbles are easily affected by external forces and merge into larger bubbles.
As the concentration reaches the CCC, the number of molecules on the surface of the bubbles remains
essentially constant, and the surface tension of the solution can resist the influence of external forces.
Bubbles will collide, deform, and then bounce away; therefore, the possibility of bubble coalescence
is reduced.
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4.3. Effect of Feeding Pressure on Bubble Size

Figure 9 presents the variation of D32 with the feeding pressure for three typical frother
concentrations at q = 0.5 L/min and H = 0 cm. Overall, with an increasing feeding pressure, D32

gradually decreased at each frother concentration. Lower frother concentrations caused a higher
decrease in D32, and the D32 difference between two adjacent curves also decreased with the feeding
pressure increased. From another perspective, for a fixed volumetric input rate of the gas, this decrease
in bubble size represents an increase in the number of bubbles, which in turn signifies an increase in the
total surface area available for coal particle attachment [41]. The change in the feeding pressure mainly
increased the turbulence intensity in the nozzle mixing zone, which led to an increase in the gas–liquid
interaction frequency. Moreover, the increase in the feeding pressure also caused an increase in the flow
field turbulence intensity in the circulating tank due to an increase in the impeller speed, as shown in
Figure 10. The bubble size and feeding pressure were approximately linear, and the data were linearly
fitted, as presented in Table 5. It can be seen from Table 5 that the absolute value of the slope of the
curve, the intercept, and ∆D32 gradually decreased with the increasing frother concentration. When
the concentration of the frother increased from 0.096 to 0.111 mmol/L, the slope changed by 1.98; when
the concentration increased from 0.111 to 0.127 mmol/L, the slope changed by 0.18, indicating that
the size of the bubbles is significantly affected by the feeding pressure at lower frother concentrations.
However, when the concentration reached or exceeded the CCC, the rigidity of the bubble surfaces
increased owing to an increase in the amount of frother adsorbed on the surface of the bubble; almost
no merger occurred between the bubbles, and the size of the bubble was reduced owing to the influence
of the feeding pressure.
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Table 5. Information from bubble mean diameter–feeding pressure curve.

Frother Concentration/(mmol/L) Slope of Fitting Intercept ∆D32
a R2

0.096 −2.60 0.690 0.213 0.9742
0.111 −0.62 0.378 0.050 0.9861
0.127 −0.44 0.338 0.033 0.9787

a It represents the difference value between the maximum and minimum bubble Sauter mean diameter within the
studied range of feeding pressure.

4.4. Effect of Suction Capacity on Bubble Size

Figure 11 presents the D32 values as a function of suction capacity at P = 0.10 MPa and H = 0 cm.
Within the studied range of the suction capacity, D32 increased for each frother concentration as the
suction capacity increased, indicating that the bubble size can be effectively controlled by adjusting
the suction capacity. The bubble size was relatively small for a suction capacity of 0.1 to 0.3 L/min at
frother concentrations of 0.111 and 0.127 mmol/L; the bubble size at 0.111 mmol/L was larger than that
at 0.127 mmol/L when the suction capacity was greater than 0.3 L/min. When the suction capacity
increased from 0.1 to 0.9 L/min, the bubble size increased by 0.261 mm (0.096 mmol/L), 0.096 mm
(0.111 mmol/L), and 0.047 mm (0.127 mmol/L) respectively; i.e., the difference in D32 between the two
random concentration curves appeared to increase with increasing suction capacity. For a fixed energy
input (feeding pressure P = 0.10 MPa), the energy allocated to the unit air was reduced as the amount
of suction capacity increased; therefore, the ability of energy to disperse the unit air was diminished.
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4.5. Effect of Sampling Location on Bubble Size

D32 as a function of sampling location at P = 0.10 MPa and q = 0.5 L/min is shown in Figure 12.
D32 almost linearly increased with the height of the sampling location for each MIBC concentration;
furthermore, the difference between two adjacent curves also increased. A higher concentration
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resulted in a smaller slope, which represents smaller variations in bubble size. During the ascending
process of the bubble in the flotation cell, the hydrostatic pressure and concentration of frothers play
an important role in the BSD; however, the hydrostatic pressure has little effect on the bubble size in
the range of sampling height due to the difference in hydrostatic pressure between the top and the
bottom of the slurry being very small, the study [34] had found that there was almost no variation on
the bubble size during the rising process of single bubble at each concentration, however, the D32 of
the bubble group increased with the increase of sampling height, and a higher frother concentration
resulted in a smaller increases. Hence, here, the frother concentration played a major role in BSD
compared to the height of the sampling location. A coalescence phenomenon between bubbles affected
the bubble size when the frother concentration was lower than the critical coalescence concentration;
therefore, the bubble size changed significantly. When the concentration reached the critical coalescence
concentration, there was almost no coalescence between bubbles due to the increase of the frother
concentration on the bubble surface; hence, the bubble size change was not obvious.
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Table 6 represents the fitting function of different curves for different frother concentrations.
The slopes for each concentration have the following order: 0.02060 (0.096 mmol/L) > 0.0087
(0.111 mmol/L) > 0.00476 (0.127 mmol/L); this implies that the slope of the fitting equation decreases
as the concentration increases. The variation in bubble size, where the concentration was larger
than 0.111 mmol/L, became less; almost no coalescence happened during the rising of the bubbles in
the flotation cell. Hence, the slopes of the fitting equation given in Table 6 indirectly represent the
probability of bubble coalescence, i.e., higher concentrations resulted in smaller slopes, indicating a
smaller probability of coalescence among bubbles.

Table 6. Fitting function of bubble Sauter mean diameter and sampling location.

Frother Concentration/(mmol/L) Fitting Equations

0.096 D32 = 0.02060H + 0.39801
0.111 D32 = 0.00857H + 0.30337
0.127 D32 = 0.00476H + 0.29760

5. Conclusions

In this study, a new jet-stirring coupling flotation device was designed. It was found that due
to the arrangement of double cosine self-aspirated nozzles in a non-submerged manner, a large
amount of air was sucked into the flotation cell, which met the requirements of flotation in terms of
the suction capacity. D32 decreased with an increasing MIBC concentration until the concentration
reached the CCC, above which the bubble size stabilized at approximately 0.31 mm, which was smaller
than the bubble size produced by the conventional flotation machine. Higher MIBC concentrations
led to the formation of a large number of small-sized bubbles. Moreover, D32 decreased with the
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increasing feeding pressure; conversely, it increased with suction capacity and sampling location height,
independent of the frother concentration. As stated above, bubbles suitable for froth flotation were
generated by the jet-stirring coupling flotation device, verifying the efficacy of the overall structural
design of the device.

In this study, all the bubble tests of the jet-stirring coupling flotation device were carried out in
the presence of the frother. It is well known that the agent used in the froth flotation also includes a
collector. However, the BSD tests were not studied under the interaction of the two agents. Therefore,
the shape characteristic test of the bubble will be carried out under the action of the collector and
frother in future work.
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