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Abstract: The bioreduction of Fe(III) oxides by dissimilatory iron reducing bacteria (DIRB) may result in
the production of a suite of Fe(II)-bearing secondary minerals, including magnetite, siderite, vivianite,
green rusts, and chukanovite; the formation of specific phases controlled by the interaction of various
physiological and geochemical factors. In an effort to better understand the effects of individual electron
donors on the formation of specific Fe(II)-bearing secondary minerals, we examined the effects of
a series of potential electron donors on the bioreduction of lepidocrocite (γ-FeOOH) by Shewanella
putrefaciens CN32. Biomineralization products were identified by X-ray diffraction, Mössbauer
spectroscopy, and scanning electron microscopy. Acetate, citrate, ethanol, glucose, glutamate, glycerol,
malate, and succinate were not effectively utilized for the bioreduction of lepidocrocite by S. putrefaciens
CN32; however, substantial Fe(II) production was observed when formate, lactate, H2, pyruvate,
serine, or N acetylglucosamine (NAG) was provided as an electron donor. Carbonate or sulfate green
rust was the dominant Fe(II)-bearing secondary mineral when formate, H2, lactate, or NAG was
provided, however, siderite formed with pyruvate or serine. Geochemical modeling indicated that
pH and carbonate concentration are the key factors determining the prevalence of carbonate green
rust verses siderite.
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1. Introduction

Iron (Fe) is a highly abundant element in the lithosphere. Fe-bearing clay minerals (smectites,
illites, chlorites, etc.) and Fe oxides (including formal Fe oxides, oxyhydroxides, and hydroxides such
as ferrihydrite, hematite (α-Fe2O3), maghemite (γ-Fe2O3), magnetite (Fe3O4), goethite (α-FeOOH),
and lepidocrocite (γ-FeOOH)) are common constituents of soils and sediments. The biogeochemistry
of Fe in most aquatic and terrestrial environments is driven largely by microbial activity, particularly
in Fe-rich soils and sediments where Fe redox cycling by microorganisms is a significant component
of C cycling and energy flux [1–5]. As such, the presence of Fe(II) in suboxic to anoxic near surface
environments is typically the result of the activity of dissimilatory iron-reducing (DIR) bacteria
and archaea. These phylogenetically diverse microorganisms can couple the oxidation of organic
compounds or hydrogen (H2) to the reduction of Fe(III) to Fe(II) [6–19]. As a group, dissimilatory
iron-reducing bacteria (DIRB) are able to use soluble Fe(III) complexes (e.g., ferric citrate), Fe(III) oxides,
and Fe(III)-bearing clay minerals as terminal electron acceptors for anaerobic respiration [20–28].
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Living biomass aside, the pool of natural organic matter (NOM) in typical surface and
near-subsurface environments is comprised primarily of low-molecular-mass components (<1 kDa)
that usually include fatty acids and free sugars and amino acids, along with high-molecular-mass
(>1 kDa) components that consist largely of humic substances, with lesser amounts of proteins,
carbohydrates, and other non-humic macromolecules [29]. The pool of NOM is highly dynamic, largely
due to microbial activity. Under anoxic conditions, complex NOM (e.g., proteins, carbohydrates, and
lipids) are depolymerized by hydrolytic enzymes from a broad range of microorganisms [30] and
the hydrolysis products (e.g., amino acids, monosaccharide, and fatty acids), serve as substrates for
fermentation. In turn, fermentative microorganisms produce a suite of fatty acids (formate, acetate,
lactate), alcohols (ethanol, butanol), and H2, which can be utilized as electron donors for anaerobic
respiration by a broad range of facultative and obligate anaerobes including DIRB [31].

The products of DIR comprise a broad range of Fe(II) species including soluble and adsorbed
Fe(II) and mineral phases containing structural Fe(II) (e.g., magnetite, siderite (FeCO3), vivianite
[Fe3(PO4)2·8H2O], green rust, chukanovite [Fe2(OH)2CO3], and Fe(II)-bearing clays) [32–40]. Many
factors have been identified as contributing to the formation of specific Fe(II)-bearing secondary minerals
as products of DIR, including Fe(III) oxide mineralogy, [20,35]; Fe(III) oxide particle aggregation, [41];
the rate and extent of Fe(II) production, [33,35,42,43]; the presence of electron shuttles, [33]; the species
and population size of the DIRB, [44–46]; the presence of oxyanions (phosphate, silicate, molybdate,
arsenate, etc.), [33,44,47–49]; the type/nature of dissolved NOM (including humic substances and
microbially produced extracellular polymeric materials) [44,46,50]; and the concentration and type of
electron donor [51–53]. Many of these parameters are interdependent (e.g., the rate of Fe(III) reduction
may be controlled by the metabolic constraints placed on a given DIRB by the type and amount of
electron donor available or by the system pH), often making it difficult to determine their relative
contributions to the formation of specific Fe(II)-bearing secondary minerals.

The taxonomic diversity of DIRB is reflected in the broad range of electron donors that support
DIR [54]; however, the effects of specific electron donors on the distribution of biogenic Fe(II) phases
produced during DIR have not been extensively studied. The bioreduction of akaganeite (β-FeOOH) by
Shewanella sp. HN-41 resulted in the formation of magnetite, siderite, and a combination of magnetite
and siderite when lactate, pyruvate, and formate, respectively, were provided as electron donors [52].
Salas et al. [53] reported formation of siderite, green rust, and a combination of green rust and magnetite
during DIR of ferrihydrite by Shewanella putrefaciens W3-18-1 with pyruvate, uridine, and lactate,
respectively, as electron donors. Both of these studies show a pronounced effect of specific electron
donors on the formation of specific secondary minerals. However, in each case only three donors
were investigated, thus additional studies examining a broader range of electron donors are needed to
develop a more comprehensive understanding of the key factors that determine the distribution of
Fe(II)-bearing secondary minerals resulting from DIR of Fe(III) oxides.

In this study we examine the ability of Shewanella putrefaciens CN32 to utilize a broad range
of potential electron donors for anaerobic respiration using Fe(III) oxide as an electron acceptor for
anaerobic respiration. Formation of Fe(II)-bearing secondary minerals was determined using X-ray
diffraction (XRD), 57Fe Mössbauer spectroscopy, and scanning electron microscopy (SEM).

2. Materials and Methods

2.1. Experimental Setup

The organic electron donor survey experiment was conducted in sterile 160-mL serum bottles
containing 100 mL of sterile defined mineral medium (DMM) [55] with Fe(III) as lepidocrocite (80 mM;
Bayferrox 943, LANXESS Corp., Leverkusen, Germany/Pittsburgh, PA, USA), electron donor (75 mM
acetate, L-alanine, citrate, ethanol, formate, D-glucose, L-glutamate, glycerol, glycine, DL-lactate,
malate, N-acetyl glucosamine (NAG), propionate, pyruvate, L-serine, or succinate), and 100 µM
9,10-anthraquinone 2,6 disulfonate (AQDS). Characterization of the lepidocrocite used in this study is
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provided in O’Loughlin et al. [28] The DMM was prepared by combining all components (except the
electron donor and AQDS), the pH was adjusted to 7.5 by titration with 1 M NaOH, portioned into
serum bottles, and autoclaved. After the medium cooled to ambient temperature, the electron donor
and AQDS were added from filter-sterilized stock solutions. The bottles were sealed with rubber septa
and aluminum crimp caps and made anoxic by sparging with sterile argon. Additional experiments
with select organic electron donors (i.e., donors that supported DIR in the survey experiment) were
conducted in 250-mL serum bottles containing 200 mL of DDM prepared in the same manner as
described above and amended with either 25 mM NaCl or 25 mM Na2SO4. Bottles in which H2 was
provided as the electron donor were prepared in a similar manner but with 50 mL of DMM (amended
with 25 mM of either NaCl, NaHCO3, or Na2SO4) in 500-mL serum bottles and the headspace was
flushed with sterile H2 after sparging with argon (resulting in >20 mmol H2). An additional set of
bottles with H2 as the electron donor was prepared containing 0.5 g of sterile Pd catalyst (0.5 wt % Pd
on 3.2-mm alumina pellets) and 25 mM NaHCO3. All experimental systems were prepared in triplicate.

The inoculum was prepared from late-log-phase cultures of S. putrefaciens CN32 (American Type
Culture Collection BAA-543) as described by O’Loughlin et al. [16]. Experiments were initiated by
spiking each bottle with the volume of inoculum needed to achieve a cell density of 5 × 109 cells mL−1.
The bottles were placed on a roller drum and incubated at 30 ◦C in the dark. Samples of the
suspensions—for monitoring pH, Fe(II) production, and consumption of electron donors as well as for
identification of secondary minerals by X-ray diffraction (XRD), scanning electron microscopy (SEM),
and 57Fe Mössbauer spectroscopy—were collected with sterile syringes. Unless otherwise indicated,
sample collection and processing were conducted in a glove box containing an anoxic atmosphere
(95% N2 with 5% H2).

2.2. Analytical Methods

The reduction of Fe(III) was monitored by measuring the total Fe(II) content of 0.75 M HCl extracts
of the suspensions (Fe(II)tot, referred to hereafter as Fe(II)). Samples for Fe(II) analysis were prepared
by adding 0.75 mL of anoxic 1 M HCl to 0.25 mL of suspension. After 1 week, the samples were
centrifuged at 25,000× g for 10 min. The Fe(II) concentrations in the supernatants were determined by
the ferrozine assay [56]. Briefly, 1 mL of HEPES-buffered ferrozine reagent [57] was added to 50 µL of
supernatant, and the absorbance at 562 nm was measured.

The disappearance of lepidocrocite and the formation of secondary minerals were monitored by
powder X-ray diffraction (pXRD) with a Rigaku MiniFlex X-ray diffractometer (Rigaku Corporation,
Tokyo, Japan) with Ni-filtered Cu Kα radiation. Samples for pXRD analysis were collected by filtration
on 25-mm, 0.22-µm nylon filters and covered with 8.4-mm-thick Kapton® film under anoxic conditions;
although the pXRD analysis was conducted under ambient atmosphere, samples prepared in this
manner showed no evidence of oxidation when scanned between 5◦ and 80◦ 2θ at a speed of 1.25◦ 2θ
min−1. The pXRD patterns were analyzed with the JADE 7 software package (MDI, Livermore, CA,
USA) to remove the background through polynomial fitting and also to remove the Kα2 components.
Samples of the filtrate were saved for pH measurement, measurement of dissolved Fe(II) [Fe(II)aq)]
using the ferrozine assay, and for analysis of organic electron donors using an Agilent 1100 series
HPLC equipped with a UV-Vis absorbance detector (Agilent Technologies, Inc., Santa Clara, CA, USA).
The samples for HPLC analysis were diluted with an equal volume of 10 mM H2SO4, and 50 µL of
the diluted sample was injected on a Bio-Rad Aminex HPX-87H ion-exchange column (7.8 × 300 mm,
Bio-Rad Laboratories Inc., Hercules, CA, USA). The column was eluted isocratically with 5 mM H2SO4

at a flow rate of 0.6 mL min−1 at 50 ◦C with analyte detection at 210 nm. The pH was measured with a
precision of 0.01 using a Semi Micro pH electrode (Thermo Fisher Scientific Inc., Waltham, MA, USA)
calibrated with NIST-traceable pH standards.

Samples for SEM imaging were prepared by placing 500 µL of suspension on aluminum specimen
mounts, allowing the solids to settle, removing the overlying liquid with a pipette, and drying the film
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of solids in a glove box. Specimens were briefly (<30 s) exposed to air during transfer to the Hitachi
S-4700-II FEG-SEM (Hitachi High-Technologies Corporation, Tokyo, Japan).

Transmission Mössbauer spectroscopy was performed with a variable temperature He-cooled
system with a 1024 channel detector. The 57Co source used (~50 mCi) was in a Rh matrix at room
temperature. All center shifts reported are relative to an α-Fe foil at room temperature. Samples were
prepared by filtering the suspension (approximately 4 mL) in an anoxic glove box with recoverable
filter paper. The filter paper was then sealed between two pieces of 5 mm Kapton tape to avoid
oxidation while the sample was mounted. No indication of inadvertent oxidation was observed.
Spectral fitting was done using Recoil Software version 1.01998 (University of Ottawa, Ottawa, ON,
Canada). Voigt-based fitting was used to model the spectra to determine the hyperfine parameters and
the relative areas between phases. The Lorentzian linewidth was held at 0.12 mm s−1, as it was the
linewidth measured on the spectrometer for an ideally thick α-Fe foil. The relative peak areas (1:1 for
doublets, 3:2:1:1:2:3 for sextets) were held constant throughout fitting. Each phase was fitted with only
a single component (i.e., multiple QS and H distributions were not allowed for a single phase in fitting).

2.3. Thermodynamic Modeling

Geochemical models of the Fe-C system were created using The Geochemist’s Workbench software
suite (version 8.0.12, Aqueous Solutions LLC, Champaign, IL, USA) [58]. The program Act2 was
used to create Pourbaix (Eh-pH) diagrams showing the stability fields of the minerals that would be
expected to form across a range of likely conditions for these microcosms. Thermodynamic data was
obtained from the “thermo.dat” database in The Geochemist’s Workbench [59] with the addition of
lepidocrocite [60], carbonate green rust [61], and ferrous hydroxycarbonate [62].

Eh-pH diagrams were constrained by the activity of ferrous iron (a[Fe2+]) and bicarbonate
(a[HCO3

−]) as calculated using the program React with the components of DMM as basis species.
Ferrous and ferric minerals not observed to form in the system (hematite, magnetite, goethite, wüstite)
were suppressed. The value of a[HCO3

−] was modeled by adding it as a simple reactant at pH 7.5, the
initial starting pH of the system. As the concentration of HCO3

− was not measured directly during the
experiments, a range of possible a[HCO3

−] was calculated and used to create separate Eh-pH diagrams
to examine the effect of the range of a[HCO3

−] on the stability of secondary iron minerals.

3. Results

3.1. Electron Donor Survey

The production of Fe(II) by S. putrefaciens CN32 in the presence of lepidocrocite and a broad
range of potential electron donors is shown in Figure 1. In the absence of an exogenous electron
donor, lepidocrocite reduction by S. putrefaciens CN32 was limited; within 72 days only 3.6 mM Fe(II)
was produced. Systems amended with acetate, alanine, citrate, ethanol, glucose, glutamate, glycerol,
glycine, malate, propionate, or succinate showed slightly higher levels of Fe(II) production (<7 mM).
Significantly greater Fe(II) production was observed in systems amended with formate (58 mM), lactate
(57 mM), H2, (18 mM), NAG (61 mM), pyruvate (57 mM), and serine (58 mM); DIR by S. putrefaciens
CN32 using these electron donors was examined in greater detail in a more focused set of experiments,
the results of which follow.
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Figure 1. Fe(II) production during the bioreduction of lepidocrocite by S. putrefaciens CN32 as a function
of available electron donor.

3.2. Hydrogen

Fe(II) production by S. putrefaciens CN32 was essentially immediate with H2 as the electron donor
(Figure 2). The presence of specific anions had a significant effect on both the rate and extent of
Fe(II) production, which were highest in the presence of carbonate (Table 1). Fe(II) concentrations
approached steady state within 3 days and were largely unaffected by replenishment of headspace H2

or re-inoculation with freshly cultured S. putrefaciens CN32. Moreover, substantially higher levels of
Fe(II) were observed in the abiotic system containing Pd catalyst as an abiotic surrogate for microbial
reduction of lepidocrocite (either by direct reduction or indirect reduction involving AQDS as an
electron shuttle). In all systems the pH increased commensurate with the extent of Fe(II) production.
Green rust was the only secondary mineral identified by pXRD and Mössbauer spectroscopy (Tables 2
and 3, Figure 3). Carbonate green rust formed in the chloride- and carbonate-amended systems and
sulfate green rust formed in the sulfate-amended system (Figure 3). The solids consisted primarily of
platy hexagonal particles up to 5 µm across, covered in tabular submicron-sized particles of unreacted
lepidocrocite (Figure 4A,B).
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Figure 2. (A) Fe(II) production during the bioreduction of lepidocrocite by S. putrefaciens CN32 using
H2 as an electron donor in the presence of either chloride, sulfate, or carbonate, compared to abiotic
reduction of lepidocrocite by H2 in the presence of Pd catalyst, the electron shuttle 9,10-anthraquinone
2,6 disulfonate (AQDS), and carbonate and (B) an expanded view of Fe(II) production within the first
2 days. Error bars indicate one standard deviation.
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Table 1. Final pH, Fe(II), and acetate concentrations, maximum Fe(II) production rates, and e− donor consumption ratios.

System Final a pH Final Fe(II)aq
(mM)

Final Fe(II)tot
(mM)

Fe(II)tot Production
during Bioreduction c

(mmol d−1)

e− Donor Consumed
(mM)

Fe(II)tot:e− Donor
Consumed

Formate (chloride) 9.05 ± 0.01 0.8 ± 0.1 57.6 ± 0.2 2.32 ± 0.09 27.7 ± 1.4 2.1
Formate (sulfate) 9.06± 0.05 0.7 ± 0.1 55.1 ± 2.4 1.39 ± 0.09 25.3 ± 1.9 2.2

H2 abiotic 9.30 ± 0.01 ND b 63.8 ± 1.3 16.36 ± 0.52 ND ND
H2 (carbonate) 8.83 ± 0.13 0.8 ± 0.1 16.0 ± 0.6 7.07 ± 1.31 ND ND

H2 (sulfate) 8.59 ± 0.09 0.9 ± 0.1 12.6 ± 2.3 7.09 ± 0.97 ND ND
H2 (chloride) 8.36 ± 0.11 1.2 ± 0.3 8.5 ± 0.6 5.64 ± 0.95 ND ND

Lactate (chloride) 8.01 ± 0.01 4.7 ± 0.1 56.4 ± 0.8 3.76 ± 0.23 22.6 ± 1.3 2.5
Lactate (sulfate) 8.23 ± 0.03 2.9 ± 0.1 59.3 ± 4.8 3.18 ± 0.12 22.6 ± 1.4 2.6
NAG (chloride) 7.55 ± 0.10 6.8 ± 2.2 61.4 ± 4.4 1.31 ± 0.14 38.4 ± 2.8 1.6
NAG (sulfate) 7.69 ± 0.04 6.8 ± 0.7 70.6 ± 3.7 1.57 ± 0.24 40.9 ± 2.1 1.7

Pyruvate (chloride) 8.47 ± 0.05 2.0 ± 0.1 57.3 ± 1.5 9.84 ± 1.63 75 0.8
Pyruvate (sulfate) 8.44 ± 0.04 1.8 ± 0.2 59.3 ± 5.7 10.20 ± 1.91 75 0.8
Serine (chloride) 8.17 ± 0.02 2.3 ± 0.1 58.1 ± 1.8 7.25 ± 0.34 75 0.8
Serine (sulfate) 8.46 ± 0.29 1.4 ± 1.0 61.0 ± 7.0 8.38 ± 0.28 75 0.8

a Final measurements were made at 49 days after inoculation in the pyruvate and serine systems, at 62 days in the formate and lactate systems, 64 days in the hydrogen systems, and
at 106 days in the NAG systems; b Not determined (ND); c Fe(II) production rates were calculated by linear regression using least-squares regression of the data during the period of
maximum sustained Fe(II) production.
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Table 2. Fit parameters from Mössbauer analysis of the secondary minerals.

Sample Temp
(K)

CS
(mm s−1)

QS
(mm s−1)

H
(T) Mineral RA

(%)

Formate (chloride) 77 1.26 2.83 - Green Rust Fe(II) 70.5
- 0.48 0.38 - Green Rust Fe(III) 29.5

13 1.27 2.80 - Green Rust Fe(II) 69.9
- 0.49 0.37 - Green Rust Fe(III) 30.1

Formate (sulfate) 77 1.26 2.85 - Green Rust Fe(II) 68.1
- 0.47 0.40 - Green Rust Fe(III) 31.9

13 1.26 2.82 - Green Rust Fe(II) 67.6
13 0.47 0.41 - Green Rust Fe(III) 32.4

Lactate (chloride) 77 1.27 2.85 - Green Rust Fe(II) 66.7
- 0.47 0.41 - Green Rust Fe(III) 33.3

13 1.27 2.82 - Green Rust Fe(II) 69.4
- 0.48 0.38 - Green Rust Fe(III) 30.6

Lactate (sulfate) 77 1.26 2.89 - Green Rust Fe(II) 61.9
- 0.45 0.46 - Green Rust Fe(III) 38.1

13 1.26 2.88 - Green Rust Fe(II) 58.8
- 0.41 0.51 - Green Rust Fe(III) 41.2

NAG (chloride) 77 1.36 2.05 - Siderite 17.7
- 1.27 2.88 - Green Rust Fe(II) 47.4
- 0.48 0.42 - Green Rust Fe(III) 13.2
- 0.49 0.6 - Lepidocrocite 21.4

13 1.33 2.09 16.8 Siderite 14.7
- 1.28 2.84 - Green Rust Fe(II) 46.4
- 0.5 0.4 - Green Rust Fe(III) 18.3
- 0.49 0.03 45.3 Lepidocrocite 20.6

NAG (sulfate) 77 1.35 2.04 - Siderite 20.9
- 1.27 2.91 - Green Rust Fe(II) 50
- 0.42 0.55 - Green Rust Fe(III) 29.1

13 1.35 2.1 16.8 Siderite 29.4
- 1.28 2.91 - Green Rust Fe(II) 41.5
- 0.43 0.56 - Green Rust Fe(III) 29.1

Pyruvate (chloride) 77 1.36 2.11 - Siderite 38.7
- 1.33 2.76 - Siderite 2 33.8
- 0.48 0.56 - Lepidocrocite 27.5

13 - - - - -
No quantitation can be made—siderite and lepidocrocite present

Pyruvate (sulfate) 77 1.36 2.09 - Siderite 38.7
- 1.33 2.79 - Siderite 2 30.6
- 0.48 0.57 - Lepidocrocite 30.7

13 - - - - -
No quantitation can be made—siderite and lepidocrocite present

Serine (chloride) 77 1.36 2.08 - Siderite 43
- 1.33 2.77 - Siderite 2 33.3
- 0.48 0.56 - Lepidocrocite 23.6

13 - - - - -
No quantitation can be made—siderite and lepidocrocite present

Serine (sulfate) 77 1.36 2.08 - Siderite 43
- 1.33 2.77 - Siderite 2 33.3
- 0.48 0.56 - Lepidocrocite 23.6

13 - - - - -
No quantitation can be made—siderite and lepidocrocite present

H2 (chloride) 77 1.23 2.87 - Green Rust Fe(II) 19.9
- 0.43 0.53 - Green Rust Fe(III) 7.7
- 0.5 0.6 - Lepidocrocite 72.4

13 -
No quantitation can be made—green rust and lepidocrocite present

H2 (carbonate) 77 1.25 2.78 - Green Rust Fe(II) 32.2
- 0.5 0.37 - Green Rust Fe(III) 18.7
- 0.49 0.62 - Lepidocrocite 49.1

13 1.27 2.85 - Green Rust Fe(II) 8.5
- 0.48 0.38 - Green Rust Fe(III) 3.3
- 0.50 0.01 45.3 Lepidocrocite 88.2

H2 (sulfate) 77 1.28 2.88 - Green Rust Fe(II) 16.1
- 0.49 0.41 - Green Rust Fe(III) 19.0
- 0.49 0.59 - Lepidocrocite 65.0

13 - - - - -
No quantitation can be made—predominantly lepidocrocite
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Table 3. Identification of secondary minerals.

System pXRD Mössbauer SEM

Formate (chloride) GRC
a GR GR

Formate (sulfate) GRC GR GR
H2 abiotic GRC ND ND

H2 (carbonate) GRC GR GR
H2 (sulfate) GRS

a GR GR
H2 (chloride) GRC GR GR

Lactate (chloride) GRC GR GR
Lactate (sulfate) GRC, GRS GR GR
NAG (chloride) GRC, Sid b GR, Sid GR, Sid
NAG (sulfate) GRC, GRS, Sid GR, Sid GR, Sid

Pyruvate (chloride) Sid Sid Sid
Pyruvate (sulfate) Sid Sid Sid
Serine (chloride) Sid Sid Sid
Serine (sulfate) Sid Sid Sid

a Carbonate green rust (GRC) and sulfate green rust (GRS); b Siderite (Sid).

3.3. Formate

Formate essentially served as a positive control given that we have previously shown that formate
is utilized as an electron donor for DIR by S. putrefaciens CN32 [16,28,44,55,63]. The initial production of
2.3 mM Fe(II) within the first 24 h was followed by a lag period lasting ~13 days in the chloride-amended
system, after which there was vigorous and sustained Fe(II) production concurrent with formate
consumption (Figure 5). The reduction of Fe(III) was essentially complete (i.e., there was no change
in Fe(II) concentrations) by day 55. The systems were not explicitly buffered (i.e., a buffer was not a
component of the DMM) and the pH increased from 7.5 to 8.3 within 18 h after inoculation followed by
a slower pH increase, ultimately reaching pH 9.1 by day 62 (Figure 5). The bioreduction of lepidocrocite
in the sulfate-amended systems followed similar trends with respect to Fe(II) production, formate
consumption and pH, but with a longer lag period (Figure 5) and slower rate of total Fe(II) production
(Table 1). Analysis of the solids by pXRD (Figure 6) and Mössbauer spectroscopy (Table 2) indicates
complete removal of lepidocrocite accompanied by the formation of green rust. Carbonate green
rust was the only secondary mineral observed in the chloride-amended system (Figure 6), present
as platy hexagonal particles up to 5 µm across, often with well-defined edges (Figure 4C). In the
sulfate-amended systems, indications of sulfate green rust were observed by day 9, by day 15 both
sulfate and carbonate green rust were present, and by day 62 only carbonate green rust was detected
(Figure 6). Unlike the generally well-formed crystallites in the chloride-amended system, the green
rust particles in the sulfate-amended system were highly irregular, both in terms of width as well as
the morphology of the crystal edges (Figure 4D).
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3.4. Lactate

As observed with formate, there was an initial increase in pH from 7.5 to 8.2 and a pulse of
Fe(II) production (~4 mM) within the first 24 h, that was followed by a lag in Fe(II) production lasting
~27 days and ~17 days in the chloride- and sulfate-amended systems, respectively (Figure 7). After the
corresponding lag periods, Fe(II) production proceeded at similar rates (Table 1) in each system leading
to production of 56 and 59 mM total Fe(II) in the chloride- and sulfate-amended systems, respectively.
Unlike the formate systems, there was no further increase in pH after the initial rise; indeed, by day
62 the pH decreased to 8.0 in the chloride-amended system (Figure 7). Lactate consumption was
concurrent with Fe(II) and acetate production. At the end of the experiment (day 62) both pXRD and
Mössbauer spectroscopy showed complete loss of lepidocrocite and formation of green rust (Table 2
and Figure 8). Carbonate green rust was the only secondary mineral observed in the chloride-amended
system (Figure 8) and the crystallites were 1–2 µm thick and up to 2 µm wide and nominally hexagonal
(Figure 4E). In the sulfate-amended systems, indications of sulfate green rust were observed by day 7,
and by day 17 both sulfate and carbonate green rust were present (Figure 8); unlike the sulfate-amended
formate system, both sulfate and carbonate green rust were present at the end of the experiment (day
62). The green rust crystallites in the sulfate-amended system were exceptionally wide (up to 50 µm),
thin hexagonal plates with very well-formed edges (Figure 4F).Minerals 2019, 9, x FOR PEER REVIEW 13 of 30 
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3.5. N-Acetylglucosamine (NAG)

Within the first 24 h after inoculation, ~3 mM Fe(II) was produced in the chloride-amended system
and there was minimal change over the next 24 days (Figure 9). Substantial Fe(II) production was
observed between day 25 and day 76 leading to an accumulation of ~61 mM Fe(II) at the termination
of the experiment at day 106; at which time pXRD and Mössbauer spectroscopy indicated the presence
of residual lepidocrocite and secondary minerals siderite and carbonate green rust (Table 2 and
Figure 10). Carbonate green rust formation was not evident until 38 days after inoculation and siderite
was not observed until day 69 (Figure 10). The Fe(II) production profile was more complex in the
sulfate-amended system (Figure 9). As with the chloride system, there was an initial production of
Fe(II) within the first 24 h (~4 mM), but this was followed by a much shorter lag period (3 days), after
which the Fe(II) concentration increased to 14 mM at day 25 and remained essentially unchanged until
Fe(II) production resumed at day 31. At 106 days after inoculation, the Fe(II) concentration reached
71 mM, at which point lepidocrocite was no longer detected by Mössbauer or pXRD (Table 2 and
Figure 10). Sulfate green rust formation was first observed at 7 days after inoculation, followed by the
appearance of carbonate green rust at day 38 and siderite at day 69 (Figure 10). In both systems, Fe(II)
production was accompanied by consumption of NAG and accumulation of acetate and after an initial
increase in pH to ~8.1, the pH gradually decreased to ~7.6 by day 106 (Figure 9). The morphology of
green rust crystallites were similar in both chloride- and sulfate-amended systems; thin hexagonal
particles with irregular edges up to 20 µm wide decorated with anhedral to subhedral 0.5–2 µm
rhombic siderite crystallites (Figure 11A,B).
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3.6. Pyruvate

Compared to formate, lactate, and NAG, the initial Fe(II) production was higher with pyruvate
(7 mM within 6.5 h) and the overall bioreduction of lepidocrocite was substantially faster, with >90%
of the total Fe(II) production occurring within the first 10 days; both the chloride- and sulfate-amended
systems followed essentially the same trajectory (Figure 12). Fe(II) production was accompanied by
complete depletion of pyruvate and accumulation of acetate. The pH varied considerably over the
course of the experiment. Within 6 h of inoculation, the pH increased from 7.5 to 8.0, followed by
a decrease to 7.1 over the next 66 h, a rebound to pH 8 by day 6, and a gradual increase to a final
pH of 8.5 by day 106 (Figure 12). The solids remaining at the end of the experiment consisted of
residual lepidocrocite and siderite (Table 2 and Figure 13); there were no indications of green rust
formation at any point during the experiment (data not shown). Siderite was present as anhedral to
subhedral imperfect rhombohedral crystallites, typically 1–3 µm and often highly aggregated/cemented
(Figure 11C).
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3.7. Serine

The bioreduction of lepidocrocite by S. putrefaciens CN32 was immediate and sustained when
serine was provided as the electron donor; nearly 90% of Fe(II) production occurred within the first
10 days in both the chloride- and sulfate-amended systems (Figure 14). We were unable to measure
serine concentrations, but Fe(II) production was concurrent with acetate production, and pyruvate was
observed as a transient species. As with pyruvate, the pH in the serine systems was variable over the
course of the experiment, with final pH values of 8.2 and 8.5 in the chloride- and sulfate-amended
systems, respectively. In both systems the solids at the conclusion of the experiment consisted of
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residual lepidocrocite and siderite (Table 2 and Figure 13). The morphology of siderite particles formed
in the serine systems were identical to those in the pyruvate systems (Figure 11C,D).Minerals 2019, 9, x FOR PEER REVIEW 18 of 30 
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4. Discussion

4.1. Electron Donor Utilization and Dissimilatory Iron(III) Reduction

The genus Shewanella consists of a phenotypically diverse group of over 50 species found widely
distributed in a broad range of aquatic (lacustrine and marine) and terrestrial environments [64–66].
Under oxic conditions, members of the genus can utilize a broad range of C1–3 aliphatic acids,
amino acids, sugars, peptides, and nucleotides [65,67–69], but only a limited subset are utilized as
electron donors for anaerobic respiration [70]. Among the 17 putative electron donors we tested
with S. putrefaciens CN32, only H2, formate, lactate, pyruvate, serine, and NAG supported anaerobic
respiration with AQDS/Fe(III) oxide as the terminal electron acceptor(s).

The ability to use H2 as an electron donor for DIR is broadly represented within Shewanella [71–76].
In this study, reduction of Fe(III) by S. putrefaciens CN32 was rapid within the first 2 days, then quickly
plateaued to approximately 5, 10, and 15 mM Fe(II) in the chloride, sulfate, and carbonate systems,
respectively. The limited extent of Fe(III) reduction is not due to electron donor limitation as the
systems initially contained >20 mmol H2 and only 4 mmol Fe(III) (50 mL of 80 mM Fe(III)). It is possible
that hydrogen may have escaped from the bottle, thus limiting Fe(III) reduction; however, replenishing
the hydrogen headspace did not result in significant additional Fe(II) production. Likewise, the limited
Fe(II) production cannot be explained by a decrease in cell viability over time as reinoculation with
freshly grown S. putrefaciens CN32 resulted in no increase in Fe(II). Furthermore, the production of
~60 mM Fe(II) within 4 days in the abiotic control (i.e., H2/Pd/AQDS as a surrogate for microbial
reduction) suggests that there was no thermodynamic limitation on the system. Limited reduction of
Fe(III) was also observed during DIR of γ-FeOOH by S. putrefaciens CIP 8040T with H2 as the electron
donor [76].

Formate and lactate are established electron donors for DIR by S. putrefaciens CN32 [25,33,44,48] as
well as Shewanella spp. in general [16,34,46,52,53,71–75,77]. Consumption of formate by S. putrefaciens
CN32 was directly linked to Fe(II) production. Approximately 2 moles of Fe(II) produced for each mole
of formate consumed (Table 1) by S. putrefaciens CN32, consistent with the stoichiometry of formate
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oxidation to carbon dioxide (formate→ CO2 = 2e−) (Table 1). In the case of lactate, ~2.5 moles of Fe(II)
was produced per mole of lactate consumed, which is substantially less than 4 moles of Fe(II) per mole
of lactate based on the oxidation of lactate to acetate and carbon dioxide (lactate→ acetate + CO2 =

4e−). In addition, the accumulation of acetate was less than expected based on the amount of lactate
consumed (Table 1). Acetate is not used by S. putrefaciens CN32 as an electron donor for DIR, but it
may have used some acetate as a C source (as could a portion of the lactate consumed).

Compared with formate and lactate, the anaerobic metabolism of pyruvate by Shewanella spp.
is more complex. In addition to serving as an electron donor for DIR [52,53,71,72,74,75], several
Shewanella spp. are reported to ferment pyruvate. Fermentation of pyruvate by Shewanella oneidensis
MR-1 produces acetate, lactate, formate, and H2 [78] and fermentation by Shewanella profunda produces
acetate, lactate, and succinate [79]. S. putrefaciens ATCC 8071 (formerly Alteromonas putrefaciens) used
pyruvate as an electron donor for DIR resulting in oxidation to acetate and carbon dioxide (pyruvate
→ acetate + CO2 = 2e−) and stoichiometric production of Fe(II) [72]. However, pyruvate utilization by
S. putrefaciens W3-18-1 in the presence of Fe(III) oxide likely involved fermentation of pyruvate, and use
of pyruvate and pyruvate fermentation products (e.g., formate) as electron donors for DIR [53]. Our
results suggest that a similar dynamic occurred with S. putrefaciens CN32 in our experimental systems
containing pyruvate; if pyruvate was only utilized as an electron donor for DIR, only 30 mM would be
needed to account for the ~60 mM of Fe(II) produced, yet all of the pyruvate (75 mM) was consumed.

Few studies have explicitly examined individual amino acids as potential electron donors for
anaerobic respiration. Serine, cysteine, glutamate, and aspartate are effective electron donors for
anaerobic respiration by Alteromonas (Shewanllla) putrefaciens NCMB 1735 using trimethylamine oxide as
the terminal electron acceptor [80]. Geovibrio ferrireducens can grow by coupling the oxidation of proline
to the reduction of Fe(III) [6]. However, none of the amino acids tested by Lovley et al. [15] (glutamine,
serine, arginine, leucine, proline, glutamate, tryptophan, and tyrosine) were used as electron donors for
DIR by Geobacter metallireducens. Among the amino acids examined in this study (alanine, glutamate,
glycine, and serine), only serine was an effective electron donor for DIR by S. putrefaciens CN32. We
did not measure serine concentrations, but serine is easily converted to pyruvate, and pyruvate was
observed as a transient intermediate during Fe(III) reduction. Moreover, the Fe(II) production rates in
the serine-amended systems were only slightly slower than the rates in the pyruvate-amended systems
(which had the fastest rates among the donors tested (Table 1)), consistent with conversion of serine to
pyruvate and its subsequent utilization. This is the first report of serine serving as an electron donor
for DIR.

NAG is a monomer of chitin, which is present in the cell walls of fungi and the cuticles and
exoskeletons of arthropods, mollusks, and worms and is the second most abundant polymer in nature
after cellulose. NAG is also a component of cell wall peptidoglycan in gram-positive and gram-negative
bacteria. As a product of the microbial decomposition of chitin and peptidoglycan [81,82], NAG is
an important component of the organic nitrogen pool in aquatic and terrestrial systems [83–85]. As
both a C and N source, NAG is metabolized by a broad range of bacteria [84,86,87]. Many Shewanella
spp. (including S. putrefaciens CN32) respire NAG aerobically [88,89] and several are able to use
NAG as a substrate for fermentative growth [88,90,91]. Our study provides the first evidence that
a Shewanella sp. can use NAG as an electron donor for DIR, an ability that has only been reported
for Thermincola ferriacetica [92]. The production of Fe(II) was concurrent with NAG consumption and
acetate production, which is consistent with NAG serving as an electron donor for Fe(III) reduction.
NAG was not consumed independent of Fe(III) reduction suggesting that S. putrefaciens CN32 does not
ferment NAG.

4.2. Fe(II) Secondary Mineral Formation

The presence of specific electron donors has been shown to have significant impacts on the
development of microbial communities and the formation of Fe(II)-bearing minerals in laboratory
based-experiments and in-situ studies in subsurface environments [52,53,93–96]. Likewise, in this
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study we observe that specific electrons donors lead to the formation specific Fe(II)-bearing secondary
minerals during DIR of lepidocrocite by S. putrefaciens CN32.

Previous studies of the bioreduction of lepidocrocite have reported magnetite, siderite, vivianite,
green rust, and chukanovite as Fe(II)-bearing secondary minerals, with the formation of specific
phases attributed to several factors including the rate and extent of Fe(II) production, electron shuttles,
the cell number, the extent of particle aggregation, and the presence of sorbates (e.g., oxyanions
and DOC) [16,34,41,43–45,49,55,63,97–99]. Stoichiometric conversion to magnetite is often observed
during the bioreduction of lepidocrocite [41,44,45,49,63,98]. However, magnetite was not observed
as a secondary mineral in any of our experimental systems, likely due to trace levels of phosphate
present in the lepidocrocite used in our experiments [63], as low levels of phosphate are known to
suppress magnetite formation during DIR of Fe(III) oxides [28,33,44,47,63]. Vivianite formation requires
the presence of substantial phosphate (e.g., vivianite was not observed at P:Fe rations lower than
0.08 [33,43,48,63]), and vivianite was not observed in any of our experimental systems (P:Fe = 0.005 [63]).
Chukanovite (ferrous hydroxy carbonate) was also not observed in any of our experimental systems.
Chukanovite can perhaps be better described as a tertiary product of the DIR of Fe(III) oxides in that it
is not observed as an initial product of Fe(III) oxide bioreduction, rather it forms later as a product of
the reduction of Fe(II)/Fe(III) secondary minerals like magnetite and green rust [28,37,41,44,49,63,100],
and there may not have been sufficient time for chukanovite to form in our experimental systems.

Green rusts were observed as products of lepidocrocite bioreduction by S. putrefaciens CN32 when
H2, formate, lactate, or NAG were provided as electron donors (Table 3). Green rusts are layered
Fe(II)-Fe(III) hydroxides having a pyroaurite-type structure—i.e., alternating positively charged
Fe(II)-Fe(III) hydroxide layers and hydrated anion layers having the general composition: [FeII

4 FeIII
2

(OH)12]2+ [(A)2/n yH2O]2−, where A is an n-valent anion (e.g., Cl−, SO4
2−, or CO3

2−) and y denotes
varying amounts of interlayer water (y = 2 to 4). They are found in Fe(II)-Fe(III) transition zones in a
variety of aquatic and terrestrial environments including groundwater [101,102], surface waters [103],
soils [104–108], and sediments [109–111], where green rust minerals such as fougérite, trébeurdenite,
and mössbauerite [112–114] may play a central role in Fe redox cycling. Green rusts have been reported
as secondary mineralization products of the bioreduction of Fe(III) oxides in laboratory-based studies
under a wide range of experimental conditions [16,33–35,39,41,44–50,53,55,76,97,100,115–119]. Both
carbonate and sulfate green rusts formed depending on the anionic composition of our experimental
systems. Carbonate green rust formed in chloride-amended systems, consistent with the affinity of
pyroaurite-type layered double hydroxides for carbonate in the interlayer relative to chloride [120].
Furthermore, the production of Fe(II) is coupled to the formation of carbonate from the oxidation
of organic electron donors, allowing for carbonate green rust precipitation. Like carbonate, sulfate
is preferred over chloride as an interlayer anion in green rusts; as such sulfate green rust formed in
our sulfate-amended systems. However, as carbonate accumulates from the oxidation of the organic
electron donors, carbonate green rust forms as carbonate is preferred over sulfate in the interlayer.
Only carbonate green rust remained in the formate/sulfate system, however both carbonate and sulfate
green rusts remained in the lactate/sulfate, and NAG/sulfate systems, likely due to lower carbonate
production in those systems.

Siderite (FeCO3) is a geologically significant iron carbonate mineral that is of commercial
interest due to its use as a minor iron ore. Siderite is commonly reported as a secondary mineral
during the bioreduction of Fe(III) oxides in systems with substantial carbonate concentrations (i.e.,
>20 mM) [9,33,36,121–123]. In our experimental systems, siderite was observed as the sole secondary
mineral in pyruvate-and serine-amended systems (note, as discussed above, serine is likely converted
to pyruvate by S. putrefaciens CN32). Siderite was also the sole secondary mineral formed during
the bioreduction of ferrihydrite and akaganeite by Shewanella sp. HN-41 and S. putrefaciens W3-18-1,
respectively, with pyruvate as the electron donor [52,53]. Although we were not able to measure
carbonate concentrations in our experimental systems, it is likely that the use of pyruvate (and serine)
as an electron donor results in production of >30 mM given the accumulation of ~60 mM Fe(II) and the
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formation of 1 mole of carbonate per 2 moles of Fe(III) reduced based on the oxidation of pyruvate to
acetate and carbon dioxide.

In our experimental systems we typically observed formation of either green rust or siderite,
except in the NAG-amended systems, where green rust and a minor amount of siderite (<30% of
Fe(II)) were observed. Geochemical modeling indicates that pH and carbonate concentration are the
key factors determining the prevalence of carbonate green rust verses siderite (Figure 15); ferrous
hydroxide and chukanovite were considered in the modeling even though neither were observed in any
of our experimental systems. At a[HCO3

−] = 10−6, siderite is not stable. With increasing a[HCO3
−] the

stability field of siderite increases and the stability fields of carbonate green rust and ferrous hydroxide
shift to higher pH. These results are consistent with the observed distribution of carbonate green rusts
in systems with electron donors likely to result in lower carbonate concentrations (formate, lactate, and
NAG) and siderite in systems likely to produce high carbonate concentrations (pyruvate and serine).

Minerals 2019, 9, x FOR PEER REVIEW 21 of 30 

 

key factors determining the prevalence of carbonate green rust verses siderite (Figure 15); ferrous 

hydroxide and chukanovite were considered in the modeling even though neither were observed in 

any of our experimental systems. At a[HCO3−] = 10−6, siderite is not stable. With increasing a[HCO3−] 

the stability field of siderite increases and the stability fields of carbonate green rust and ferrous 

hydroxide shift to higher pH. These results are consistent with the observed distribution of carbonate 

green rusts in systems with electron donors likely to result in lower carbonate concentrations 

(formate, lactate, and NAG) and siderite in systems likely to produce high carbonate concentrations 

(pyruvate and serine). 

 

Figure 15. Eh-pH diagrams of iron (a[Fe2+] = 10−3) in aqueous solution containing dissolved carbonate 

ranging from a[HCO3−] = 10–6–10–1 at 30 °C. 

4.3. Environmental Relevance 

Figure 15. Eh-pH diagrams of iron (a[Fe2+] = 10−3) in aqueous solution containing dissolved carbonate
ranging from a[HCO3

−] = 10–6–10–1 at 30 ◦C.



Minerals 2019, 9, 434 22 of 29

4.3. Environmental Relevance

Largely through the activity of DIRB, Fe(II) is typically one of the most abundant reductants
present in aquatic and terrestrial environments under suboxic and anoxic conditions [124–126], often
providing substantial redox buffering capacity to these systems. Fe(II) is a reductant for a wide range
of contaminants, however, the redox reactivity of Fe(II) depends strongly on its speciation [127–131].
Among the Fe(II)-bearing secondary minerals resulting from DIR of Fe(III) oxides, green rusts are a
particularly effective reductant for a wide range of contaminants of concern, including chlorinated
solvents, nitroaromatics, azo dyes, toxic metals, metallolids, and radionuclides [127,128,132–153].
Therefore, identifying the factors (e.g., availability of specific electron donors) that lead to the formation
of green rusts and other reactive Fe(II) phases in natural and engineered environments may lead
to better management of contaminant fate and transport (e.g., in situ biostimulation of DIRB for
contaminant bioremediation).
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