Stable Isotope (S, Mg, B) Constraints on the Origin of the Early Precambrian Zhaoanzhuang Serpentine-Magnetite Deposit, Southern North China Craton
Abstract
:1. Introduction
2. Regional Setting
3. Geology of the Ore Deposit
3.1. Strata
3.2. Mineralogy and Paragenesis
3.2.1. Ore and Wallrock Types
3.2.2. Paragenetic Sequence of the Ore and Gangue Minerals
4. Sample Descriptions and Analytical Methods
4.1. Sample Descriptions
4.2. Analytical Methods
4.2.1. Sulfur Isotopes
4.2.2. Whole-Rock Magnesium Isotopes
4.2.3. In-Situ Boron Isotopic Analysis
5. Results
6. Discussion
6.1. The Source of Sulfur and the Role of Anhydrite in Mineralization
6.2. The Source of Magnesium
6.3. Boron Isotopes in Tourmalinite
6.4. Implications for Provenance and Metallogenic Processes
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meng, J.; Li, H.M.; Li, L.X.; Santosh, M.; Song, Z.; Yang, X.Q. Petrological and geochemical constraints on the protoliths of serpentine-magnetite ores in the Zhaoanzhuang Iron Deposit, southern North China Craton. Acta Geol. Sin. (Engl. Ed.) 2018, 92, 627–665. [Google Scholar] [CrossRef]
- Luo, M.Q. Study on ore-controlling factors in Wuyang iron ore field in Henan Province. J. Henan Polytech. Univ. (Nat. Sci.) 2009, 28, 576–582. (In Chinese) [Google Scholar]
- Jia, X.J.; Li, H.Q.; Zheng, H.J. Study on the geological characteristics and deep prospecting of iron deposits in Wuyang City, Henan Province. Gold Sci. Technol. 2012, 20, 25–31, (In Chinese with English Abstract). [Google Scholar]
- Zhai, J.W. Metallogenic mode and prospecting direction of the Wuyang iron deposit, Henan Province. West-China Explor. Eng. 2012, 1, 127–130. (In Chinese) [Google Scholar]
- Liu, L.X.; Li, H.Q.; Jia, X.J.; Wang, W.Z.; Wang, X. Geological characteristics and genesis of iron ores of Zhaoanzhuang Formation in Wuyang iron ore field of Henan. Miner. Resour. Geol. 2014, 28, 431–434, (In Chinese with English Abstract). [Google Scholar]
- Yu, S.Y.; Zhuang, L.C.; Li, S.Z. Genesis and minerogenetic characteristics of the iron deposit of Zhaoanzhuang type in the Wuyang region, Henan Province. Geochimica 1983, 11, 71–79, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Y.N.; Chen, Y.H. A discussion on the genesis of Zhaoanzhuang iron ore deposit in Wuyang County, Henan Province. Bull. Tianjing Inst. Geol. Miner. Resour. 1986, 16, 1–64, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Y.N. A study of the lizardites in Zhaoanzhuang iron ore deposit at Wuyang County, Henan Province. Geol. Prospect. Rev. 1990, 5, 40–49, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Y.N. Study of fluor-apatite in Zhaoanzhuang iron ore deposit at Wuyang County, Henan Province. Geol. Prospect. Rev. 1991, 6, 58–66, (In Chinese with English Abstract). [Google Scholar]
- Li, J.P.; Li, Y.F.; Xie, K.J. Geological characteristics and ore-controlling significance of the Wuyang Taihua Group, Henan Province. Miner. Resour. Geol. 2012, 26, 30–34, (In Chinese with English Abstract). [Google Scholar]
- Wang, X. Geological Characteristics and Prospecting Potential of Wuyang Iron Ore, Wugang County, Henan Province. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Lan, C.Y.; Zhao, T.P.; Luo, Z.Z.; Wang, C.L.; Wen, Q.F.; Liu, L.X. The genesis of the Zhaoanzhuang Fe oxide deposit in Wuyang region of Henan Province: Insights from magnetite and apatite. Acta Petrol. Sin. 2015, 31, 1653–1670, (In Chinese with English Abstract). [Google Scholar]
- Lan, C.Y.; Zhou, Y.Y.; Wang, C.L.; Zhao, T.P. Depositional age and protoliths of the Paleoproterozoic upper Taihua Group in the Wuyang area in the southern margin of the North China Craton: New insights into stratigraphic subdivision and tectonic setting. Precambrian Res. 2017, 297, 77–100. [Google Scholar] [CrossRef]
- Tu, E.Z.; Zhang, H.W. Rock and mineral assemblage features and metallogenesis of ore-bearing layers in the Zhaoanzhuang Formation of the Wuyang iron mine, Henan Province. J. Geol. 2016, 40, 567–574, (In Chinese with English Abstract). [Google Scholar]
- Zhang, K.; Shen, B.F.; Sun, F.Y.; Zhou, H.Y.; Li, H.K. Metallogenic epoch of Zhaoanzhuang iron ore deposit in Wuyang, Henan Province: Oldest magmatic type iron ore deposit in China. Miner. Depos. 2016, 35, 889–901, (In Chinese with English Abstract). [Google Scholar]
- Yui, S. Decomposition of siderite to magnetite at lower oxygen fugacities: A thermodynamic interpretation and geological implications. Econ. Geol. 1966, 61, 768–776. [Google Scholar] [CrossRef]
- Gieré, R. Titanian clinohumite and geikielite in marbles from the Bergell contact aureole. Contrib. Mineral. Petrol. 1987, 96, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Kurt, B.; Grapes, R. Petrogenesis of Metamorphic Rocks, 8th ed.; Spring-Verlag: Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 225–253. [Google Scholar]
- Jin, S.Q.; Li, H.C. Introduction to Genetic Mineralogy (the Second Volumn)—The Genetic Mineralogy of Several Kinds of Common Minerals; Jilin University Press: Changchun, China, 1986; pp. 122–124. (In Chinese) [Google Scholar]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World skarn deposits. Econ. Geol. 2005, 299–336. [Google Scholar]
- Bucher, P.K.; Grapes, R. Metamorphism of Dolomites and Limestones. In Petrogenesis of Metamorphic Rocks, 8th ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 225–255. [Google Scholar]
- Huang, F. Non-traditional stable isotope fractionation at high temperatures. Acta Petologica Sin. 2011, 27, 365–382, (In Chinese with English Abstract). [Google Scholar]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res. 2001, 107, 45–73. [Google Scholar] [CrossRef]
- Santosh, M. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Res. 2010, 178, 149–167. [Google Scholar] [CrossRef]
- Li, H.M.; Zhang, Z.J.; Li, L.X.; Zhang, Z.C.; Chen, J.; Yao, T. Types and general characteristics of the BIF-related iron deposits in China. Ore Geol. Rev. 2014, 57, 264–287. [Google Scholar] [CrossRef]
- Han, C.S. Analysis of the exploration perspective in the depth of Wuyang iron deposit, Henan Province. Miner. Resour. Geol. 2010, 24, 150–154, (In Chinese with English Abstract). [Google Scholar]
- Li, H.Q. The attribution of basement rocks in Wuyang iron ore field in Henan province. Miner. Resour. Geol. 2012, 26, 119–122, (In Chinese with English Abstract). [Google Scholar]
- Yao, T.; Li, H.M.; Li, W.J.; Li, L.X.; Zhao, C. Origin of the disseminated magnetite pyroxenite in the Tieshanmiao type iron deposits in the Wuyang region of Henan Province, China. J. Asian Earth Sci. 2015, 113, 1235–1252. [Google Scholar] [CrossRef]
- Andreae, M.O. Chemical and stable isotope composition of the high grade metamorphic rocks from the Arendal Area, Southern Norway. Contrib. Mineral. Petrol. 1974, 47, 299–316. [Google Scholar] [CrossRef]
- Zheng, Y.F. Sulfur isotopes in metamorphic rocks. Neues Jahrb. fü Mineral. Abh. 1990, 161, 303–325. [Google Scholar]
- Ault, W.U.; Kulp, J.L. Isotopic geochemistry of sulphur. Geochim. Cosmochim. Acta 1959, 16, 201–235. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley and Sons: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Ohmoto, H. Stable isotopic geochemistry of ore deposits. Rev. Mineral. Geochem. 1986, 16, 491–559. [Google Scholar]
- Zheng, Y.F. Sulphur isotopic fractionation between sulphate and sulphide in hydrothermal ore deposits: Disequilibrium vs equilibrium processes. Terra Nova 1991, 3, 510–516. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Chen, J.F. Stable Isotopic Geochemistry; Science Press: Beijing, China, 2000; pp. 1–316. (In Chinese) [Google Scholar]
- Oeser, M.; Strauss, H.; Wolff, P.E.; Koepke, J.; Peters, M.; Garbe-Schönberg, D.; Dietrich, M. A profile of multiple sulfur isotopes through the Oman ophiolite. Chem. Geol. 2012, 312–313, 27–46. [Google Scholar] [CrossRef]
- Hulston, J.R.; Thode, H.G. Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects. J. Geophys. Res. 1965, 70, 3475–3484. [Google Scholar] [CrossRef]
- Young, E.D.; Galy, A.; Nagahara, H. Kinetic and equilibrium mass-dependent isotopic fractionation laws in nature and their geochemistry and cosmochemical significance. Geochim. Et Cosmochim. Acta 2002, 66, 1095–1104. [Google Scholar] [CrossRef]
- Li, Y.H.; Hou, K.J.; Wan, Y.S.; Yue, G.L. Archean mass-independent fractionation of sulfur isotope: New evidence of bedded sulfide deposits in the Yanlingguan-Shihezhuang area of Xintai, Shandong Province. Acta Geol. Sin. 2008, 82, 444–450. [Google Scholar]
- Farquhar, J.; Bao, H.M.; Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 2000, 289, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Thiemens, M.H. Mass-independent isotope effects in Planetary atmospheres and the early solar system. Science 1999, 283, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Thiemens, M.H. The mass-independent ozone isotope effect. Science 2001, 293, 226. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.H.; Eigenbrode, J.L.; Pavlov, A.A.; Kharecha, P.; Rumble, D.; Kasting, J.F.; Freeman, K.H. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 2003, 213, 15–30. [Google Scholar] [CrossRef]
- Bühn, B.; Santos, R.V.; Dardenne, M.A.; de Oliveira, C.G. Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS. Chem. Geol. 2012, 312–313, 163–176. [Google Scholar]
- Strauss, H. Sulphur isotopes and the early Archaean sulphur cycle. Precambrian Res. 2003, 126, 349–361. [Google Scholar] [CrossRef]
- Johnston, D.T. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle. Earth-Sci. Rev. 2011, 106, 161–183. [Google Scholar] [CrossRef]
- Teng, F.Z.; Li, W.Y.; Ke, S.; Marty, B.; Dauphas, N.; Huang, S.C.; Wu, F.Y.; Pourmand, A. Magnesium isotopic composition of the Earth and chondrites. Geochim. Cosmochim. Acta 2010, 74, 4150–4166. [Google Scholar] [CrossRef]
- An, Y.J.; Huang, F. A review of Mg isotope analytical methods by MC-ICP-MS. J. Earth Sci. 2014, 25, 822–840. [Google Scholar] [CrossRef]
- Saenger, C.; Wang, Z.R. Magnesium isotope fractionation in biogenic and abiogenic carbonates: Implications for paleoenvironmental proxies. Quat. Sci. Rev. 2014, 90, 1–21. [Google Scholar] [CrossRef]
- Galy, A.; Bar-Matthews, M.; Halicz, L.; O’Nions, R.K. Mg isotopic composition of carbonate: Insight from speleothem formation. Earth Planet. Sci. Lett. 2002, 201, 105–115. [Google Scholar] [CrossRef]
- Tipper, E.T.; Galy, A.; Gaillardet, J.; Bickle, M.J.; Elderfield, H.; Carder, E.A. The magnesium isotope budget of the modern ocean: Contraints from riverine magnesium isotope ratios. Earth Planet. Sci. Lett. 2006, 250, 241–253. [Google Scholar] [CrossRef]
- Pogge von Strandmann, P.A.E. Precise magnesium isotope measurements in core top planktic and benthic foraminifera. Geochem. Geophys. Geosystems 2008, 9, Q12015. [Google Scholar] [CrossRef]
- Higgins, J.A.; Schrag, D.P. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim. Et Cosmochim. Acta 2010, 74, 5039–5053. [Google Scholar] [CrossRef]
- Teng, F.Z.; Li, W.Y.; Rudnick, R.L.; Gardner, L.R. Contrasting lithium and magnesium isotope fractionation during continental weathering. Earth Planet. Sci. Lett. 2010, 300, 63–71. [Google Scholar] [CrossRef]
- Farkaš, J.; Chakrabarti, R.; Jacobsen, S.B.; Kump, L.R.; Melezhik, V.A. Ca and Mg isotopes in sedimentary carbonates. In Reading the Archive of Earth’s Oxygenation; Melezhik, V.A., Ed.; Global Events and the Fennoscandian Arctic Russia: Drilling Early Earth Project; Springer: Berlin/Heidelberg, Germany, 2012; Volume 3, pp. 1468–1482. [Google Scholar]
- Gao, T.; Ke, S.; Teng, F.Z.; Chen, S.M.; He, Y.S.; Li, S.G. Magnesium isotope fractionation during dolostone weathering. Chem. Geol. 2016, 445, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Li, W.Q.; Beard, B.L.; Li, C.X.; Xu, H.F.; Johnson, C.M. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim. Et Cosmochim. Acta 2015, 157, 164–181. [Google Scholar] [CrossRef]
- Wang, W.Z.; Qin, T.; Zhou, C.; Huang, S.C.; Wu, Z.Q.; Huang, F. Concentration effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals: Insights from first-principles calculations. Geochim. Et Cosmochim. Acta 2017, 208, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Teng, F.Z.; Wadhwa, M.; Helz, R.T. Investigation of magnesium isotope fractionation during basalt differentiation: Implications for a chondritic composition of the terrestrial mantle. Earth Planet. Sci. Lett. 2007, 261, 84–92. [Google Scholar] [CrossRef]
- Yang, W.; Teng, F.Z.; Zhang, H.F. Chondritic magnesium isotopic composition of the terrestrial mantle: A case study of peridotite xenoliths from the North China Craton. Earth Planet. Sci. Lett. 2009, 288, 475–482. [Google Scholar] [CrossRef]
- Bourdon, B.; Tipper, E.T.; Fitoussi, C.; Stracke, A. Chondritic Mg isotope composition of the Earth. Geochim. Et Cosmochim. Acta 2010, 74, 5069–5083. [Google Scholar] [CrossRef]
- Liu, S.A.; Teng, F.Z.; He, Y.S.; Ke, S.; Li, S.G. Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust. Earth Planet. Sci. Lett. 2010, 297, 646–654. [Google Scholar] [CrossRef]
- Li, W.Y.; Teng, F.Z.; Wing, B.A.; Xiao, Y.L. Limited magnesium isotope fractionation during metamorphic dehydration in metapelites from the Onawa contact aureole, Maine. Geochem. Geophys. Geosystems 2014, 15, 408–415. [Google Scholar] [CrossRef]
- Wang, S.J.; Teng, F.Z.; Li, S.G.; Hong, J.A. Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim. Cosmochim. Acta 2014, 143, 34–48. [Google Scholar] [CrossRef]
- Wang, S.J.; Teng, F.Z.; Rudnick, R.J.; Li, S.G. The behavior of magnesium isotopes in low-grade metamorphosed mudrocks. Geochim. Et Cosmochim. Acta 2015, 165, 435–448. [Google Scholar] [CrossRef]
- Dong, A.G.; Zhu, X.K.; Li, Z.H.; Kendall, B.; Li, S.Z.; Wang, Y.; Tang, C. A multi-isotope approach towards constraining the origin of large-scale Paleoproterozoic B-(Fe) mineralization in NE China. Precambrian Res. 2017, 292, 115–129. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jacobsen, S.B. The isotopic composition of magnesium in the inner Solar System. Earth Planet. Sci. Lett. 2010, 293, 349–358. [Google Scholar] [CrossRef]
- Handler, M.R.; Baker, J.A.; Schiller, M.; Bennett, V.C.; Yaxley, G.M. Magnesium stable isotope composition of Earth’s upper mantle. Earth Planet. Sci. Lett. 2009, 282, 306–313. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Z.F.; Lundstrom, C.C.; Zhi, X.C. Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim. Et Cosmochim. Acta 2011, 75, 3318–3334. [Google Scholar] [CrossRef]
- Young, E.D.; Galy, A. The isotope geochemistry and cosmochemistry of magnesium. Rev. Mineral. Geochem. 2004, 55, 197–230. [Google Scholar] [CrossRef]
- Hippler, D.; Buhl, D.; Witbaard, R.; Richter, D.K.; Immenhauser, A. Towards a better understanding o magnesium-isotope ratios from marine skeletal carbonates. Geochim. Cosmochim. Acta 2009, 73, 6134–6146. [Google Scholar] [CrossRef]
- Schauble, E.A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium (2+) crystals. Geochim. Cosmochim. Acta 2011, 75, 844–869. [Google Scholar] [CrossRef]
- Teng, F.Z. Magnesium isotope geochemistry. Rev. Mineral. Geochem. 2017, 82, 219–287. [Google Scholar] [CrossRef]
- Chaussidon, M.; Jambon, A. Boron content and isotopic composition of oceanic basalts: Geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 1994, 121, 277–291. [Google Scholar] [CrossRef]
- Swihart, G.H.; Moore, P.B.; Callis, E.L. Boron isotopic composition of marine and nonmarine evaporite borates. Geochim. Et Cosmochim. Acta 1986, 50, 1297–1301. [Google Scholar] [CrossRef]
- Swihart, G.H.; Moore, P.B. A reconnaissance of the boron isotopic composition of tourmaline. Geochim. Et Cosmochim. Acta 1989, 53, 911–916. [Google Scholar] [CrossRef]
- Palmer, M.R.; Slack, J.F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib. Mineral. Petrol. 1989, 103, 434–451. [Google Scholar] [CrossRef]
- Palmer, M.R. Boron isotope systematics of hydrothermal fluids and tourmalines: A synthesis. Chem. Geol. 1991, 94, 111–121. [Google Scholar] [CrossRef]
- Barth, S. Boron isotope variations in nature: A synthesis. Geol. Rundsch. 1993, 82, 640–651. [Google Scholar] [CrossRef]
- Marschall, H.R.; Jiang, S.Y. Tourmaline isotopes: No element left behind. Elements 2011, 7, 313–319. [Google Scholar] [CrossRef]
- Bast, R.; Scherer, E.E.; Mezger, K.; Austrheim, H.; Ludwig, T.; Marschall, H.R.; Putnis, A.; Löwen, K. Boron isotopes in tourmaline as a tracer of metasomatic processes in the Bamble sector of Southern Norway. Contrib. Mineral. Petrol. 2014, 168, 1069. [Google Scholar] [CrossRef]
- Ishikawa, T.; Nakamura, E. Boron isotope systematics of marine sediments. Earth Planet. Sci. Lett. 1993, 117, 567–580. [Google Scholar] [CrossRef]
- Palmer, M.R.; London, D.; Morgan, G.B.; Babb, H.A. Experimental determination of fractionation of 11B/10B between tourmaline and aqueous vapor: A temperature- and pressure-dependent isotopic system. Chem. Geol. 1992, 101, 123–129. [Google Scholar]
- Palmer, M.R.; Swihart, G.H. Boron isotope geochemistry: An overview. In Boron: Mineralogy, Petrology and Geochemistry, 2nd ed.; Grew, E.S., Anovitz, I.M., Eds.; Mineralogical Society of America: Washington, DC, USA, 2002; pp. 709–744. [Google Scholar]
- Marschall, H.R.; Ludwig, T.; Altherr, R.; Kalt, A.; Tonarini, S. Syros metasomatic tourmaline: Evidence for very high-δ11B fluids in subduction zones. J. Petrol. 2006, 47, 1915–1942. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite-grade metapelites of NW Maine. Am. Mineral. 1985, 70, 1–15. [Google Scholar]
- Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.; Barnes, R.G. Origin and significance of tourmaline-rich rocks in the Broken Hill District, Australia. Econ. Geol. 1993, 88, 505–541. [Google Scholar] [CrossRef]
- Jiang, S.Y. Boron isotope geochemistry of hydrothermal ore deposits in China: A preliminary study. Phys. Chem. Earth 2001, 26, 851–858. [Google Scholar] [CrossRef]
- Marschall, H.R.; Altherr, R.; Kalt, A.; Ludwig, T. Detrital, metamorphic and metasomatic tourmaline in high-pressure metasediments from Syros (Greece): Intra-grain boron isotope patterns determined by secondary-ion mass spectrometry. Contrib. Mineral. Petrol. 2008, 155, 703–717. [Google Scholar] [CrossRef]
- Chaussidon, M.; Albarède, F. Secular boron isotope variations in the continental crust: An ion microprobe study. Earth Planet. Sci. Lett. 1992, 108, 229–241. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 2013, 24, 275–297. [Google Scholar] [CrossRef]
- Zhao, G.C.; Sun, M.; Wilde, S.A.; Li, S.Z. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res. 2005, 136, 177–202. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. The early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A.; Li, S.Z.; Wilde, S.A.; Sun, M.; Zhang, J.; He, Y.H.; Yin, C.Q. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res. 2012, 222, 55–76. [Google Scholar] [CrossRef]
- Diwu, C.R.; Sun, Y.; Zhao, Y.; Lai, S.C. Early Paleoproterozoic (2.45-2.20 Ga) magmatic activity during the period of global magmatic shutdown: Implications for the crustal evolution of the southern North China Craton. Precambrian Res. 2014, 255, 627–640. [Google Scholar] [CrossRef]
- Kröner, A.; Compston, W.; Zhang, G.W.; Guo, A.L.; Todt, W. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology 1988, 16, 211–215. [Google Scholar] [CrossRef]
- Liu, D.Y.; Wilde, S.A.; Wan, Y.S.; Wang, S.Y.; Valley, J.W.; Kita, N.; Dong, C.Y.; Xie, H.Q.; Yang, C.X.; Zhang, Y.X.; et al. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chem. Geol. 2009, 260, 140–154. [Google Scholar] [CrossRef]
- Wan, Y.S.; Wilde, S.A.; Liu, D.Y.; Yang, C.X.; Song, B.; Yin, X.Y. Further evidence for ~1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Res. 2006, 9, 189–197. [Google Scholar] [CrossRef]
- Diwu, C.R.; Sun, Y.; Lin, C.L.; Wang, H.L. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex in the southern margin of the North China Craton. Chin. Sci. Bull. 2010, 55, 2557–2571. [Google Scholar] [CrossRef]
- Jia, X.L.; Zhu, X.Y.; Zhai, M.G.; Zhao, Y.; Zhang, H.; Wu, J.L.; Liu, T. Late Mesoarchean crust growth event: Evidence from the ca. 2.8 Ga granodioritic gneisses of the Xiaoqinling area, southern North China Craton. Sci. Bull. 2016, 61, 974–990. [Google Scholar] [CrossRef]
- Zhang, G.W.; Bai, Y.B.; Sun, Y.; Guo, A.L.; Zhou, D.W.; Li, T.H. Composition and evolution of the Archaean crust in central Henan, China. Precambrian Res. 1985, 27, 7–35. [Google Scholar] [CrossRef]
- Lu, J.S.; Zhai, M.G.; Lu, L.S.; Wang, H.Y.C.; Chen, H.X.; Peng, T.; Wu, C.M.; Zhao, T.P. Metamorphic P-T-t path retrieved from metapelites in the southeastern Taihua metamorphic complex, and the Paleoproterozoic tectonic evolution of the southern North China Craton. J. Asian Earth Sci. 2017, 134, 352–364. [Google Scholar] [CrossRef]
- Chen, H.X.; Wang, J.; Wang, H.; Wang, G.D.; Peng, T.; Shi, Y.H.; Zhang, Q.; Wu, C.M. Metamorphism and geochronology of the Luoning metamorphic terrane, southern terminal of the Palaeoproterozoic Trans-North China Orogen, North China Craton. Precambrian Res. 2015, 264, 156–178. [Google Scholar] [CrossRef]
- Zhao, T.P.; Zhai, M.G.; Xia, B.; Li, H.M.; Zhang, Y.X.; Wan, Y.S. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constrains on the initial formation age of the cover of the North China Craton. Chin. Sci. Bull. 2004, 49, 2495–2502. [Google Scholar] [CrossRef]
- Cui, M.L.; Zhang, B.L.; Peng, P.; Zhang, L.C.; Shen, X.L.; Guo, Z.H.; Huang, X.F. Zirocn/baddeleyite U-Pb dating for the Paleo-proterozoic intermediate-acid intrusion rocks in Xiaoshan Mountains, west of Henan Province and their constraints on the age of the Xiong’er Volcanic Province. Acta Petrol. Sin. 2010, 26, 1541–1549, (In Chinese with English Abstract). [Google Scholar]
- Lu, J.S.; Wang, G.D.; Wang, H.; Chen, H.X.; Wu, C.M. Palaeoproterozoic metamorphic evolution and geochronology of the Wugang block, southeastern terminal of the Trans-North China. Precambrian Res. 2014, 251, 197–211. [Google Scholar] [CrossRef]
- Yu, S.Y.; Li, S.Z.; Liu, K.J.; Zhuang, L.C.; Li, Z.C. A preliminary study on the mineralogy of the Zhaoanzhuang-type iron ore deposit, Wuyang, Henan Province. Bull. Yichang Inst. Geol. Miner. Resour. Chin. Acad. Geol. Sci. 1982, 5, 1–22, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.F.; Xie, K.J.; Luo, Z.Z.; Li, J.P. Geochemistry of Tieshan iron deposiy in the Wuyang area, Henan Province and its environment implications. Acta Geol. Sin. 2013, 87, 1377–1398, (In Chinese with English Abstract). [Google Scholar]
- Su, B.X.; Teng, F.Z.; Hu, Y.; Shi, R.D.; Zhou, M.F.; Zhu, B.; Liu, F.; Gong, X.H.; Huang, Q.S.; Xiao, Y.; et al. Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: Perspectives from ophiolites. Earth Planet. Sci. Lett. 2015, 430, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.P.; Li, H.; Zhang, G.B.; Li, Y.H.; Li, J.C. A study on determining 33S/32S, 34S/32S and 36S/32S by SF6 method. Miner. Depos. 1987, 6, 81–93, (In Chinese with English Abstract). [Google Scholar]
- Hou, K.J.; Li, Y.H.; Wan, D.F. Constraints on the Archean atmospheric oxygen and sulfur cycle from mass-independent sulfur records from Anshan-Benxi BIFs, Liaoning Province, China. Sci. China Ser. D Earth Sci. 2007, 50, 1471–1478. [Google Scholar] [CrossRef]
- Ke, S.; Teng, F.Z.; Li, S.G.; Gao, T.; Liu, S.A.; He, Y.S.; Mo, X.X. Mg, Sr and O isotope geochemistry of syenites from northwest Xinjiang, China: Tracing carbonate recycling during Tethyan oceanic subduction. Chem. Geol. 2016, 437, 109–119. [Google Scholar] [CrossRef]
- Galy, A.; Yoffe, O.; Janney, P.E.; Williams, R.W.; Cloquet, C.; Alard, O.; Halicz, L.; Wadhwa, M.; Hutcheon, I.D.; Ramon, E.; et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J. Anal. At. Spectrom. 2003, 18, 1352–1356. [Google Scholar] [CrossRef]
- Teng, F.Z.; Li, W.Y.; Ke, S.; Yang, W.; Liu, S.A.; Sedaghatpour, F.; Wang, S.J.; Huang, K.J.; Hu, Y.; Ling, M.X.; et al. Magnesium isotopic compositions of international geological reference materials. Geostand. Geoanalytical Res. 2015, 39, 329–339. [Google Scholar] [CrossRef]
- Hou, K.J.; Li, Y.H.; Xiao, Y.K.; Liu, F.; Tian, Y.R. In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS. Chin. Sci. Bull. 2010, 55, 3305–3311. [Google Scholar] [CrossRef]
- Brown, J.S. Sulfur isotopes of Precambrian sulfates and sulfides in the Grenville of New York and Ontario. Econ. Geol. 1973, 68, 362–370. [Google Scholar] [CrossRef]
- Chu, X.L.; Chen, J.S.; Wang, S.X. Study on fractionation mechanism of sulfur isotope and physicochemical conditions of alteration and ore formation in Luohe iron deposit, Anhui. Sci. Geol. Sin. 1986, 3, 276–289, (In Chinese with English Abstract). [Google Scholar]
- Palmer, M.R.; Helvací, C.; Fallick, A.E. Sulfur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites. Chem. Geol. 2004, 209, 341–356. [Google Scholar] [CrossRef]
- Geske, A.; Goldstein, R.H.; Mavromatis, V.; Richter, D.K.; Buhl, D.; Kluge, T.; John, C.M.; Immenhauser, A. The magnesium isotope (δ26Mg) signature of dolomites. Geochim. Cosmochim. Acta 2015, 149, 131–151. [Google Scholar] [CrossRef]
- Huang, K.J.; Shen, B.; Lang, X.G.; Tang, W.B.; Peng, Y.; Ke, S.; Kaufman, A.J.; Ma, H.R.; Li, F.B. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates. Geochim. Cosmochim. Acta 2015, 164, 333–351. [Google Scholar] [CrossRef]
- Li, F.B.; Teng, F.Z.; Chen, J.T.; Huang, K.J.; Wang, S.J.; Lang, X.G.; Ma, H.R.; Peng, Y.B.; Shen, B. Constraining ribbon rock dolomitization by Mg isotopes: Implications for the ‘dolomite problem’. Chem. Geol. 2016, 445, 208–220. [Google Scholar] [CrossRef]
- Seal, R.R.; Alpers, C.N.; Rye, R.O. Stable isotope systematics of sulfate minerals. In Sulfate Minerals—Crystallography: Geochemistry and Environment Significance; Alpers, C.N., Jamber, J.L., Nordstrom, D.K., Eds.; Mineral Society of America: Chantill, VA, USA, 2000; pp. 541–602. [Google Scholar]
- Böttcher, M.E.; Schale, H.; Schnetger, B.; Wallmann, K.; Brumsack, H.-J. Stable sulfur isotopes indicate net sulfate reduction in near-surface sediments of the deep Arabian Sea. Deep-Sea Res. Ii 2000, 47, 2769–2783. [Google Scholar]
- Böttcher, M.E.; Brumsack, H.-J.; Dürselen, C.-D. The isotopic composition of modern seawater sulfate: I. Coastal waters with special regard to the North Sea. J. Mar. Syst. 2007, 67, 73–82. [Google Scholar] [CrossRef]
- Li, Y.H.; Duan, C.; Han, D.; Chen, X.W.; Wang, C.L.; Yang, B.Y.; Zhang, C.; Liu, F. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area. Acta Petrol. Sin. 2014, 30, 1355–1368, (In Chinese with English Abstract). [Google Scholar]
- Barth, A.P.; Dorais, M.J. Magmatic anhydrite in granitic rocks: First occurrence and potential petrologic onsequences. Am. Mineral. 2000, 85, 430–435. [Google Scholar] [CrossRef]
- Swanson, S.E.; Kearney, C.S. Anhydrite in the 1989-1990 lavas and xenoliths from Redoubt Volcano, Alaska. J. Volcanol. Geotherm. Res. 2008, 175, 509–516. [Google Scholar] [CrossRef]
- Farquhar, J.; Savarino, J.; Airieau, S.; Thiemens, M.H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. J. Geophys. Res. 2001, 106, 32829–32839. [Google Scholar] [CrossRef]
- Penniston-Dorland, S.C.; Mathez, E.A.; Wing, B.A.; Farquhar, J.; Kinnaird, J.A. Multiple sulfur isotope evidence for surface-derived sulfur in the Bushveld Complex. Earth Planet. Sci. Lett. 2012, 337–338, 236–242. [Google Scholar] [CrossRef]
- Farquhar, J.; Wing, B.A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet. Sci. Lett. 2003, 213, 1–13. [Google Scholar] [CrossRef]
- Hu, G.X.; Rumble, D.; Wang, P.L. An ultraviolet laser microprobe for the in situ analysis of multisulfur isotopes and its use in measuring Archean sulfur isotope mass-independent anomalies. Geochim. Cosmochim. Acta 2003, 67, 3101–3117. [Google Scholar] [CrossRef]
- Ono, S.H.; Kaufman, A.J.; Farquhar, J.; Sumner, D.Y.; Beukes, N.J. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian Res. 2009, 169, 58–67. [Google Scholar] [CrossRef]
- Paris, G.; Adkins, J.F.; Sessions, A.L.; Webb, S.M.; Fischer, W.W. Neoarchean carbonate-associated sulfate records positive ∆33S anomalies. Science 2014, 346, 739–741. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.H.; Beukes, N.J.; Rumble, D. Origin of two distinct multiple-sulfur isotope compositions of pyrite in the 2.5 Ga Klein Naute Formation, Griqualand West Basin, South Africa. Precambrian Res. 2009, 169, 48–57. [Google Scholar] [CrossRef]
- Li, Y.H.; Hou, K.J.; Wan, D.F.; Zhang, Z.J.; Yue, G.L. Formation mechamism of Precambrian banded iron formation and atmosphere and ocean during early stage of the Earth. Acta Geol. Sin. 2010, 84, 1359–1373, (In Chinese with English Abstract). [Google Scholar]
- Gross, G.A. A classification of iron-formation based on depositional environments. Can. Mineral. 1980, 18, 215–222. [Google Scholar]
- Wen, G.; Bi, S.J.; Li, J.W. Role of evaporitic sulfates in iron skarn mineralization: A fluid inclusion and sulfur isotope study from the Xishimen deposit, Handan-Xingtai district, North China Craton. Miner. Depos. 2017, 52, 495–514. [Google Scholar] [CrossRef]
- Li, Y.H.; Xie, G.Q.; Duan, C.; Han, D.; Wang, C.L. Effect of sulfate evaporate salt layer over the formation of skarn-type iron ore. Acta Geol. Sin. 2013, 87, 1324–1334, (In Chinese with English Abstract). [Google Scholar]
- Ling, M.X.; Sedaghatpour, F.; Teng, F.Z.; Hays, P.D.; Strauss, J.; Sun, W.D. Homogenous magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis. Rapid Commun. Mass Spectrom. 2011, 25, 2828–2836. [Google Scholar] [CrossRef]
- Wang, S.J.; Teng, F.Z.; Li, S.G.; Hong, J.A. Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat. Commun. 2014, 5, 5328. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.M.; Cao, H.H.; Mi, Y.; Evans, N.J.; Qi, Y.H.; Huang, F.; Zhang, H.F. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: Implications for mantle metasomatism. Contrib. Mineral. Petrol. 2017, 172, 40. [Google Scholar] [CrossRef]
- Li, S.G.; Yang, W.; Ke, S.; Meng, X.N.; Tian, H.C.; Xu, L.J.; He, Y.S.; Huang, J.; Wang, X.C.; Xia, Q.K.; et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl. Sci. Rev. 2017, 4, 111–120. [Google Scholar] [CrossRef]
- Li, W.Y.; Teng, F.Z.; Halama, R.; Keller, J.; Klaudius, J. Magnesium isotope fractionation during carbonatite magmatism at Oldoinyo Lengai, Tanzania. Earth Planet. Sci. Lett. 2016, 444, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Foster, G.L.; Pogge von Strandmann, P.A.E.; Rae, J.W.B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosystems 2010, 11, 1–10. [Google Scholar] [CrossRef]
- Dong, A.G.; Zhu, X.K.; Li, S.Z.; Kendall, B.; Wang, Y.; Gao, Z.F. Genesis of a giant Paleoproterozoic strata-bound magnesite deposit: Constraints from Mg isotopes. Precambrian Res. 2016, 281, 673–683. [Google Scholar] [CrossRef]
- Shen, B.; Wimpenny, J.; Lee, C.T.A.; Tollstrup, D.; Yin, Q.Z. Magnesium isotope systematics of endoskarns: Implications for wallrock reaction in magma chambers. Chem. Geol. 2013, 356, 209–214. [Google Scholar] [CrossRef]
- Chen, C.X.; Lu, A.H.; Cai, K.Q.; Zhai, Y.S. Sedimentary characteristics of Mg-rich carbonate formations and minerogenic fluids of magnesite and talc occurrences in early Proterozoic in eastern Liaoning Province, China. Sci. China (Ser. B) 2002, 45, 84–92. [Google Scholar] [CrossRef]
- Chaussidon, M.; Marty, B. Primitive boron isotope composition of the mantle. Science 1995, 269, 383–386. [Google Scholar] [CrossRef]
- Marschall, H.R.; Dorsey Wanless, V.; Shimizu, N.; Pogge von Strandmann, P.A.E.; Elliott, T.; Monteleone, B.D. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta 2017, 207, 102–138. [Google Scholar] [CrossRef] [Green Version]
- Vengosh, A.; Starinsky, A.; Kolodny, Y.; Chivas, A.R.; Raab, M. Boron isotope variations during fractional evaporation of seawater: New constraints on the marine vs. nonmarine debate. Geology 1992, 20, 799–802. [Google Scholar] [CrossRef]
- Byerly, G.R.; Palmer, M.R. Tourmaline mineralization in the Barberton greenstone belt, South Africa: Early Archean metasomatism by evaporate-derived boron. Contrib. Mineral. Petrol. 1991, 107, 387–402. [Google Scholar] [CrossRef] [PubMed]
- Trumbull, R.B.; Beurlen, H.; Wiedenbeck, M.; Soares, D.R. The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil. Chem. Geol. 2013, 352, 47–62. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Palmer, M.R. Boron isotope systematics of tourmaline from granites and pegmatites: A synthesis. Eur. J. Mineral. 1998, 10, 1253–1265. [Google Scholar] [CrossRef]
- Slack, J.F.; Palmer, M.R.; Stevens, B.P.J. Boron isotope evidence for the involvement of non-marine evaporates in the origin of the Broken Hill ore deposits. Nature 1989, 342, 913–916. [Google Scholar] [CrossRef]
- Peng, Q.M.; Palmer, M.R. The Paleoproterozoic borate deposits in eastern Liaoning, China: A metamorphosed evaporate. Precambrian Res. 1995, 72, 185–197. [Google Scholar] [CrossRef]
- Yan, X.L.; Chen, B. Chemical and boron isotopic compositions of tourmaline from the Paleoproterozoic Houxianyu borate deposit, NE China: Implications for the origin of borate deposit. J. Asian Earth Sci. 2014, 94, 252–266. [Google Scholar] [CrossRef]
- Van Hinsberg, V.J.; Schumacher, J.C. Tourmaline as a petrogenetic indicator mineral in the Haut-Allier metamorphic suite, massif central, France. Can. Mineral. 2011, 49, 177–194. [Google Scholar] [CrossRef]
- Meyer, C.; Wunder, B.; Meixner, A.; Romer, R.L.; Heinrich, W. Boron-isotope fractionation between tourmaline and fluid: An experimental re-investigation. Contrib. Mineral. Petrol. 2008, 156, 259–267. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Song, X.Y.; Chen, L.M.; Xie, W.; Yu, S.Y.; Zheng, W.Q.; Deng, Y.F.; Zhang, J.F.; Gui, S.G. Fractional crystallization and the formation of thick Fe-Ti-V oxide layers in the Baima layered intrusion, SW China. Ore Geol. Rev. 2012, 49, 96–108. [Google Scholar] [CrossRef]
- Liu, P.P.; Zhou, M.F.; Chen, W.T.; Boone, M.; Cnudde, V. Using multiphase solid inclusions to constrain the origin of the Baima Fe-Ti-(V) oxide deposit, SW China. J. Petrol. 2014, 55, 951–976. [Google Scholar] [CrossRef]
- Liu, P.P.; Zhou, M.F.; Ren, Z.Y.; Wang, C.Y.; Wang, K. Immiscible Fe- and Si-rich silicate melts in plagioclase from the Baima mafic intrusion (SW China): Implications for the origin of bi-modal igneous suites in large igneous provinces. J. Asian Earth Sci. 2016, 127, 211–230. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, M.F.; Zhao, D.G. Fe-Ti-Cr oxides from the Permian Xinjie mafic-ultramafic layered intrusion in the Emeishan large igneous province, SW China: Crystallization from Fe- and Ti-rich basaltic magmas. Lithos 2008, 102, 198–217. [Google Scholar] [CrossRef]
- Pang, K.N.; Li, C.; Zhou, M.F.; Ripley, E.M. Mineral compositional constraints on petrogenesis and oxide ore genesis of the late Permian Panzhihua layered gabbroic intrusion, SW China. Lithos 2009, 110, 199–214. [Google Scholar] [CrossRef]
- Bai, Z.J.; Zhong, H.; Naldrett, A.J.; Zhu, W.G.; Xu, G.W. Whole-rock and mineral composition constraints on the genesis of the giant Hongge Fe-Ti-V oxide deposit in the Emeishan Large Igneous Province, Southwest China. Econ. Geol. 2012, 107, 507–524. [Google Scholar] [CrossRef]
- Bai, Z.J.; Zhong, H.; Li, C.; Zhu, W.G.; He, D.F.; Qi, L. Contrasting parental magma compositions for the Hongge and Panzhihua magmatic Fe-Ti-V oxide deposits, Emeishan Large Igneous Province, SW China. Econ. Geol. 2014, 109, 1763–1785. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Mahoney, J.J.; Mao, J.W.; Wang, F.S. Geochemistry of picritic and associated basalt flows of the Western Emeishan flood basalt province, China. J. Petrol. 2006, 47, 1997–2019. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Mahoney, J.J.; Wang, F.S.; Zhao, L.; Ai, Y.; Yang, T.Z. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China: Evidence for a plume-head origin. Acta Petrol. Sin. 2006, 22, 1538–1552, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Z.C.; Li, Y.; Zhao, L.; Ai, Y. Geochemistry of three layered mafic-ultramafic intrusions in the Panxi area and constraints on their sources. Acta Petrol. Sin. 2007, 23, 2339–2352, (In Chinese with English Abstract). [Google Scholar]
- Song, X.Y.; Qi, H.W.; Hu, R.Z.; Chen, L.M.; Yu, S.Y.; Zhang, J.F. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China. Geochem. Geophys. Geosystems 2013, 14, 712–732. [Google Scholar] [CrossRef]
- Yu, M.; Feng, C.Y.; Bao, G.Y.; Liu, H.C.; Zhao, Y.M.; Li, D.X.; Xiao, Y.; Liu, J.N. Characteristics and zonation of skarn minerals in Galinge iron deposit, Qinghai Province. Miner. Depos. 2013, 32, 55–76, (In Chinese with English Abstract). [Google Scholar]
- Lee, C.H.; Lee, H.K.; Kim, S.J. Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Miner. Depos. 1998, 33, 379–390. [Google Scholar] [CrossRef]
- Huang, X.W.; Gao, J.F.; Qi, L.; Zhou, M.F. In-situ LA-ICP-MS trace element analyses of magnetite and Re-Os dating of pyrite: The Tianhu hydrothermally remobilized sedimentary Fe deposit, NW China. Ore Geol. Rev. 2015, 65, 900–916. [Google Scholar] [CrossRef]
- Zheng, J.H.; Mao, J.W.; Yang, F.Q.; Chai, F.M.; Shen, P. Petrological and geochemical features of the early Paleozoic granitic gneisses and iron ores in the Tianhu iron deposit, Eastern Tianshan NW China: Implications for ore genesis. Lithos 2017, 286–297, 426–439. [Google Scholar] [CrossRef]
- Sun, Y.B. Geological characteristics and metallogenic types of the Lilaozhuang iron-magnesite deposit in Huoqiu, Anhui. Miner. Resour. Geol. 2007, 21, 532–537, (In Chinese with English Abstract). [Google Scholar]
- Huang, H.; Zhang, L.C.; Liu, X.F.; Li, H.Z.; Liu, L. Geological and geochemical characteristics of the Lee Laozhuang iron mine in Huoqiu iron deposit: Implications for sedimentary environment. Acta Petrol. Sin. 2013, 29, 2593–2605, (In Chinese with English Abstract). [Google Scholar]
- Huang, H.; Zhang, L.C.; Fabre, S.; Wang, C.L. Depositional environment and origin of the Lilaozhuang Neoarchean BIF-hosted iron-magnesite deposit on the southern margin of the North China Craton. Int. J. Earth Sci. 2017, 106, 1753–1772. [Google Scholar] [CrossRef]
- Yang, X.Y.; Liu, L.; Lee, I.; Wang, B.H.; Du, Z.B.; Wang, Q.C.; Wang, Y.X.; Sun, W.D. A review on the Huoqiu banded iron formations (BIF), southeast margin of the North China Craton: Genesis of iron deposits and implications for exploration. Ore Geol. Rev. 2014, 63, 418–443. [Google Scholar] [CrossRef]
- Peng, Q.M.; Palmer, M.R. The Paleoproterozoic Mg and Mg-Fe borate deposits of Liaoning and Jilin Provinces, Northeast China. Econ. Geol. 2002, 97, 93–108. [Google Scholar] [CrossRef]
- Hu, G.Y.; Fan, C.F.; Li, Y.H.; Hou, K.J.; Liu, Y.; Chen, X. Marine evaporative genesis of Mg-borate deposits in the Zhuanmiao ore district, Eastern Liaoning Province: Evidence from B, S, C isotopes. Acta Geosci. Sin. 2014, 35, 445–453, (In Chinese with English Abstract). [Google Scholar]
- Meinert, L.D. Skarns and skarn deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
- Yu, M.; Feng, C.Y.; Zhu, Z.F.; Mao, J.W.; Zhao, Y.M.; Li, D.X. Multistage amphiboles from the Galinge iron skarn deposit in Qiman Tagh, western China: Evidence of igneous rocks replacement. Mineral. Petrol. 2017, 111, 81–97. [Google Scholar] [CrossRef]
- Pons, J.M.; Franchini, M.; Meinert, L.; Recio, C.; Etcheverry, R. Iron skarns of the Vegas Peladas District, Mendoza, Argentina. Econ. Geol. 2009, 104, 157–184. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Palmer, M.R.; Peng, Q.M.; Yang, J.H. Chemical and stable isotopic compositions of Proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit, eastern Liaoning, China. Chem. Geol. 1997, 135, 189–211. [Google Scholar] [CrossRef]
- Hu, G.Y.; Li, Y.H.; Fan, C.F.; Hou, K.J.; Zhao, Y.; Zeng, L.S. In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province, northeastern China. Ore Geol. Rev. 2015, 65, 1127–1141. [Google Scholar] [CrossRef]
Sample No. | Mineralogy | Sulfate Minerals | Δ33Sv-CDT | |
---|---|---|---|---|
δ34Sv-CDT | δ33Sv-CDT | |||
ZAZ14-6 | 97.2% Anh, 2.8% Gp | +21.1 | +10.5 | −0.31 |
ZAZ14-7 | 57.7% Anh, 42.3% Gp | +21.2 | +10.7 | −0.16 |
ZAZ14-10 | 100.0% Gp | +21.2 | +10.5 | −0.36 |
Replicate | +21.4 | +10.6 | −0.36 | |
ZAZ14-11 | 100.0% Gp | +21.2 | +10.7 | −0.16 |
Replicate | +21.3 | +10.6 | −0.31 | |
ZAZ14-13 | 85.6% Gp, 5.0% Anh, 3.8% Cal, 5.6% Lz | +21.3 | +10.8 | −0.11 |
ZAZ14-14 | 100.0% Gp | +21.8 | +11.3 | +0.13 |
ZAZ14-16 | 48.4% Gp, 51.6% Anh | +22.5 | +11.5 | −0.02 |
ZAZ14-18 | 98.0% Gp, 2.0% Anh | +21 | +10.4 | −0.36 |
ZAZ14-19 | 100.0% Gp | +22.5 | +11.2 | −0.32 |
ZAZ14-21 | 94.3% Gp, 5.7% Anh | +21 | +11.1 | +0.34 |
ZAZ14-23 | +21.4 | +11 | +0.04 | |
ZAZ14-24 | 98.8% Gp, 1.2% Anh | +21 | +10.4 | −0.36 |
ZAZ14-25 | 74.9% Gp, 22.6% Anh, 2.5% Cal | +21.3 | +11.1 | +0.19 |
Replicate | +21.4 | +10.9 | −0.06 | |
ZAZ14-26 | 98.1% Gp, 1.9% Mhb | +21.4 | +11.3 | +0.34 |
ZAZ14-27 | 100.0% Gp | +20.9 | +10.7 | −0.01 |
ZAZ14-29 | 100.0% Gp | +20.7 | +10.9 | +0.29 |
ZAZ14-30 | +19.8 | +9.8 | −0.35 | |
ZAZ14-35 | 100.0% Gp | +20 | +10.3 | +0.05 |
ZAZ14-37 | 96.9% Gp, 3.1% Lz | +21.3 | +14.2 | +3.29 |
ZAZ14-38 | 100.0% Gp | +20.3 | +11.3 | +0.9 |
ZAZ14-39 | 68.0% Gp, 30.2% Anh, 1.8% Mhb | +21.2 | +11.6 | +0.74 |
ZAZ14-40 | 72.6% Gp, 27.4% Anh | +20 | +10.4 | +0.15 |
Replicate | +20 | +10.3 | +0.05 | |
ZAZ14-41 | 67.1% Gp, 32.9% Anh | +20.1 | +10.3 | 0 |
ZAZ14-42 | 100.0% Gp | +21.6 | +10.9 | −0.17 |
ZAZ14-43 | 100.0% Gp | +21.3 | +11.3 | +0.39 |
ZAZ14-46 | 100.0% Gp | +21.1 | +11.1 | +0.29 |
ZAZ14-47 | 97.1% Gp, 2.9% Anh | +20.8 | +11 | +0.34 |
ZAZ14-49 | 88.6% Gp, 11.4% Anh | +22.3 | +11.6 | +0.18 |
ZAZ14-54 | 100.0% Gp | +20.9 | +11 | +0.29 |
ZAZ14-55 | 92.7% Gp, 0.7% Lz, 6.6% Ms | +19.9 | +10.4 | +0.2 |
ZAZ14-57 | 100.0% Gp | +22.4 | +11 | −0.47 |
ZAZ14-58 | 91.0% Gp, 9.0% Ms | +20.6 | +10.6 | +0.04 |
ZAZ14-60 | 99.1% Gp, 0.9% Zrn | +20.8 | +10.4 | −0.26 |
ZAZ14-62 | 100.0% Gp | +20.5 | +10.2 | |
ZAZ14-63 | 98.7% Gp, 1.3% Tlc | +20.8 | +10.4 | |
ZAZ-13 | Py | +11.5 | ||
ZAZ-15 | Py | +13.9 |
Sample No. | Rock Type | δ26Mg | 2SD | δ25Mg | 2SD | Δ25Mg |
---|---|---|---|---|---|---|
AGV-2 | standard | −0.15 | 0.03 | −0.06 | 0.01 | 0.02 |
BHVO-2 | standard | −0.25 | 0.04 | −0.11 | 0.04 | 0.02 |
ZAZ-11 | magnetite–serpentinite | −0.93 | 0.02 | −0.48 | 0.04 | 0.01 |
ZAZ-25 | serpentinized olivine–orthopyroxenite | −0.80 | 0.02 | −0.40 | 0.01 | 0.02 |
ZAZ13-12 | magnetite–serpentinite | −0.66 | 0.06 | −0.34 | 0.01 | 0.01 |
ZK3211-13 | amphibolite | −0.34 | 0.03 | −0.18 | 0.01 | 0.00 |
ZK3211-25 | anhydrite–serpentinite | −1.20 | 0.06 | −0.62 | 0.03 | 0.00 |
ZK3211-29 | magnetite–serpentinite | −0.66 | 0.04 | −0.34 | 0.01 | 0.00 |
ZK3211-61 | dolomite–magnetite–serpentinite | −1.00 | 0.04 | −0.52 | 0.01 | 0.00 |
Sample No. | Spots | δ11B | Sample No. | Spots | δ11B | Sample No. | Spots | δ11B |
---|---|---|---|---|---|---|---|---|
ZK2151-12 | 1-1 | +2.6 | ZK2151-23 | 1-1 | +3.3 | ZK2704-10 | 1-1 | −0.6 |
1-2 | +2.2 | 1-2 | +0.2 | 1-2 | −0.4 | |||
1-3 | +0.2 | 1-3 | +2.0 | 1-3 | −0.3 | |||
1-4 | −0.2 | 1-4 | +1.8 | 1-4 | +1.9 | |||
1-6 | +1.9 | 1-5 | +3.1 | 1-5 | +0.3 | |||
1-7 | +1.4 | 1-6 | +3.2 | 1-6 | +0.2 | |||
1-8 | +1.1 | 1-7 | +3.3 | 1-7 | +0.7 | |||
1-9 | +1.2 | 1-8 | +3.0 | 1-8 | +1.4 | |||
1-10 | +2.7 | 1-9 | +2.3 | 1-9 | +3.6 | |||
1-11 | +3.2 | 1-10 | +1.8 | 1-10 | +2.8 | |||
1-12 | +2.7 | 1-11 | +2.4 | 1-11 | +3.4 | |||
1-13 | +1.8 | 1-12 | +2.1 | 1-12 | +1.6 | |||
Average | +1.7 | +2.4 | +1.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, J.; Li, H.; Li, Y.; Zhang, Z.; Li, L.; Song, Z. Stable Isotope (S, Mg, B) Constraints on the Origin of the Early Precambrian Zhaoanzhuang Serpentine-Magnetite Deposit, Southern North China Craton. Minerals 2019, 9, 377. https://doi.org/10.3390/min9060377
Meng J, Li H, Li Y, Zhang Z, Li L, Song Z. Stable Isotope (S, Mg, B) Constraints on the Origin of the Early Precambrian Zhaoanzhuang Serpentine-Magnetite Deposit, Southern North China Craton. Minerals. 2019; 9(6):377. https://doi.org/10.3390/min9060377
Chicago/Turabian StyleMeng, Jie, Houmin Li, Yanhe Li, Zhaochong Zhang, Lixing Li, and Zhe Song. 2019. "Stable Isotope (S, Mg, B) Constraints on the Origin of the Early Precambrian Zhaoanzhuang Serpentine-Magnetite Deposit, Southern North China Craton" Minerals 9, no. 6: 377. https://doi.org/10.3390/min9060377
APA StyleMeng, J., Li, H., Li, Y., Zhang, Z., Li, L., & Song, Z. (2019). Stable Isotope (S, Mg, B) Constraints on the Origin of the Early Precambrian Zhaoanzhuang Serpentine-Magnetite Deposit, Southern North China Craton. Minerals, 9(6), 377. https://doi.org/10.3390/min9060377