Jahn-Teller Distortion and Cation Ordering: The Crystal Structure of Paratooite-(La), a Superstructure of Carbocernaite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Composition
2.3. Single-Crystal X-ray Diffraction Study
2.4. Raman Spectroscopy
3. Results
3.1. Raman Spectroscopy
3.2. Cation Coordination
3.3. Structure Description
3.4. Crystal-Chemical Formula
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Tao, K.; Yang, Z.; Yang, X.; Song, R. Rare earth, niobium and tantalum minerals in Bayan Obo ore deposit and discussion on their genesis. J. Rare Earths 2002, 20, 81–86. [Google Scholar]
- Deng, M.; Xu, C.; Song, W.; Tang, H.; Liu, Y.; Zhang, Q.; Zhou, Y.; Feng, M.; Wei, C. REE mineralization in the Bayan Obo deposit, China: Evidence from mineral paragenesis. Ore Geol. Rev. 2017, 91, 100–109. [Google Scholar] [CrossRef]
- Srinivasan, S.G.; Shivaramaiah, R.; Kent, P.R.C.; Stack, A.G.; Navrotsky, A.; Riman, R.; Anderko, A.; Bryantsev, V.S. Crystal structures, surface stability, and water adsorption energies of La-Bastnäsite via density functional theory and experimental studies. J. Phys. Chem. C 2016, 120, 16767–16781. [Google Scholar] [CrossRef]
- Plášil, J.; Škoda, R. Crystal structure of the (REE)–uranyl carbonate mineral shabaite-(Nd). J. Geosci. 2017, 62, 97–105. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Kontonikas-Charos, A.; Slattery, A.; Cook, N.J.; Wade, B.P.; Ehrig, K. Short-Range Stacking Disorder in Mixed-Layer Compounds: A HAADF STEM Study of Bastnäsite-Parisite Intergrowths. Minerals 2017, 7, 227. [Google Scholar] [CrossRef]
- Plášil, J.; Petříček, V. Crystal structure of the (REE)-uranyl carbonate mineral kamotoite-(Y). Mineral. Mag. 2017, 81, 653–660. [Google Scholar] [CrossRef]
- Schmandt, D.S.; Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Wade, B.P.; Gilbert, S.; Kamenetsky, V.S. Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia. Minerals 2017, 7, 202. [Google Scholar] [CrossRef]
- Panikorovskii, T.L.; Kalashnikova, G.O.; Zhitova, E.S.; Pakhomovsky, Y.A.; Bocharov, V.N.; Yakovenchuk, V.N.; Zolotarev, A.A.; Krivovichev, S.V. Crystal chemistry of Na-rich kihlmanite-(Ce) from arfvedsonite-aegirine-microcline pegmatite at the Kihlman Mt. (Khibiny massif, Kola Peninsula, Russia). Zap. Ross. Mineral. Obshch. 2017, 146, 113–124. (In Russian) [Google Scholar]
- Kalatha, S.; Perraki, M.; Economou-Eliopoulos, M.; Mitsis, I. On the Origin of Bastnaesite-(La,Nd,Y) in the Nissi (Patitira) Bauxite Laterite Deposit, Lokris, Greece. Minerals 2017, 7, 45. [Google Scholar] [CrossRef]
- Kim, P.; Anderko, A.; Navrotsky, A.; Riman, R.E. Trends in Structure and Thermodynamic Properties of Normal Rare Earth Carbonates and Rare Earth Hydroxycarbonates. Minerals 2018, 8, 106. [Google Scholar] [CrossRef]
- Škoda, R.; Plášil, J.; Čopjaková, R.; Novák, M.; Jonsson, E.; Galiová, M.V.; Holtstam, D. Gadolinite-(Nd), a new member of the gadolinite supergroup from Fe-REE deposits of Bastnäs-type, Sweden. Mineral. Mag. 2018, 82, 133–145. [Google Scholar] [CrossRef]
- Menezes Filho, L.A.D.; Chaves, M.L.S.C.; Chukanov, N.V.; Atencio, D.; Scholz, R.; Pekov, I.; Da Costa, G.M.; Morrison, S.M.; Andrade, M.B.; Freitas, E.T.F.; et al. Parisite-(La), ideally CaLa2(CO3)3F2, a new mineral from Novo Horizonte, Bahia, Brazil. Mineral. Mag. 2018, 82, 133–144. [Google Scholar] [CrossRef]
- Luo, M.; Ye, N.; Zou, G.; Lin, C.; Cheng, W. Na8Lu2(CO3)6F2 and Na3Lu(CO3)2F2: Rare earth fluoride carbonates as deep-UV nonlinear optical materials. Chem. Mater. 2013, 25, 3147–3153. [Google Scholar] [CrossRef]
- Wang, Y.; Han, T.; Ding, Y.-S.; Zheng, Z.; Zheng, Y.-Z. Sodalite-like rare-earth carbonates: A study of structural transformation and diluted magnetism. Dalton Trans. 2016, 45, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-H.; Zhao, D.; Huang, M.; Yang, R.-J.; Ma, F.-X.; Fan, Y.-C. Synthesis, crystal structure and photoluminescence properties of a new rare-earth carbonate Na3Eu(CO3)3·6H2O. J. Chil. Chem. Soc. 2017, 62, 3403–3406. [Google Scholar] [CrossRef]
- Hämmer, M.; Höppe, H.A. Crystalline orthorhombic Ln[CO3][OH] (Ln = La, Pr, Nd, Sm, Eu, Gd) compounds hydrothermally synthesised with CO2 from air as carbonate source. Z. Naturforsch. 2019, 74b, 59–70. [Google Scholar] [CrossRef]
- Cao, L.; Song, Y.; Peng, G.; Luo, M.; Yang, Y.; Lin, C.-S.; Zhao, D.; Xu, F.; Lin, Z.; Ye, N. Refractive index modulates second-harmonic responses in RE8O(CO3)3(OH)15X (RE = Y, Lu; X = Cl, Br): Rare-earth halide carbonates as ultraviolet nonlinear optical materials. Chem. Mater. 2019, 31, 2130–2137. [Google Scholar] [CrossRef]
- Piret, P.; Deliens, M. Nouvelles données sur la schuilingite, carbonate hydrate de terres rares, de plomb et de cuivre. Bull. Mineral. 1982, 105, 225–228. [Google Scholar]
- Sarp, H.; Bertrand, J.; Deferne, J. Données nouvelles sur la schuilingite de Shinkolobwe (Shaba, Zaire), carbonate hydrate de plomb, cuivre et de terres rares. Schweiz. Mineral. Petrogr. Mitt. 1983, 63, 1–6. [Google Scholar]
- Schindler, M.; Hawthorne, F.C. The crystal structure of schuilingite-(Nd). Can. Mineral. 1999, 37, 1463–1470. [Google Scholar]
- Deliens, M.; Piret, P. L’astrocyanite-(Ce), Cu2(TR)2(UO2)(CO3)5(OH)2·1,5 H2O, nouvelle espèce minérale de Kamoto, Shaba, Zaïre. Eur. J. Mineral. 1990, 2, 407–411. [Google Scholar] [CrossRef]
- Wallwork, K.; Kolitsch, U.; Pring, A.; Nasdala, L. Decrespignyite-(Y), a new copper yttrium rare earth carbonate chloride hydrate from Paratoo, South Australia. Mineral. Mag. 2002, 66, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Pring, A.; Wallwork, K.; Brugger, J.; Kolitsch, U. Paratooite-(La), a new lanthanum-dominant rare-earth copper carbonate from Paratoo, South Australia. Mineral. Mag. 2006, 70, 131–138. [Google Scholar] [CrossRef]
- Brugger, J.; Ogierman, J.; Pring, A.; Waldron, H.; Kolitsch, U. Origin of the secondary REE-minerals at the Paratoo copper deposit near Yunta, South Australia. Mineral. Mag. 2006, 70, 609–627. [Google Scholar] [CrossRef]
- Bruker-AXS. APEX2, Version 2014.11-0; Bruker-AXS: Madison, WI, USA, 2014.
- Sheldrick, G.M. SADABS; University of Goettingen: Goettingen, Germany, 2007. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Gagné, O.C.; Hawthorne, F.C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. 2015, B71, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; Martens, W.N.; Rintoul, L.; Mahmutagic, E.; Kloprogge, J.T. Raman spectroscopic study of azurite and malachite at 298 and 77 K. J. Raman Spectrosc. 2002, 33, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Michiba, K.; Miyawaki, R.; Minakawa, T.; Terad, Y.; Nakai, I.; Matsubara, S. Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan. J. Miner. Petrol. Sci. 2013, 108, 326–334. [Google Scholar] [CrossRef]
- Buzgar, N.; Apopei, A.I. The Raman study of certain carbonates. Geologie Tomul L 2009, 55, 97–112. [Google Scholar]
- Jahn, H.A.; Teller, E. Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc. R. Soc. 1937, A161, 220–235. [Google Scholar]
- Hathaway, B.J. Copper. In Comprehensive Coordination Chemistry; Wilkinson, G., Ed.; Pergamon: Oxford, UK, 1987; Volume 5, pp. 533–774. [Google Scholar]
- Bulakh, A.G.; Kondrateva, V.V.; Baranova, E.N. Carbocernaite—a new rare-earth carbonate. Zap. Vses. Mineral. Obsh. 1961, 90, 42–49. (In Russian) [Google Scholar]
- Bulakh, A.G.; Izokh, E.P. New data on carbocernaite. Dokl. Akad. Nauk SSSR 1967, 175, 175–177. (In Russian) [Google Scholar]
- Voronkov, A.A.; Pyatenko, Y.A. Crystal structure of carbocernaite (Na,Ca)(TR,Sr,Ca,Ba)(CO3)2. J. Struct. Chem. 1967, 8, 835–840. [Google Scholar] [CrossRef]
- Shi, N.; Ma, Z.; Peng, Z. The crystal structure of carbocernaite. Kexue Tongbao 1982, 27, 76–80. (In Chinese) [Google Scholar]
- Chakhmouradian, A.R.; Cooper, M.A.; Reguir, E.P.; Moore, M.A. Carbocernaite from Bear Lodge, Wyoming: Crystal chemistry, paragenesis, and rare-earth fractionation on a microscale. Am. Mineral. 2017, 102, 1340–1352. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth. Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Structural complexity of minerals: Information storage and processing in the mineral world. Miner Mag. 2013, 77, 275–326. [Google Scholar] [CrossRef]
- Krivovichev, S.V. Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 2014, 53, 654–661. [Google Scholar] [CrossRef]
Crystal System | Orthorhombic |
---|---|
Space group | Pbam |
a, Å | 7.2250(3) |
b, Å | 12.7626(5) |
c, Å | 10.0559(4) |
V, Å3 | 927.25(6) |
Z | 1 |
ρcalc, g/cm3 | 3.690 |
μ, mm−1 | 7.837 |
Crystal dimensions, mm | 0.06 × 0.04 × 0.01 |
λ, Å | 0.71073 |
2θ range, deg. | 4.05–57.92 |
Index ranges | −9 ≤ h ≤ 7, −17 ≤ k ≤ 16, −13 ≤ l ≤ 13 |
Reflections collected | 9442 |
Independent reflections | 1299 [Rint = 0.061] |
Data/restraints/parameters | 1299/0/111 |
GOF (goodness-of-fit) | 1.103 |
Final R indexes [I ≥ 2σ(I)] | R1 = 0.063, wR2 = 0.170 |
Final R indexes (all data) | R1 = 0.076, wR2 = 0.195 |
Atom | x | Y | z | Ueq. | BVS |
---|---|---|---|---|---|
La | 0.71419(8) | 0.69022(5) | 0.74855(4) | 0.0161(3) | 3.31 |
Cu | ½ | ½ | ½ | 0.0222(6) | 2.08 |
Ca | ½ | 0 | 0 | 0.0237(8) | 2.07 |
Na1 | 0 | ½ | ½ | 0.025(2) | 1.09 |
Na2 | ½ | ½ | 0 | 0.017(4) | 0.98 |
C1 | 0.3107(12) | 0.5452(7) | 0.7449(6) | 0.0159(16) | 4.05 |
C2 | 0.5435(15) | 0.7731(9) | 0 | 0.016(2) | 4.04 |
C3 | Vladimir N. Bocharov 0.0438(16) | 0.7177(9) | ½ | 0.017(2) | 4.05 |
O1 | 0.3047(9) | 0.4929(5) | 0.6323(6) | 0.0233(13) | 2.14 |
O2 | 0.6306(16) | 0.6864(7) | 0 | 0.028(2) | 2.11 |
O3 | 0.0059(9) | 0.6741(5) | 0.6122(6) | 0.0208(12) | 2.11 |
O4 | 0.5057(10) | 0.8179(4) | 0.8891(6) | 0.0215(13) | 2.18 |
O5 | 0.3789(9) | 0.6359(5) | 0.7497(5) | 0.0210(13) | 2.19 |
O6 | 0.1304(15) | 0.8036(7) | ½ | 0.026(2) | 2.14 |
O7 | 0.2460(10) | 0.4974(6) | 0.8447(6) | 0.0282(14) | 2.22 |
Atom | SSFexp. | SSFtheor | Occupancy |
---|---|---|---|
La | 46.64 | 46.07 | La0.71Sr0.10□0.10Ca0.09 |
Cu | 29.00 | 29.00 | Cu |
Ca | 20.00 | 20.00 | Ca |
Na1 | 11.00 | 10.62 | Na0.82□0.10Ca0.08 |
Na2 | 6.38 | 6.38 | Na0.58□0.42 |
Atom | U11 | U22 | U33 | U23 | U13 | U12 |
---|---|---|---|---|---|---|
La | 0.0247(5) | 0.0146(4) | 0.0090(4) | −0.00037(18) | −0.00006(19) | −0.00050(19) |
Cu | 0.0247(5) | 0.0146(4) | 0.0090(4) | −0.00037(18) | −0.00006(19) | −0.00050(19) |
Ca | 0.0318(11) | 0.0265(12) | 0.0083(9) | 0 | 0 | 0.0026(10) |
Na1 | 0.0347(18) | 0.0234(17) | 0.0131(14) | 0 | 0 | 0.0008(16) |
Na2 | 0.038(4) | 0.020(4) | 0.015(3) | 0 | 0 | −0.005(3) |
C1 | 0.016(5) | 0.021(6) | 0.014(6) | 0 | 0 | 0.002(5) |
C2 | 0.026(4) | 0.014(4) | 0.008(4) | −0.003(2) | 0.004(3) | 0.002(3) |
C3 | 0.024(6) | 0.016(5) | 0.008(4) | 0 | 0 | 0.000(4) |
O1 | 0.026(6) | 0.018(5) | 0.006(4) | 0 | 0 | 0.001(4) |
O2 | 0.040(3) | 0.019(3) | 0.011(3) | −0.003(2) | −0.002(2) | 0.001(3) |
O3 | 0.045(6) | 0.025(5) | 0.014(4) | 0 | 0 | 0.013(4) |
O4 | 0.026(3) | 0.020(3) | 0.016(3) | 0.006(2) | 0.003(3) | 0.001(3) |
O5 | 0.028(3) | 0.019(3) | 0.017(3) | 0.007(2) | 0.000(3) | 0.000(2) |
O6 | 0.026(3) | 0.017(3) | 0.019(3) | 0.001(2) | −0.002(2) | −0.005(2) |
O7 | 0.040(5) | 0.022(5) | 0.015(4) | 0 | 0 | −0.010(4) |
La–O5 | 2.518(7) | Cu–O1 | 1.941(6) 4× | C1–O5 | 1.259(11) |
La–O5 | 2.520(7) | Cu–O6 | 2.676(6) 2× | C1–O7 | 1.264(9) |
La–O3 | 2.523(6) | <Cu–O> | 2.186 | C1–O1 | 1.315(9) |
La–O4 | 2.539(7) | <C1–O> | 1.279 | ||
La–O6 | 2.573(3) | Ca–O7 | 2.367(7) 4x | ||
La–O7 | 2.598(7) | Ca–O4 | 2.578(6) 4x | C2–O2 | 1.273(14) |
La–O2 | 2.600(3) | <Ca–O> | 2.473 | C2–O4 | 1.283(8) |
La–O1 | 2.617(7) | C2–O4 | 1.283(8) | ||
La–O4 | 2.631(6) | Na1–O3 | 2.492(6) 4x | <C2–O> | 1.280 |
La–O3 | 2.673(6) | Na1–O1 | 2.573(6) 4x | ||
<La–O> | 2.579 | <Na1–O> | 2.533 | C3–O6 | 1.262(14) |
C3–O3 | 1.287(8) | ||||
Na2–O7 | 2.410(7) 4x | C3–O3 | 1.287(8) | ||
Na2–O2 | 2.560(10) 2x | <C3–O> | 1.279 | ||
<Na2–O> | 2.460 |
Raman Shift, cm−1 | Assignment | Type |
---|---|---|
1369 w, 1434 w | CO3 | v3 |
1095 s, 988 w *, 922 w * | CO3 | v1 |
870 w | CO3 | v2 |
733, 686 w, 665 w | CO3 | v4 |
386 sh, 343 | CuO6 | v1, v2 |
261 s | CuO6 | v3, v4 |
166, 119 | lattice vibrations |
Mineral | Space Group | a (Å) | b (Å) | c (Å)/γ (deg.) | IG (bits/atom) | IG,total (bits/cell) | |
---|---|---|---|---|---|---|---|
paratooite-(La) | Pbam | 7.225 | 12.763 | 10.056 | 3.722 | 297.754 | this work |
carbocernaite | P21am * | 7.30 | 6.41 | 5.23 | 2.922 | 58.439 | [36] |
carbocernaite | P21am * | 7.301 | 6.430 | 5.214 | 2.922 | 58.439 | [37] |
carbocernaite | P11m * | 7.266 | 6.434 | 5.220/89.98 | 3.922 | 78.439 | [38] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivovichev, S.V.; Panikorovskii, T.L.; Zolotarev, A.A.; Bocharov, V.N.; Kasatkin, A.V.; Škoda, R. Jahn-Teller Distortion and Cation Ordering: The Crystal Structure of Paratooite-(La), a Superstructure of Carbocernaite. Minerals 2019, 9, 370. https://doi.org/10.3390/min9060370
Krivovichev SV, Panikorovskii TL, Zolotarev AA, Bocharov VN, Kasatkin AV, Škoda R. Jahn-Teller Distortion and Cation Ordering: The Crystal Structure of Paratooite-(La), a Superstructure of Carbocernaite. Minerals. 2019; 9(6):370. https://doi.org/10.3390/min9060370
Chicago/Turabian StyleKrivovichev, Sergey V., Taras L. Panikorovskii, Andrey A. Zolotarev, Vladimir N. Bocharov, Anatoly V. Kasatkin, and Radek Škoda. 2019. "Jahn-Teller Distortion and Cation Ordering: The Crystal Structure of Paratooite-(La), a Superstructure of Carbocernaite" Minerals 9, no. 6: 370. https://doi.org/10.3390/min9060370
APA StyleKrivovichev, S. V., Panikorovskii, T. L., Zolotarev, A. A., Bocharov, V. N., Kasatkin, A. V., & Škoda, R. (2019). Jahn-Teller Distortion and Cation Ordering: The Crystal Structure of Paratooite-(La), a Superstructure of Carbocernaite. Minerals, 9(6), 370. https://doi.org/10.3390/min9060370