Post-spreading Basalts from the Nanyue Seamount: Implications for the Involvement of Crustal- and Plume-Type Components in the Genesis of the South China Sea Mantle
Abstract
:1. Introduction
2. Geological Background
2.1. Geological Setting of the South China Sea (SCS)
2.2. The Southwest Sub-Basin
3. Sampling and Petrography
3.1. Sampling Strategy
3.2. Petrography
3.2.1. Macroscopic Description
3.2.2. Microscopic Description
4. Methods and Results
4.1. Analytical Methods
4.2. Results
4.2.1. Major and Trace Element Analyses
4.2.2. Sr–Nd–Hf–Pb Isotope Systematics
4.2.3. Re–Os Isotope Systematics
4.2.4. 40Ar/39Ar Geochronological Dating
5. Discussion
5.1. Potential Effects of Melt Fractionation, Crustal Contamination, and Post-Solidification Alteration
5.2. Genesis of the Dupal Isotopic Anomaly in the Mantle under the Southwest Sub-Basin
5.3. Petrotectonic and Geochronological Implications
6. Conclusions
- Basalts from the Nanyue seamount in the Southwest sub-basin of the SCS have OIB-type geochemical affinities.
- 40Ar/39Ar dating indicates that these basalts were formed in the Tortonian (~8.3 Ma) and represent products of postspreading volcanism in the SCS.
- The Sr–Nd–Pb–Hf isotopic compositions of the Nanyue basalts indicate that they were derived from an upper mantle source with a Dupal-like isotopic anomaly.
- The inferred upper mantle source was an artifact of interaction between a Pacific-type mantle reservoir and melt components derived from thermo-mechanical erosion of the LCC and the adjacent Hainan diapir.
- This study highlights the role of plumes in the formation of upper mantle domains with “Southern Hemispheric” isotopic anomalies under some Northern Hemispheric basins of the western Pacific.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zou, H.B.; Zindler, A.; Xu, X.S.; Qi, Q. Major, trace element, and Nd, Sr and Pb studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem. Geol. 2000, 171, 33–47. [Google Scholar] [CrossRef]
- Flower, M.F.J.; Zhang, M.; Chen, C.Y.; Tu, K.; Xie, G. Magmatism in the South China Basin: 2. Post-spreading quaternary basalts from Hainan Island, South China. Chem. Geol. 1992, 97, 65–87. [Google Scholar] [CrossRef]
- Hoang, N.; Flower, M. Petrogenesis of Cenozoic Basalts from Vietnam: Implication for Origins of a ‘Diffuse Igneous Province’. J. Petrol. 1998, 39, 369–395. [Google Scholar] [CrossRef]
- Yan, Q.S.; Shi, X.F.; Wang, K.S.; Bu, W.R.; Xiao, L. Major element, trace element, Sr-Nd-Pb isotopic studies of Cenozoic alkali basalts from the South China Sea. Sci. China Ser. D Earth Sci. 2008, 51, 550–566. [Google Scholar] [CrossRef]
- Zhang, G.L.; Luo, Q.; Zhao, J.; Jackson, M.G.; Guo, L.S.; Zhong, L.F. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth Planet. Sci. Lett. 2018, 489, 145–155. [Google Scholar] [CrossRef]
- Dupré, B.; Allègre, C.J. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 1983, 303, 142–146. [Google Scholar] [CrossRef]
- Hamelin, B.; Allègre, C.J. Large scale regional units in the depleted upper mantle revealed by an isotopic study of the south-west Indian ridge. Nature 1985, 315, 196–199. [Google Scholar] [CrossRef]
- Kempton, P.D.; Pearce, J.A.; Barry, T.L.; Fitton, J.G.; Langmuir, C.L.; Christie, D.M. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source. Geochem. Geophys. Geosyst. 2002, 3, 1074. [Google Scholar] [CrossRef]
- Park, H.; Langmuir, C.H.; Sims, K.W.W.; Blichert-Toft, J.; Kim, S.S.; Scott, S.R.; Lin, J.; Choi, H.; Yang, Y.S.; Michael, P.J. An isotopically distinct Zealandia-Antarctic mantle domain in the Southern Ocean. Nat. Geosci. 2019, 12, 206–214. [Google Scholar] [CrossRef]
- Tu, K.; Flower, M.F.J.; Carlson, R.W.; Zhang, M.; Xie, G. Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): Implications for a sub-continental lithosphere Dupal source. Geology 1991, 19, 567–569. [Google Scholar] [CrossRef]
- Zou, H.; Fan, Q. U-Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos 2010, 116, 145–152. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, Z.X.; Li, X.H.; Li, J.; Liu, Y.; Long, W.G.; Zhou, J.B.; Wang, F. Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: A consequence of a young thermal mantle plume close to subduction zones? J. Petrol. 2012, 53, 177–233. [Google Scholar] [CrossRef]
- Wang, X.C.; Li, Z.X.; Li, X.H.; Li, J.; Xu, Y.G.; Li, X.H. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tec-tonics. Earth Planet. Sci. Lett. 2013, 377, 248–259. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, D. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. 2006, 111, B09305. [Google Scholar] [CrossRef]
- Lei, J.; Zhao, D.; Steinberger, B.; Wu, B.; Shen, F.; Li, Z. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter. 2009, 173, 33–50. [Google Scholar] [CrossRef]
- Yan, Q.S.; Shi, X.F.; Paterno, R.C. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective. J. Asian Earth Sci. 2014, 85, 178–201. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, X.; Wang, P.; Chen, W.; Yue, J. Mesozoic tectonic evolution of the Proto-South China Sea: A perspective from radiolarian paleobiogeography. J. Asian Earth Sci. 2019, 179, 37–55. [Google Scholar] [CrossRef]
- Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 2011, 19, 3–21. [Google Scholar] [CrossRef]
- Sibuet, J.C.; Yeh, Y.C.; Lee, C.S. Geodynamics of the South China Sea. Tectonophysics 2016, 692, 98–119. [Google Scholar] [CrossRef]
- Yan, P.; Deng, H.; Liu, H.; Zhang, Z.; Jiang, Y. The temporal and spatial distribution of volcanism in the South China Sea region. J. Asian Earth Sci. 2006, 27, 647–659. [Google Scholar] [CrossRef]
- Li, C.F.; Xu, X.; Lin, J.; Sun, Z.; Zhu, J.; Yao, Y.J.; Zhao, X.X.; Liu, Q.S.; Kulhanek, D.K.; Wang, J.; et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst. 2014, 15, 4958–4983. [Google Scholar] [CrossRef]
- Tu, K.; Flower, M.F.; Carlson, R.W.; Xie, G.; Chen, C.Y.; Zhang, M. Magmatism in the South China Sea basin: 1. Isotopic and trace element evidence for an endogenous Dupal mantle component. Chem. Geol. 1992, 97, 47–63. [Google Scholar] [CrossRef]
- IODP Expedition 349 Scientists. South China Sea Tectonics: Opening of the South China Sea and Its Implications for Southeast Asian Tectonics, Climates, and Deep Mantle Processes Since the Late Mesozoic; International Ocean Discovery Program Preliminary Report 349; International Ocean Discovery Program: College Station, TX, USA, 2014. [Google Scholar]
- Koppers, A.A.P. On the 40Ar/39Ar dating of low-potassium ocean crust basalt from IODP Expedition 349, South China Sea. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 15−19 December 2014. [Google Scholar]
- Warren, J.M. Global variations in abyssal peridotite compositions. Lithos 2016, 248, 193–219. [Google Scholar] [CrossRef]
- LeBas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar]
- Irvine, T.N.; Baragar, W.R.A. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Han, J.W. Geochronology and geochemistry of basalts from Leiqiong, South China and their geodynamic implication. Ph.D. Thesis, Guangzhou Institute of Geochemistry (Chinese Academy of Sciences), School of the Chinese Academy of Sciences, Guangzhou, China, 2009. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Yan, Q.; Chen, Z.; Shi, X. Geochemistry and petrogenesis of Quaternary volcanism from the islets in the eastern Beibu Gulf: Evidence for Hainan plume. Acta Oceanol. Sin. 2013, 32, 40–49. [Google Scholar] [CrossRef]
- Yan, Q.; Castillo, P.; Shi, X.; Wang, L.; Liao, L.; Ren, J. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications. Lithos 2015, 218, 117–126. [Google Scholar] [CrossRef]
- Meyzen, C.M.; Ludden, J.N.; Humler, E.; Luais, B.; Toplis, M.J.; Mével, C.; Storey, M. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2005, 6. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef] [Green Version]
- Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Hart, S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Sun, S.S. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philos. Trans. R. Soc. Lond. A 1980, 297, 409–445. [Google Scholar] [CrossRef]
- Liu, C.Z.; Snow, J.E.; Hellebrand, E.; Brugmann, G.; Handt, A.V.D.; Buchl, A.; Hofmann, A.W. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 2008, 452, 311–316. [Google Scholar] [CrossRef]
- Dale, C.W.; Pearson, D.G.; Starkey, N.A.; Stuart, F.M.; Ellam, R.M.; Larsen, L.M.; Fitton, J.G.; Macpherson, C.G. Osmium isotopes in Baffin Island and West Greenland picrites: Implications for the 187Os/188Os composition of the convecting mantle and the nature of high 3He/4He mantle. Earth Planet. Sci. Lett. 2009, 278, 267–277. [Google Scholar] [CrossRef]
- Lassiter, J.C.; Hauri, E.H. Osmium-isotope variations in Hawaiian lavas: Evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet. Sci. Lett. 1998, 164, 483–496. [Google Scholar] [CrossRef]
- Lassiter, J.C.; Hauri, E.H.; Reiners, P.W.; Garcia, M.O. Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth Planet. Sci. Lett. 2000, 178, 269–284. [Google Scholar] [CrossRef]
- Ireland, T.J.; Walker, R.J.; Brandon, A.D. 186Os-187Os systematics of Hawaiian picrites revisited: New insights into Os isotopic variations in ocean island basalts. Geochim. Cosmochim. Acta 2011, 75, 4456–4475. [Google Scholar] [CrossRef]
- Schaefer, B.F.; Parkinson, I.J.; Hawkesworth, C.J. Deep mantle plume osmium isotope signature from West Greenland Tertiary picrites. Earth Planet. Sci. Lett. 2000, 175, 105–118. [Google Scholar] [CrossRef]
- Kent, A.J.R.; Stolper, E.M.; Francis, D.; Woodhead, J.; Frei, R.; Eiler, J. Mantle heterogeneity during the formation of the North Atlantic Igneous Province: Constraints from trace element and Sr-Nd-Os-O isotope systematics of Baffin Island picrites. Geochem. Geophys. Geosyst. 2004, 5, Q11004. [Google Scholar] [CrossRef]
- Meisel, T.; Walker, R.J.; Irving, A.J.; Lorand, J.P. Osmium isotopic compositions of mantle xenoliths: A global perspective. Geochim. Cosmochim. Acta. 2001, 65, 1311–1323. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its composition and evolution. In An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell: Oxford, UK, 1985; p. 312. [Google Scholar]
- Nelson, W.R.; Hanan, B.; Graham, D.W.; Shirey, S.B.; Yirgu, G.; Ayalew, D.; Furman, T. Distinguishing plume and metasomatized lithospheric mantle contributions to post-flood basalt volcanism on the southeastern Ethiopian Plateau. J. Petrol. 2019, 60. [Google Scholar] [CrossRef]
- Yan, Q.; Straud, S.; Shi, X. Hafnium isotopic constraints on the origin of late Miocene to Pliocene seamount basalts from the South China Sea and its tectonic implications. J. Asian Earth Sci. 2019, 171, 162–168. [Google Scholar] [CrossRef]
- Greenough, J.D.; Kyser, T.K. Contrasting Archean and Proterozoic lithospheric mantle: Isotopic evidence from the Shonkin Sag sill (Montana). Contrib. Miner. Petrol. 2003, 145, 169–181. [Google Scholar] [CrossRef]
- Greenough, J.D.; McDivitt, J.A. Earth’s evolving subcontinental lithospheric mantle: Inferences from LIP continental flood basalt geochemistry. Int. J. Earth Sci. 2018, 107, 787–810. [Google Scholar] [CrossRef]
- Chesley, J.; Righter, K.; Ruiz, J. Large-scale mantle metasomatism: A Re-Os perspective. Earth Planet. Sci. Lett. 2004, 219, 49–60. [Google Scholar] [CrossRef]
- Carlson, R.W.; Irving, A.J. Depletion and enrichment history of subcontinental lithospheric mantle: An Os, Sr, Nd, and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming craton. Earth Planet. Sci. Lett. 1994, 126, 457–472. [Google Scholar] [CrossRef]
- Zhao, M.; He, E.; Sibuet, J.C.; Sun, L.; Qiu, X.; Tan, P.; Wang, J. Postseafloor spreading volcanism in the central East South China Sea and its formation through an extremely thin oceanic crust. Geochem. Geophys. Geosyst. 2018, 19, 621–641. [Google Scholar] [CrossRef]
- Hsu, S.; Yeh, Y.; Doo, W.; Tsai, C. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Mar. Geophys. Res. 2004, 25, 29–44. [Google Scholar] [CrossRef]
- Li, X.H.; Qi, C.S.; Liu, Y.; Liang, X.R.; Tu, X.L.; Xie, L.W.; Yang, Y.H. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Chin. Sci. Bull. 2005, 50, 2481–2486. [Google Scholar] [CrossRef]
- Wei, X.; Xu, Y.G.; Zhang, C.L.; Zhao, J.X.; Feng, Y.X. Petrology and Sr–Nd Isotopic Disequilibrium of the Xiaohaizi Intrusion, NW China: Genesis of Layered Intrusions in the Tarim Large Igneous Province. J. Petrol. 2014, 55, 2567–2598. [Google Scholar] [CrossRef]
- White, W.M.; Albarede, F.; Telouk, P. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chem. Geol. 2000, 167, 257–270. [Google Scholar] [CrossRef]
- Cohen, A.S.; Waters, F.G. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionization mass spectrometry. Anal. Chim. Acta 1996, 332, 269–375. [Google Scholar] [CrossRef]
- Birck, J.L.; Roy-Barman, M.; Capmas, F. Re-Os isotopic measurements at the fem to mole level in natural samples. Geostand. Newlett. 1997, 20, 19–27. [Google Scholar] [CrossRef]
- Creaser, R.A.; Papanastassiou, D.A.; Wasserburg, G.J. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochim. Cosmochim. Acta 1991, 55, 397–401. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Russell, J.A.; Jackson, M.; Konter, J.; Staudigel, H.; Hart, S.R. Samoa reinstated as a primary hotspot trail. Geology 2008, 36, 435–438. [Google Scholar] [CrossRef]
- Koppers, A.A.P.; Russell, J.A.; Roberts, J.; Jackson, M.G.; Konter, J.G.; Wright, D.J.; Staudigel, H.; Hart, S.R. Age systematics of two young en echelon Samoan volcanic trails. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Koppers, A.A.P. ArArCALC-Software for 40Ar/39Ar age calculations. Comput. Geosci. 2002, 28, 605–619. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Zhong, L.-F.; Kapsiotis, A.; Cai, G.-Q.; Wan, Z.-F.; Xia, B. Post-spreading Basalts from the Nanyue Seamount: Implications for the Involvement of Crustal- and Plume-Type Components in the Genesis of the South China Sea Mantle. Minerals 2019, 9, 378. https://doi.org/10.3390/min9060378
Zheng H, Zhong L-F, Kapsiotis A, Cai G-Q, Wan Z-F, Xia B. Post-spreading Basalts from the Nanyue Seamount: Implications for the Involvement of Crustal- and Plume-Type Components in the Genesis of the South China Sea Mantle. Minerals. 2019; 9(6):378. https://doi.org/10.3390/min9060378
Chicago/Turabian StyleZheng, Hao, Li-Feng Zhong, Argyrios Kapsiotis, Guan-Qiang Cai, Zhi-Feng Wan, and Bin Xia. 2019. "Post-spreading Basalts from the Nanyue Seamount: Implications for the Involvement of Crustal- and Plume-Type Components in the Genesis of the South China Sea Mantle" Minerals 9, no. 6: 378. https://doi.org/10.3390/min9060378
APA StyleZheng, H., Zhong, L. -F., Kapsiotis, A., Cai, G. -Q., Wan, Z. -F., & Xia, B. (2019). Post-spreading Basalts from the Nanyue Seamount: Implications for the Involvement of Crustal- and Plume-Type Components in the Genesis of the South China Sea Mantle. Minerals, 9(6), 378. https://doi.org/10.3390/min9060378