The Role of Hydrothermal Activity in the Formation of Karst-Hosted Manganese Deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa
Abstract
:1. Introduction
2. Regional Geological Setting
3. Local Geology
4. Methods
5. Petrography and Mineral Chemistry
5.1. Diamond Drill Core SLT-015
5.2. Diamond Drill Core SLT-017
6. Geochemistry
6.1. Bulk Rock Major and Trace Elements
6.2. 40Ar/39Ar Dating of Potassium Feldspar
7. Discussion
7.1. Evidence for Hydrothermal Mineral Formation
7.2. Timing and Spatial Scale of Hydrothermal Fluid Migration
7.3. Mechanisms and Effects of Fluid Metasomatism
7.4. Manganese Ore Formation in the Postmasburg Manganese Field
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gutzmer, J.; Beukes, N.J. Karst-Hosted Fresh-Water Paleoproterozoic Manganese Deposits, Postmasburg, South Africa. Econ. Geol. 1996, 91, 1435–1454. [Google Scholar] [CrossRef]
- Hall, A.L. The manganese deposits near Postmasburg, West of Kimberley. Trans. Geol. Soc. South Afr. 1926, 29, 17–46. [Google Scholar]
- Nel, L.T. The Geology of the Postmasburg Manganese Deposits and the Surrounding Country: An Explanation of the Geological Map; Special Publication; Geological Survey of South Africa, Government Printer: Pretoria, South Africa, 1928.
- Kaiser, E. Zur Frage der Entstehung der Manganerzlagerstätten von Postmasburg in Griqualand-West, Südafrika: Neues. Jb. Min. Beil. Bd. 1931, 64. [Google Scholar]
- Schneiderhöhn, H. Mineralbestand und Gefüge der Manganerze von Postmasburg, Griqualand West, Südafrika: Neus. Jb. Min. Beil. Bd. 1931, 64. [Google Scholar]
- Du Toit, A.L. The manganese deposits of Postmasburg, South Africa. Econ. Geol. 1933, 28, 95–122. [Google Scholar] [CrossRef]
- De Villiers, J.E. The origin of the iron and manganese deposits in the Postmasburg and Thabazimbi areas. Trans. Geol. Soc. South Afr. 1944, 47, 123–135. [Google Scholar]
- De Villiers, J. Manganese Deposits of the Union of South Africa; Handbook 2; Geological Survey of South Africa, Government Printer: Pretoria, South Africa, 1960.
- Von Plehwe-Leisen, E.; Klemm, D.D. Geology and ore genesis of the manganese ore deposits of the Postmasburg manganese-field, South Africa. Miner. Depos. 1995, 30, 257–267. [Google Scholar] [CrossRef]
- De Villiers, J.E. The manganese deposits of Griqualand West, South Africa; some mineralogic aspects. Econ. Geol. 1983, 78, 1108–1118. [Google Scholar] [CrossRef]
- Nell, J.; Pollak, H.; Lodya, J.A. Intersite cation partitioning in natural and synthetic alpha-(Fe,Mn)2O3 (bixbyite) solid solutions determined from 57Fe Mössbauer spectroscopy. Hyperfine Interact. 1994, 91, 601–605. [Google Scholar] [CrossRef]
- von Plehwe-Leisen, E. Geologische und erzpetrographische Untersuchungen der Manganerze des Postmasburgfeldes, Nördliche Kapprovinz, Südafrika. Unpublished Ph.D. Thesis, Ludwig-Maximilians Universität, München, Germany, 1985; 129p. [Google Scholar]
- Moore, J.M.; Kuhn, B.K.; Mark, D.F.; Tsikos, H. A sugilite-bearing assemblage from the Wolhaarkop breccia, Bruce iron-ore mine, South Africa: Evidence for alkali metasomatism and 40Ar-39Ar dating. Eur. J. Miner. 2011, 23, 661–673. [Google Scholar] [CrossRef]
- Van Niekerk, H.S. The origin of the Kheis Terrane and its relationship with the Archean Kaapvaal Craton and the Grenvillian Namaqua Province in southern Africa. Unpublished Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2006. [Google Scholar]
- Beukes, N.J. The Transvaal Sequence in Griqualand West. In Mineral Deposits of Southern Africa; Anhaeusser, C.R., Maske, S., Eds.; Geological Society of South Africa: Johannesburg, South Africa, 1986. [Google Scholar]
- Beukes, N.J. Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, Southern Africa. Sediment. Geol. 1987, 54, 1–46. [Google Scholar] [CrossRef]
- Altermann, W.; Siegfried, H.P. Sedimentology and facies development of an Archaean shelf: carbonate platform transition in the Kaapvaal Craton, as deduced from a deep borehole at Kathu, South Africa. J. Afr. Earth Sci. 1997, 24, 391-IN4. [Google Scholar] [CrossRef]
- Beukes, N.J. Palaeoenvironmental setting of iron-formations in the depositional basin of the Transvaal Supergroup, South Africa. In Iron-formations: Facts and Problems; Trendall, A.F., Morris, R.C., Eds.; Elsevier: Amsterdam, Germany, 1983. [Google Scholar]
- Kendall, B.; Van Acken, D.; Creaser, R.A. Depositional age of the early Paleoproterozoic Klipputs Member, Nelani Formation (Ghaap Group, Transvaal Supergroup, South Africa) and implications for low-level Re–Os geochronology and Paleoproterozoic global correlations. Precambrian Res. 2013, 237, 1–12. [Google Scholar] [CrossRef]
- Polteau, S.; Moore, J.M.; Tsikos, H. The geology and geochemistry of the Palaeoproterozoic Makganyene diamictite. Precambrian Res. 2006, 148, 257–274. [Google Scholar] [CrossRef]
- Bleeker, W.; Söderlund, U.; Bekker, A.; Gumsley, A.P.; Chamberlain, K.R.; De Kock, M.O.; Larsson, E.R. Timing and tempo of the Great Oxidation Event. Proc. Natl. Acad. Sci. 2017, 114, 1811–1816. [Google Scholar] [Green Version]
- Cornell, D.H.; Schiitte, S.S.; Eglington, B.L. The Ongeluk basaltic andesite formation in Griqualand West, South Africa: Submarine alteration in a 2222 Ma Proterozoic sea. Precambrian Res. 2016, 79, 101–123. [Google Scholar] [CrossRef]
- Tsikos, H.; Moore, J.M. Petrography and geochemistry of the Paleoproterozoic Hotazel Iron-Formation, Kalahari manganese field, South Africa; implications for Precambrian manganese metallogenesis. Econ. Geol. 1997, 92, 87–97. [Google Scholar] [CrossRef]
- Tsikos, H.; Moore, J.; Harris, C. Geochemistry of the Palæoproterozoic Mooidraai Formation: Fe-rich limestone as end member of iron formation deposition, Kalahari Manganese Field, Transvaal Supergroup, South Africa. J. Afr. Earth Sci. 2001, 32, 19–27. [Google Scholar] [CrossRef]
- Fairey, B.; Tsikos, H.; Corfu, F.; Polteau, S. U–Pb systematics in carbonates of the Postmasburg Group, Transvaal Supergroup, South Africa: Primary versus metasomatic controls. Precambrian Res. 2013, 231, 194–205. [Google Scholar] [CrossRef]
- Moen, H.F.G. The Olifantshoek Supergroup. In The Geology of South Africa; Johnson, M.R., Anhaeusser, C.R., Thomas, R.J., Eds.; Geological Society of South Africa: Johannesburg, Germany, 2006. [Google Scholar]
- Beukes, N.; Gutzmer, J.; Mukhopadhyay, J. The geology and genesis of high-grade hematite iron ore deposits. Appl. Earth Sci. 2003, 112, 18–25. [Google Scholar] [CrossRef]
- Gutzmer, J.; Beukes, N.J. Mineralogy and mineral chemistry of oxide-facies manganese ores of the Postmasburg manganese field, South Africa. Miner. Mag. 1997, 61, 213–231. [Google Scholar] [CrossRef]
- Costin, G.; Fairey, B.; Tsikos, H.; Gucsik, A. Tokyoite, As-rich Tokyoite, and noélbensonite: New occurences from the Postmasburg Manganese Field. Northern Cape Province, South Africa. Can. Mineral. 2015, 53, 981–990. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2003. [Google Scholar]
- Gottardi, G.; Galli, E. Natural Zeolites; Springer-Verlag: Berlin, Germany, 1985. [Google Scholar]
- Vlasov, K.A.; Kuz’menko, M.Z.; Es’kova, E.M. The Lovozero Alkali Massif, 1st ed.; Oliver and Boyd Ltd.: London, UK, 1966. [Google Scholar]
- Dixon, R. Sugilite and associated metamorphic silicate minerals from Wessels mine, Kalahari manganese field. Bull. Geol. Surv. South Afr. 1989, 93, 1–47. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. An. Introduction to the Rock-Forming Minerals, 2nd ed.; Pearson Education Limited: Harlow, UK, 1992. [Google Scholar]
- Gutzmer, J.; Beukes, N.J. Mineral paragenesis of the Kalahari managanese field, South Africa. Ore Geol. Rev. 1996, 11, 405–428. [Google Scholar] [CrossRef]
- Zen, E.; Ross, M.; Bearth, P. Paragonite from Täsch Valley near Zermatt, Switzerland. Am. Mineral. 1964, 49, 183–190. [Google Scholar]
- Campbell, S.W.; Bannister, F.A.; Hey, M.H. Banalsite, a new barium-feldspar from Wales. Miner. Mag. 1944, 27, 33. [Google Scholar]
- Liferovich, R.P.; Mitchell, R.H.; Zozulya, D.R.; Shpachenko, A.K. Paragenesis and composition of banalsite, stronalsite, and their solid solution in nepheline syenite and ultramafic alkaline rocks. Can. Mineral. 2006, 44, 929–942. [Google Scholar] [CrossRef]
- Matsubara, S. The mineralogical implication of barium and strontium silicates. Bull. Natn. Sci. Mus. 1985, 11C, 37–95. [Google Scholar]
- Kawachi, Y.; Coombs, D.S.; Miura, H. Noélbensonite, a new BaMn silicate of the lawsonite structure type, from the Woods mine, New South Wales, Australia. Mineral. Mag. 1996, 60, 369–374. [Google Scholar] [CrossRef]
- Armbruster, T.; Oberhänsli, R.; Bermanec, V.; Dixon, R. Hennomartinite and kornite, two new Mn3+ rich silicates from the Wessels Mine, Kalahari, South Africa. Schweiz. Mineral. Petrogr. Mitt. 1993, 73, 349–355. [Google Scholar]
- Matsubara, S.; Miyawaki, R.; Yokoyama, K.; Shimizu, M.; Imai, H. Tokyoite Ba2Mn3+(VO4)2(OH), a new mineral from the Shiromaru mine, Okutama, Tokyo, Japan. J. Mineral. Petrogr. Sci. 2004, 99, 363–367. [Google Scholar] [CrossRef]
- De Villiers, J.E. Gamagarite, a new vanadium mineral from the Postmasburg manganese deposits. Am. Mineral. 1943, 28, 329–335. [Google Scholar]
- De Villiers, J.E. Some minerals occurring in South African manganese deposits. Trans. Geol. Soc. South Afr. 1945, 48, 17–25. [Google Scholar]
- Tsikos, H.; Moore, J.M. Sodic metasomatism in the Palaeoproterozoic Hotazel iron-formation, Transvaal Supergroup, South Africa: implications for fluid-rock interaction in the Kalahari manganese field. Geofluids 2005, 5, 264–271. [Google Scholar] [CrossRef]
- Cairncross, B.; Tsikos, H.; Harris, C. Prehnite from the Kalahari manganese field, South Africa, and its possible implications. South Afr. J. Geol. 2000, 103, 231–236. [Google Scholar] [CrossRef]
- Gnos, E.; Armbruster, T.; Villa, I.M. Norrishite, K(Mn3+2Li)Si4O10(O)2, an oxymica associated with sugilite from Wessels Mine, South Africa: Crystal chemistry and 40Ar-39Ar dating. Am. Mineral. 2003, 88, 189–194. [Google Scholar] [CrossRef]
- Dove, P.M.; Nix, C.J. The influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz. Geochim. Cosmochim. Acta 1997, 61, 3329–3340. [Google Scholar] [CrossRef]
- Tables of Physical & Chemical Constants, 16th ed.; Version 1.0; 2.1.4 Hygrometry; Kaye & Laby Online: Teddington, UK, 2005; Available online: https://web.archive.org/web/20180929085837/http://www.kayelaby.npl.co.uk/ (accessed on 7 June 2012).
Subgroup | Formation | Predominant Lithology | ||
---|---|---|---|---|
Transvaal Supergroup | Postmasburg Group | Voëlwater | Mooidraai | Carbonate with minor chert |
Hotazel | Iron-formation with intercalated manganese ore layers | |||
Ongeluk | Andesitic pillow lavas | |||
Makganyene | Glacial diamictite | |||
Ghaap Group | Koegas | Mudstones and wackes | ||
Asbestos Hills | Griquatown | Clastic textured iron-formation | ||
Kuruman | Microbanded iron-formation | |||
Campbellrand | Various carbonate facies | |||
Schmidstdrif | Mudstones and wackes |
Oxide wt. % | n = 14 | STD | Range |
---|---|---|---|
TiO2 | 0.10 | 0.08 | <0.016–0.21 |
Al2O3 | 0.48 | 0.54 | 0.02–1.72 |
SiO2 | 0.57 | 0.10 | 0.43–0.74 |
Fe2O3 | 94.45 | 2.19 | 90.35–97.27 |
Mn2O3 | 4.13 | 2.03 | 0.12–6.86 |
Cr2O3 | 0.01 | 0.02 | <0.010–0.04 |
Total | 99.75 | 0.99 | 98.14–100.64 |
Cations based on 3 oxygens: | |||
Ti | 0.00 | ||
Al | 0.02 | ||
Si | 0.02 | ||
Fe | 1.88 | ||
Mn | 0.08 | ||
Cr | 0.00 |
Oxide wt. % | n = 19 | STD | Wessels 1 | 15–15N Matrix |
---|---|---|---|---|
SiO2 | 52.24 | 0.34 | 52.36 | 36.57 |
Al2O3 | 0.53 | 0.38 | 0.04 | 0.33 |
Fe2O3 ** | 30.54 | 1.61 | 29.92 | 49.36 |
MnO ** | 1.04 | 0.59 | n.d | 1.37 |
Mn2O3 | n.d | 2.21 | n.d | |
MgO | 0.26 | 0.46 | 0.24 | 0.15 |
CaO | 0.28 | 0.45 | 0.46 | 0.13 |
Na2O | 13.97 | 0.40 | 14.00 | 10.82 |
K2O | 0.04 | 0.05 | n.d | 0.05 |
Total | 98.86 | 0.58 | 99.19 | 98.80 |
Cations based on 6 oxygens: | ||||
Si | 2.02 | 2.02 | ||
Al | 0.02 | 0.00 | ||
Fe | 0.89 | 0.87 | ||
Mn | 0.03 | 0.07 | ||
Mg | 0.02 | 0.01 | ||
Ca | 0.01 | 0.02 | ||
Na | 1.05 | 1.05 | ||
K | 0.00 | - |
Natrolite | Piemontite | Paragonite | Paragonite | ||||
---|---|---|---|---|---|---|---|
Oxide wt. % | n = 11 | STD | n = 3 | STD | n = 6 | STD | Zen et al. [36] |
SiO2 | 47.01 | 0.52 | 38.57 | 0.28 | 48.76 | 0.43 | 47.00 |
Al2O3 | 26.20 | 0.15 | 22.03 | 0.42 | 37.54 | 0.18 | 39.10 |
TiO2 | n.d | 0.06 | 0.01 | 0.00 | 0.00 | 0.02 | |
Fe2O3 | n.d | 1.17 | 0.08 | n.d | 0.78 | ||
FeO | 0.03 | 0.04 | n.d | 0.56 | 0.40 | - | |
Mn2O3 | n.d | 15.02 | 0.44 | n.d | - | ||
MnO | 0.09 | 0.18 | n.d | 0.06 | 0.02 | 0.02 | |
MgO | n.d | 0.02 | 0.02 | 0.03 | 0.01 | 0.10 | |
CaO | 0.02 | 0.01 | 21.52 | 0.27 | 0.03 | 0.01 | 0.24 |
Na2O | 16.05 | 0.21 | 0.23 | 0.09 | 5.31 | 0.17 | 7.50 |
K2O | 0.03 | 0.02 | 0.05 | 0.02 | 0.44 | 0.06 | 0.81 |
Cr2O3 | 0.02 | 0.02 | - | ||||
H2O | n.c | 1.89 | 0.01 | n.c | 4.3 | ||
Total | 89.42 | 0.81 | 100.56 | 0.34 | 92.75 | 0.36 | 95.57 |
Cations based on 10 O for natrolite, 12.5 O for piemontite and 11 O for paragonite: | |||||||
Si | 3.01 | 3.05 | 3.16 | 3.00 | |||
Al | 1.98 | 2.05 | 2.86 | 2.94 | |||
Ti | 0 | 0.00 | 0.00 | ||||
Fe3+ | 0.07 | 0.04 | |||||
Fe2+ | 0.00 | 0.03 | |||||
Mn | 0.01 | 0.9 | |||||
Mg | 0 | 0.00 | 0.01 | ||||
Ca | 0.07 | 1.82 | 0.00 | 0.02 | |||
Na | 1.99 | 0.03 | 0.67 | 0.93 | |||
K | 0.00 | 0.01 | 0.04 | 0.07 | |||
Cr | 0.00 |
Drill Core | SLT-015: Shale Matrix | SLT-015: Fe-Mn Matrix | SLT-017 | AKH-49 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mbs) | 80.4 | 85.5 | 87.5 | 80.7 | 88.7 | 90 | 91.5 | 93.4 | 93.8 | 194.9 | 195.2 | 198 |
SiO2 | 36.2 | 33.1 | 36.5 | 7.5 | 5.07 | 3.2 | 7.31 | 15.4 | 10.2 | 49.5 | 59.8 | 66.3 |
TiO2 | 1.18 | 1.33 | 1.35 | 0.16 | 0.16 | 0.06 | 0.10 | 0.63 | 0.13 | 0.35 | 0.71 | 0.68 |
Al2O3 | 34.1 | 27.5 | 27.4 | 4.95 | 3.18 | 0.97 | 3.23 | 12.9 | 7.04 | 8.97 | 14.4 | 12.3 |
Fe2O3 | 12.3 | 25.5 | 17.5 | 19.8 | 37.0 | 61.6 | 30.5 | 21.8 | 20.8 | 19.8 | 10.5 | 10.3 |
MnO | 1.03 | 1.16 | 5.40 | 60.4 | 43.9 | 31.0 | 50.4 | 35.4 | 49.4 | 12.1 | 1.54 | 0.94 |
MgO | 0.29 | 0.17 | 0.30 | 0.08 | 0.25 | 0.08 | 0.08 | 0.46 | 0.17 | 1.09 | 0.73 | 0.73 |
CaO | 0.47 | 0.15 | 0.25 | 2.31 | 0.63 | 0.59 | 1.58 | 0.81 | 3.16 | 0.51 | 0.11 | 0.11 |
Na2O | 4.24 | 3.76 | 3.98 | 0.14 | 0.37 | 0.08 | 0.39 | 2.00 | 1.07 | 4.63 | 0.69 | 0.62 |
K2O | 1.41 | 1.60 | 2.06 | 0.03 | 1.72 | 0.03 | 0.11 | 0.44 | 0.10 | 0.70 | 3.85 | 4.29 |
P2O5 | 0.15 | 0.04 | 0.13 | 0.20 | 0.18 | 0.14 | 0.87 | 0.09 | 0.39 | 0.03 | 0.05 | 0.06 |
BaO | 1.13 | 0.15 | 0.11 | 2.66 | 2.60 | 0.51 | 2.48 | 5.12 | 3.10 | 0.44 | 4.29 | 1.45 |
LOI | 5.77 | 4.72 | 4.71 | 1.95 | 4.12 | 0.92 | 0.80 | 2.40 | 2.64 | 0.64 | 2.33 | 1.95 |
H2O- | 0.94 | 0.53 | 0.50 | 0.24 | 0.31 | 0.24 | 0.22 | 0.45 | 0.24 | 0.26 | 0.38 | 0.41 |
Total | 99.1 | 99.8 | 100.2 | 100.4 | 99.5 | 99.4 | 98.1 | 97.9 | 98.3 | 99.0 | 99.3 | 100.2 |
Zn | 50 | 23 | 31 | 153 | 100 | 66 | 62 | 61 | 65 | 74 | 44 | 2 |
Cu | 68 | 61 | 142 | 1504 | 271 | 235 | 311 | 177 | 95 | 53 | 28 | 7 |
Ni | 123 | 86 | 273 | 198 | 153 | 213 | 20 | 105 | 25 | 1371 | 295 | 13 |
Co | 47 | 32 | 19 | 54 | 13 | 16 | 16 | 28 | 7 | 91 | 50 | 59 |
Cr | 160 | 1068 | 108 | 109 | 141 | 101 | 113 | 124 | 118 | 82 | 48 | 55 |
V | 34 | 253 | 111 | 160 | 137 | 144 | 174 | 27 | 78 | 21 | <4 | 5 |
Sc | 40 | 66 | 21 | 51 | 11 | 6 | 12 | 29 | 8 | 19 | 10 | 13 |
Th | 33 | 7 | 32 | <6 | 14 | <6 | 15 | 47 | 19 | 15 | 23 | 21 |
Pb | 35 | 78 | 45 | 251 | 1003 | 387 | 968 | 2255 | 1202 | 590 | 885 | 576 |
Rb | 56 | 51 | 63 | <2 | 33 | <3 | 3 | 16 | 2 | 13 | 96 | 117 |
Mo | <1 | <1 | <1 | <2 | <2 | 3 | <2 | <2 | <2 | 1 | <1 | <1 |
Nb | 22 | 8 | 26 | 3 | <2 | <2 | 2 | 12 | 2 | 7 | 14 | 15 |
Zr | 233 | 140 | 571 | 46 | 34 | 16 | 21 | 245 | 23 | 100 | 284 | 258 |
Y | 40 | 16 | 59 | 19 | 24 | 30 | 18 | 30 | 9 | 107 | 105 | 76 |
U | <2 | <2 | <2 | <4 | <5 | <5 | <4 | 5 | <3 | <3 | <2 | <2 |
Sr | 501 | 101 | 71 | 488 | 2165 | 377 | 1463 | 947 | 1700 | 94 | 181 | 84 |
Name | Formula | AKH-49 1 | SLT-015 | SLT-017 | KMF 2 |
---|---|---|---|---|---|
Aegirine | NaFe3+Si2O6 | X | X | X | |
Aegirine-augite | X | ||||
Albite | NaAlSi3O8 | X | X | X | |
Armbrusterite | Na6K5Mn3+Mn2+14[Si9O22]4(OH)10·4H2O | X | |||
Banalsite | BaNa2Al4Si4O16 | X | X | ||
Barite | BaSO4 | X | X | ||
Barytocalcite | BaCa(CO3)2 | X | |||
Braunite | Mn2+Mn3+6O8SiO4 | X | X | X | X |
Calcite | CaCO3 | X | X | ||
Hematite | Fe2O3 | X | X | X | X |
Hollandite | Ba(Mn4+, Mn3+)8O16 | X | X | ||
K-feldspar | KAlSi3O8 | X | X | ||
Kentrolite | Pb2Mn3+2O2(Si2O7) | X | X | ||
Natrolite | Na2Al2Si3O10·H2O | X | X | ||
Noelbensonite | BaMn3+2Si2O7(OH)2·H2O | X | |||
Norrishite | KLiMn3+2Si4O12 | X | |||
Paragonite | NaAl2(Si3Al)O10(OH)2 | X | X | ||
Partridgeite | Mn2O3 | X | X | ||
Pectolite | NaCa2Si3O8(OH) | X | X | X | |
Piemontite | Ca2(Al,Mn3+,Fe3+)3(SiO4)(Si2O7)O(OH) | X | X | ||
Quartz | SiO2 | X | X | X | |
Serandite | NaMn2+2Si3O8(OH) | X | X | X | |
Sericite | X | ||||
Strontianite | SrCO3 | X | X | ||
Sugilite | KNa2(Fe3+,Mn3+Al)2Li3Si12O30 | X | X | ||
Tokyoite | Ba2Mn3+[(As,V)O4]2(OH) | X | |||
Witherite | BaCO3 | X | X |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fairey, B.J.; Timmerman, M.J.; Sudo, M.; Tsikos, H. The Role of Hydrothermal Activity in the Formation of Karst-Hosted Manganese Deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa. Minerals 2019, 9, 408. https://doi.org/10.3390/min9070408
Fairey BJ, Timmerman MJ, Sudo M, Tsikos H. The Role of Hydrothermal Activity in the Formation of Karst-Hosted Manganese Deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa. Minerals. 2019; 9(7):408. https://doi.org/10.3390/min9070408
Chicago/Turabian StyleFairey, Brenton J., Martin J. Timmerman, Masafumi Sudo, and Harilaos Tsikos. 2019. "The Role of Hydrothermal Activity in the Formation of Karst-Hosted Manganese Deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa" Minerals 9, no. 7: 408. https://doi.org/10.3390/min9070408
APA StyleFairey, B. J., Timmerman, M. J., Sudo, M., & Tsikos, H. (2019). The Role of Hydrothermal Activity in the Formation of Karst-Hosted Manganese Deposits of the Postmasburg Mn Field, Northern Cape Province, South Africa. Minerals, 9(7), 408. https://doi.org/10.3390/min9070408