A New Plagioclase-Liquid Hygrometer Specific to Trachytic Systems
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Crystallization Experiments
3.2. Plagioclase-Liquid Hygrometer
3.3. Comparison with Previous Plagioclase-Liquid Hygrometers
4. Application of the Plagioclase-Liquid Hygrometer
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carroll, M.R.; Holloway, J.R. Volatiles in Magmas. Rev. Mineral. Geochem. 1994, 30, 509. [Google Scholar]
- Zhang, Y.; Xu, Z.; Zhu, M.; Wang, H. Silicate melt properties and volcanic eruptions. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K.V. Volatile controls on magma ascent and eruption. In The State of the Planet: Frontiers and Challenges in Geophysics; Sparks, R.S.J., Hawkesworth, C.J., Eds.; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2004; Volume 150, pp. 109–124. [Google Scholar]
- Hess, K.; Dingwell, D.B. Viscosities of hydrous leucogranitic melts: A non-Arrhenian model. Am. Mineral. 1996, 81, 1297–1300. [Google Scholar]
- Moore, G.; Carmichael, I.S.E. The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: Constraints on water content and conditions of phenocryst growth. Contrib. Mineral. Petrol. 1998, 130, 304–319. [Google Scholar] [CrossRef]
- Ochs, F.A.; Lange, R.A. The Density of Hydrous Magmatic Liquids. Science 1999, 283, 1314–1317. [Google Scholar] [CrossRef]
- Stolper, E.M. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 1982, 46, 2609–2620. [Google Scholar] [CrossRef]
- Nowak, M.; Behrens, H. The speciation of water in haplogranitic glasses and melts determined by in situ near infrared spectroscopy. Geochim. Cosmochim. Acta 1995, 59, 3445–3450. [Google Scholar] [CrossRef]
- Shen, A.; Keppler, H. Infrared spectroscopy of hydrous silicate melts to 1000 °C and 10 kbar: Direct observation of H2O speciation in a diamond-anvil cell. Am. Mineral. 1995, 80, 1335–1338. [Google Scholar] [CrossRef]
- Ottonello, G.; Richet, P.; Papale, P. Bulk solubility and speciation of H2O in silicate melts. Chem. Geol. 2018, 479, 176–187. [Google Scholar] [CrossRef]
- Shishkina, T.A.; Botcharnikov, R.E.; Holtz, F.; Almeev, R.R.; Jazwa, A.M.; Jakubiak, A.A. Compositional and pressure effects on the solubility of H2O and CO2 in mafic melts. Chem. Geol. 2014, 388, 112–129. [Google Scholar] [CrossRef]
- Tait, S.; Jaupart, C.; Vergniolle, S. Pressure, gas content and eruption periodicity of a shallow crystallising magma chamber. Earth Planet. Sci. Lett. 1989, 92, 107–123. [Google Scholar] [CrossRef]
- Huppert, H.E.; Woods, A.W. The role of volatiles in magma chamber dynamics. Nature 2002, 420, 493–495. [Google Scholar] [CrossRef] [PubMed]
- Sisson, T.W.; Grove, T.L. Temperature and H2O contents of low-MgO high-alumina basalts. Contrib. Mineral. Petrol. 1993, 113, 167–184. [Google Scholar] [CrossRef]
- Putirka, K.D. Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations. Am. Mineral. 2005, 90, 336–346. [Google Scholar] [CrossRef]
- Putirka, K.D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Lange, R.A.; Frey, H.M.; Hector, J. A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am. Mineral. 2009, 94, 494–506. [Google Scholar] [CrossRef]
- Waters, L.E.; Lange, R.A. An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am. Mineral. 2015, 100, 2172–2184. [Google Scholar] [CrossRef]
- Mollo, M.; Masotta, M.; Forni, F.; Bachmann, O.; De Astis, G.; Moore, G.; Scarlato, P. A K-feldspar–liquid hygrometer specific to alkaline differentiated magmas. Chem. Geol. 2015, 392, 1–8. [Google Scholar] [CrossRef]
- Kudo, A.M.; Weill, D.F. An igneous plagioclase thermometer. Contrib. Mineral. Petrol. 1970, 25, 52–65. [Google Scholar] [CrossRef]
- Mathez, E.A. A refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks. Contrib. Mineral. Petrol. 1973, 41, 61–72. [Google Scholar] [CrossRef]
- Masotta, M.; Mollo, S.; Freda, C.; Gaeta, M.; Moore, G. Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contrib. Mineral. Petrol. 2013, 166, 1545–1561. [Google Scholar] [CrossRef]
- Devine, J.D.; Gardner, J.E.; Brack, H.P.; Layne, G.D.; Rutherford, M.J. Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am. Mineral. 1995, 80, 319–328. [Google Scholar] [CrossRef]
- Hughes, E.C.; Buse, B.; Kearns, S.L.; Blundy, J.D.; Kilgour, G.; Mader, H.M. Low analytical totals in EPMA of hydrous silicate glass due to sub-surface charging: Obtaining accurate volatiles by difference. Chem. Geol. 2019, 505, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Masotta, M.; Keppler, H. Anhydrite solubility in differentiated arc magmas. Geochim. Cosmochim. Acta 2015, 158, 79–102. [Google Scholar] [CrossRef]
- Paonita, A.; Federico, C.; Bonfanti, P.; Capasso, G.; Inguaggiato, S.; Italiano, F.; Madonia, P.; Pecoraino, G.; Sortino, F. The episodic and abrupt geochemical changes at La Fossa fumaroles (Vulcano Island, Italy) and related constraints on the dynamics, structure, and compositions of the magmatic system. Geochim. Cosmochim. Acta 2013, 120, 158–178. [Google Scholar] [CrossRef]
- Mandarano, M.; Paonita, A.; Martelli, M.; Viccaro, M.; Nicotra, E.; Millar, I.L. Revealing magma degassing below closed-conduit active volcanoes: Geochemical features of volcanic rocks versus fumarolic fluids at Vulcano (Aeolian Islands, Italy). Lithos 2016, 248–251, 272–287. [Google Scholar] [CrossRef]
- Fulignati, P.; Gioncada, A.; Costa, S.; Di Genova, D.; Di Traglia, F.; Pistolesi, M. Magmatic sulfide immiscibility at an active magmatic-hydrothermal system: The case of La Fossa (Vulcano, Italy). J. Volcanol. Geotherm. Res. 2018, 358, 45–57. [Google Scholar] [CrossRef]
- Bullock, L.A.; Gertisser, R.; O’Driscoll, B.O.; Harland, S. Magmatic evolution and textural development of the 1739 CE Pietre Cotte lava flow, Vulcano, Italy. J. Volcanol. Geotherm. Res. 2019, 372, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Clocchiatti, R.; Del Moro, A.; Gioncada, A.; Joron, J.L.; Mosbah, M.; Pinarelli, L.; Sbrana, A. Assessment of a shallow magmatic system: The 1888–1890 eruption, Vulcano Island, Italy. Bull. Volcanol. 1994, 56, 466–486. [Google Scholar] [CrossRef]
- Gioncada, A.; Clocchiatti, R.; Sbrana, A.; Bottazzi, P.; Massare, D.; Ottolini, L. A study of melt inclusions at Vulcano (Aeolian Islands, Italy): Insights on the primitive magmas and on the volcanic feeding system. Bull. Volcanol. 1998, 60, 286–306. [Google Scholar] [CrossRef]
- Di Traglia, F.; Pistolesi, M.; Rosi, M.; Bonadonna, C.; Fusillo, R.; Roverato, M. Growth and erosion: The volcanic geology and morphological evolution of La Fossa (island of Vulcano, southern Italy) in the last 1000 years. Geomorphology 2013, 194, 94–107. [Google Scholar] [CrossRef]
- Di Matteo, V.; Carroll, M.R.; Behrens, H.; Vetere, F.; Brooker, R.A. Water solubility in trachytic melts. Chem. Geol. 2004, 213, 187–196. [Google Scholar] [CrossRef]
- Mandeville, C.W.; Webster, J.D.; Rutherford, M.J.; Taylor, B.E.; Timbal, A.; Faure, K. Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. Am. Mineral. 2002, 87, 813–821. [Google Scholar] [CrossRef]
- Lange, R.A.; Carmichael, I.S.E. Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties. Geochim. Cosmochim. Acta 1987, 51, 2931–2946. [Google Scholar] [CrossRef]
- Namur, O.; Charlier, B.; Toplis, M.J.; Vander Auwera, J. Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm. Contrib. Mineral. Petrol. 2012, 163, 133–150. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. IUGS Subcommission on the Systematics of Igneous Rocks. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Papale, P.; Moretti, R.; Barbato, D. The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem. Geol. 2006, 229, 78–95. [Google Scholar] [CrossRef]
- Fowler, S.J.; Spera, F.; Bohrson, W.; Belkin, H.E.; De Vivo, B. Phase equilibria constraints on the chemical and physical evolution of the Campanian Ignimbrite. J. Petrol. 2007, 48, 459–493. [Google Scholar] [CrossRef]
- Sisson, T.W.; Grove, T.L. Experimental investigations of the role of H2O in calcalkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 1993, 113, 143–166. [Google Scholar] [CrossRef]
- Ushioda, M.; Takahashi, E.; Hamada, M.; Suzuki, T. Water content in arc basaltic magma in the Northeast Japan and Izu arcs: An estimate from Ca/Na partitioning between plagioclase and melt. Earth Planets Space 2014, 66. [Google Scholar] [CrossRef]
- Andújar, J.; Costa, A.; Marti, J. Magma storage conditions of the last eruption of Teide volcano (Canary Islands, Spain). Bull. Volcanol. 2010, 72, 381–395. [Google Scholar] [CrossRef]
- Romano, P.; Andújar, J.; Scaillet, B.; Romengo, N.; di Carlo, I.; Rotolo, S.G. Phase equilibria of Pantelleria trachytes (Italy): Constraints on pre-eruptive conditions and on the metaluminous to peralkaline transition in silicic magmas. J. Petrol. 2018, 59, 559–588. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Sack, R.O. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 1995, 119, 197–212. [Google Scholar] [CrossRef]
- Masotta, M.; Gaeta, M.; Gozzi, F.; Marra, F.; Palladino, D.M.; Sottili, G. H2O- and temperature-zoning in magma chambers: The example of the Tufo Giallo della Via Tiberina eruptions (Sabatini Volcanic District, central Italy). Lithos 2010, 118, 119–130. [Google Scholar] [CrossRef]
- De Astis, G.; Dellino, P.; La Volpe, L.; Lucchi, F.; Tranne, C.A. Geological Map of the Island of Vulcano (Aeolian Islands), Scale 1:10,000; La Volpe, L., De Astis, G., Eds.; Litographia Artistica Cartographica: Florence, Italy, 2006. [Google Scholar]
- De Astis, G.; Lucchi, F.; Dellino, P.; La Volpe, L.; Tranne, C.A.; Frezzotti, M.L.; Peccerillo, A. Geology, volcanic history and petrology of Vulcano (central Aeolian archipelago). In The Aeolian Islands Volcanoes; Lucchi, F., Peccerillo, A., Keller, J., Tranne, C.A., Rossi, P.L., Eds.; Geological Society of London Publications: London, UK, 2013; Volume 37, pp. 281–349. [Google Scholar]
- Vetere, F.; Petrelli, M.; Morgavi, D.; Perugini, D. Dynamics and time evolution of a shallow plumbing system: The 1739 and 1888–1890 eruptions, Vulcano Island, Italy. J. Volcanol. Geotherm. Res. 2015, 306, 374–382. [Google Scholar] [CrossRef]
- Nicotra, E.; Giuffrida, M.; Viccaro, M.; Donato, P.; D’Oriano, C.; Paonita, A.; De Rosa, R. Timescales of pre-eruptive magmatic processes at Vulcano (Aeolian Islands, Italy) during the last 1000 years. Lithos 2018, 316–317, 347–365. [Google Scholar] [CrossRef]
- De Fino, M.; La Volpe, L.; Piccarreta, G. Role of magma mixing during the recent activity of La Fossa di Vulcano (Aeolian Islands, Italy). J. Volcanol. Geotherm. Res. 1991, 48, 385–398. [Google Scholar] [CrossRef]
- Piochi, M.; De Astis, G.; Petrelli, M.; Ventura, G.; Sulpizio, R.; Zanetti, A. Constraining the recent plumbing system of Vulcano (Aeolian Arc, Italy) by textural, petrological, and fractal analysis: The 1739 A.D. Pietre Cotte lava flow. Geochem. Geophys. Geosyst. 2009, 10, Q01009. [Google Scholar] [CrossRef]
- Mollo, S.; Putirka, K.; Misiti, V.; Soligo, M.; Scarlato, P. A new test for equilibrium based on clinopyroxene–melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chem. Geol. 2013, 352, 92–100. [Google Scholar] [CrossRef]
- Mollo, S.; Masotta, M. Optimizing pre-eruptive temperature estimates in thermally and chemically zoned magma chambers. Chem. Geol. 2014, 368, 97–103. [Google Scholar] [CrossRef]
- Wallace, P.; Carmichael, I.S.E. Sulfur in basaltic magmas. Geochim. Cosmochim. Acta 1992, 56, 1863–1874. [Google Scholar] [CrossRef]
Experiment | P (MPa) | T (°C) | t (h) | H2O a | Phase assemblage b | A3550 (μm-1) | Density (g/L) | Thickness (μm) |
---|---|---|---|---|---|---|---|---|
Phase equilibria experiments—this study | ||||||||
CA-9 | 150 | 1000 | 48 | 1.17 | Gl(73), Pl(11), Sa(11), Cpx(5) | 0.010 | 2484 | 51 |
CA-4 | 150 | 1000 | 48 | 1.71 | Gl(76), Pl(9), Sa(10), Cpx(5) | 0.015 | 2481 | 35 |
CA-7 | 150 | 1000 | 48 | 2.14 | Gl(78), Pl(9), Sa(10), Cpx(4) | 0.022 | 2472 | 28 |
CA-8 | 150 | 1000 | 48 | 2.80 | Gl(81), Pl(8), Sa(7), Cpx(4) | 0.009 | 2439 | 60 |
CA-17 | 150 | 1000 | 48 | 3.55 | Gl(86), Pl(6), Sa(6), Cpx(2) | 0.029 | 2406 | 17 |
CA-21 | 150 | 1000 | 48 | 3.73 | Gl(89), Pl(5), Sa(4), Cpx(2) | 0.031 | 2385 | 15 |
CA-19 | 150 | 1020 | 48 | 2.88 | Gl(83), Pl(7), Sa(7), Cpx(3) | 0.024 | 2436 | 80 |
CA-22 | 150 | 1020 | 48 | 3.20 | Gl(84), Pl(7), Sa(6), Cpx(3) | 0.027 | 2438 | 42 |
Phase equilibria experiments—Masotta and Keppler (2015) | ||||||||
AND-15 | 200 | 850 | 168 | 7.32 | Gl, Pl, Cpx, Ox, Anhy | - | - | - |
AND-13 | 202 | 900 | 168 | 5.75 | Gl, Pl, Cpx, Ox, Anhy | - | - | - |
AND-16 | 202 | 900 | 168 | 6.36 | Gl, Pl, Cpx, Opx, Ox, Anhy | - | - | - |
AND-18 | 195 | 950 | 168 | 7.40 | Gl, Pl, Cpx, Ox, Anhy | - | - | - |
AND-7 | 200 | 850 | 168 | 7.57 | Gl, Pl, Cpx, Ox, Anhy | - | - | - |
AND-10 | 200 | 850 | 168 | 7.10 | Gl, Pl, Cpx, Ox, Anhy | - | - | - |
AND-8 | 202 | 900 | 168 | 6.65 | Gl, Pl, Cpx, Ox, Anhy | - | - | - |
AND-12 | 202 | 900 | 168 | 5.89 | Gl, Pl, Cpx, Opx, Amph, Ox, Anhy | - | - | - |
AND-9 | 170 | 950 | 168 | 6.03 | Gl, Pl, Cpx, Ox, Anhy | - | - | - |
AND-11 | 170 | 950 | 168 | 6.56 | Gl, Pl, Cpx, Ox, Anhy | - | -- | - |
AND-19 | 202 | 950 | 168 | 5.12 | Gl, Pl, Cpx, Opx, Ox, Anhy | - | - | - |
Sample | SiO2 | TiO2 | Al2O3 | FeOtot | MnO | MgO | CaO | Na2O | K2O | Total |
---|---|---|---|---|---|---|---|---|---|---|
Starting material | ||||||||||
VGPL-3 | 62.63 | 0.60 | 17.82 | 4.56 | 0.15 | 0.77 | 2.21 | 4.41 | 6.64 | 99.79 |
(15) a | 1.01 | 0.12 | 0.65 | 0.23 | 0.03 | 0.27 | 0.12 | 0.23 | 0.21 | - |
Crystallization experiments | ||||||||||
CA-9 | 64.45 | 0.28 | 18.01 | 1.73 | 0.04 | 0.52 | 1.91 | 4.41 | 7.42 | 98.77 |
(10) | 0.72 | 0.02 | 0.70 | 0.13 | 0.01 | 0.09 | 0.20 | 0.25 | 0.24 | - |
CA-4 | 64.34 | 0.29 | 17.99 | 1.71 | 0.02 | 0.47 | 1.74 | 4.49 | 7.54 | 98.59 |
(10) | 0.36 | 0.07 | 0.34 | 0.17 | 0.01 | 0.06 | 0.04 | 0.11 | 0.29 | - |
CA-7 | 65.40 | 0.28 | 16.95 | 1.70 | 0.01 | 0.60 | 1.07 | 4.41 | 7.32 | 97.74 |
(10) | 0.58 | 0.03 | 0.51 | 0.22 | 0.01 | 0.05 | 0.04 | 0.15 | 0.24 | - |
CA-8 | 63.16 | 0.37 | 17.25 | 2.35 | 0.11 | 0.81 | 1.98 | 4.69 | 7.05 | 97.77 |
(10) | 0.61 | 0.04 | 0.42 | 0.14 | 0.01 | 0.05 | 0.24 | 0.17 | 0.23 | - |
CA-17 | 62.79 | 0.31 | 17.32 | 2.10 | 0.14 | 0.72 | 1.65 | 4.39 | 7.27 | 96.69 |
(10) | 0.57 | 0.03 | 0.61 | 0.09 | 0.01 | 0.10 | 0.17 | 0.20 | 0.22 | - |
CA-21 | 62.60 | 0.32 | 17.37 | 2.13 | 0.05 | 0.88 | 2.20 | 4.35 | 6.48 | 96.38 |
(10) | 0.82 | 0.02 | 0.39 | 0.13 | 0.01 | 0.04 | 0.15 | 0.13 | 0.20 | - |
CA-19 | 62.22 | 0.43 | 16.99 | 2.64 | 0.15 | 1.06 | 2.62 | 4.29 | 6.39 | 96.79 |
(10) | 0.97 | 0.04 | 0.47 | 0.19 | 0.03 | 0.06 | 0.27 | 0.18 | 0.31 | - |
CA-22 | 61.82 | 0.33 | 17.42 | 2.87 | 0.12 | 1.21 | 3.12 | 4.26 | 6.09 | 97.24 |
(10) | 0.65 | 0.03 | 0.45 | 0.20 | 0.02 | 0.15 | 0.12 | 0.17 | 0.17 | - |
Sample | SiO2 | TiO2 | Al2O3 | FeOtot | MnO | MgO | CaO | Na2O | K2O | Total | An | Ab | Or |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CA-9 | 58.96 | 0.05 | 25.24 | 0.67 | 0.01 | 0.05 | 6.80 | 6.11 | 1.98 | 99.86 | 0.34 | 0.55 | 0.12 |
(10) a | 0.93 | 0.03 | 1.20 | 0.26 | 0.02 | 0.05 | 0.77 | 0.15 | 0.55 | - | - | - | - |
CA-4 | 58.28 | 0.03 | 26.50 | 0.59 | 0.03 | 0.03 | 7.56 | 6.00 | 1.58 | 100.60 | 0.37 | 0.53 | 0.09 |
(10) | 0.59 | 0.01 | 0.62 | 0.04 | 0.01 | 0.01 | 0.44 | 0.25 | 0.15 | - | - | - | - |
CA-7 | 57.47 | 0.08 | 26.28 | 0.97 | 0.02 | 0.10 | 7.98 | 5.53 | 1.61 | 100.04 | 0.40 | 0.50 | 0.10 |
(10) | 0.52 | 0.04 | 0.83 | 0.43 | 0.03 | 0.08 | 0.34 | 0.68 | 0.56 | - | - | - | - |
CA-8 | 58.65 | 0.05 | 26.02 | 0.51 | 0.01 | 0.02 | 7.07 | 6.05 | 1.76 | 100.13 | 0.35 | 0.54 | 0.10 |
(10) | 0.73 | 0.00 | 0.12 | 0.08 | 0.00 | 0.00 | 0.13 | 0.07 | 0.06 | - | - | - | - |
CA-17 | 54.29 | 0.03 | 29.03 | 0.70 | 0.03 | 0.06 | 10.91 | 4.50 | 0.81 | 100.37 | 0.55 | 0.41 | 0.05 |
(10) | 0.93 | 0.02 | 0.91 | 0.14 | 0.03 | 0.02 | 0.91 | 0.44 | 0.09 | - | - | - | - |
CA-21 | 54.24 | 0.04 | 28.84 | 0.88 | 0.02 | 0.07 | 10.86 | 4.40 | 0.78 | 100.13 | 0.55 | 0.40 | 0.05 |
(10) | 0.39 | 0.04 | 0.52 | 0.27 | 0.01 | 0.01 | 0.41 | 0.09 | 0.18 | - | - | - | - |
CA-19 | 56.37 | 0.05 | 27.61 | 0.57 | 0.02 | 0.04 | 9.56 | 5.17 | 1.13 | 100.51 | 0.47 | 0.46 | 0.07 |
(10) | 1.19 | 0.02 | 0.65 | 0.13 | 0.03 | 0.01 | 0.79 | 0.32 | 0.29 | - | - | - | - |
CA-22 | 54.89 | 0.04 | 27.94 | 0.81 | 0.00 | 0.09 | 10.25 | 4.66 | 0.98 | 99.67 | 0.52 | 0.42 | 0.06 |
(10) | 1.12 | 0.02 | 0.80 | 0.21 | 0.01 | 0.09 | 0.51 | 0.28 | 0.26 | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masotta, M.; Mollo, S. A New Plagioclase-Liquid Hygrometer Specific to Trachytic Systems. Minerals 2019, 9, 375. https://doi.org/10.3390/min9060375
Masotta M, Mollo S. A New Plagioclase-Liquid Hygrometer Specific to Trachytic Systems. Minerals. 2019; 9(6):375. https://doi.org/10.3390/min9060375
Chicago/Turabian StyleMasotta, Matteo, and Silvio Mollo. 2019. "A New Plagioclase-Liquid Hygrometer Specific to Trachytic Systems" Minerals 9, no. 6: 375. https://doi.org/10.3390/min9060375
APA StyleMasotta, M., & Mollo, S. (2019). A New Plagioclase-Liquid Hygrometer Specific to Trachytic Systems. Minerals, 9(6), 375. https://doi.org/10.3390/min9060375