Invisible Gold in Pyrite from Epithermal, Banded-Iron-Formation-Hosted, and Sedimentary Gold Deposits: Evidence of Hydrothermal Influence
Abstract
:1. Introduction
2. Geological Setting and Mineralogy
2.1. High- vs. Low-Sulfidation Epithermal Deposits
2.2. Epithermal Deposits in Kyushu, Japan
2.3. High-Sulfidation Nansatsu-Type Au Deposits in the Nansatsu District of Kagoshima-ken
2.3.1. Kasuga Deposit
2.3.2. Iwato Deposit
2.3.3. Akeshi Deposit
2.4. Low-Sulfidation Au Deposits in the Hokusatsu District of Kagoshima-ken
Hishikari Deposit
2.5. BIF-Hosted Deposit
Kalahari Goldridge Deposit
2.6. Sedimentary Au Deposits (Witwatersrand Au Fields)
2.6.1. South Deep Deposit
2.6.2. KDC West Deposit
3. Materials and Methods
3.1. Materials
3.2. Analytical Methods
3.3. Standardization
4. Results
5. Discussion
5.1. Epithermal Au Deposits
5.2. Kalahari Goldridge Deposit
5.3. Witwatersrand Au Field
5.4. Au–As Relationship
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Sample Name | Deposit | Loc | Analysis Spot | Analysis No. | Mineral | Au (ppm) |
---|---|---|---|---|---|---|
GDP636/72/B | D zone | #9 | Au1*13.adp | Pyrrhotite | 0.05 | |
GDP636/72/B | D zone | #10 | Au1*14.adp | Pyrrhotite | 5.62 | |
GDP636/72/B | D zone | #12 | Au1*16.adp | Pyrrhotite | 0.06 | |
118/21/15A | D zone | north pit BIF | #6 py-1 | Au1*23.adp | Pyrite-crystalline | 0.26 |
118/21/15A | D zone | north pit BIF | #7 po-3 | Au1*24.adp | Pyrrhotite | 0.05 |
118/21/15A | D zone | north pit BIF | #11 po-5 | Au1*28.adp | Pyrrhotite | 0.69 |
118/21/15A | D zone | north pit BIF | #14 po-8 | Au1*31.adp | Pyrrhotite | 0.55 |
118/21/15A | D zone | north pit BIF | #16 po-10 | Au1*34.adp | Pyrrhotite | 1.75 |
DD18/18/1B | D zone | south pit BIF | #2 po-1 | Au1*45.adp | Pyrrhotite | 0.02 |
DD18/18/1B | D zone | south pit BIF | #3 py-1 | Au1*47.adp | Pyrite | 0.03 |
DD18/18/1B | D zone | south pit BIF | #5 po-2 | Au1*48.adp | Pyrrhotite | 0.04 |
DD18/18/1B | D zone | south pit BIF | #6 po-3 | Au1*49.adp | Pyrrhotite | 0.04 |
DD18/18/1B | D zone | south pit BIF | #8 po-4 | Au1*51.adp | Pyrrhotite | 0.09 |
118/21/11A | D zone | north pit BIF | #3 | Au1*52.adp | Pyrite | 0.04 |
118/21/11A | D zone | north pit BIF | #8 | Au1*56.adp | Pyrrhotite | 0.14 |
118/21/11A | D zone | north pit BIF | #9 | Au1*57.adp | Pyrrhotite | 0.28 |
GDP636/72/B | D zone | #3 py-1 | Au1*58.adp | Pyrite | 0.14 | |
GDP636/72/B | D zone | #8 po-4 | Au1*64.adp | Pyrrhotite | 0.11 | |
GDP636/72/B | D zone | #9 po-5 | Au1*65.adp | Pyrrhotite | 0.09 | |
118/21/8B | D zone | north pit BIF | #2 py-1 | Au1*68.adp | Pyrite | 0.03 |
118/21/8B | D zone | north pit BIF | #5 po-2 | Au1*70.adp | Pyrrhotite | 0.07 |
118/21/8B | D zone | north pit BIF | #7 py-2 | Au1*73.adp | Pyrite | 0.01 |
118/21/8B | D zone | north pit BIF | #9 po-5 | Au1*75.adp | Pyrrhotite | 0.07 |
118/21/15A | D zone | north pit BIF | #20 po-20 | 34S_Au4*102.adp | Pyrrhotite | 0.08 |
118/21/15A | D zone | north pit BIF | #21 po-21 | 34S_Au4*103.adp | Pyrrhotite | 0.10 |
118/21/15A | D zone | north pit BIF | #22 po-22 | 34S_Au4*104.adp | Pyrrhotite | 1.29 |
118/21/15A | D zone | north pit BIF | #22 po-22 | 34S_Au4*111.adp | Pyrrhotite | 1.28 |
118/21/15A | D zone | north pit BIF | #23 po-23 | 34S_Au4*105.adp | Pyrrhotite | 0.89 |
118/21/15A | D zone | north pit BIF | #23 po-23 | 34S_Au4*112.adp | Pyrrhotite | 0.66 |
118/21/15A | D zone | north pit BIF | #24 po-24 | 34S_Au4*106.adp | Pyrrhotite | 0.06 |
118/21/15A | D zone | north pit BIF | #25 po-25 | 34S_Au4*107.adp | Pyrrhotite | 0.49 |
118/21/15A | D zone | north pit BIF | #26 po-26 | 34S_Au4*108.adp | Pyrrhotite | 0.58 |
118/21/15A | D zone | north pit BIF | #27 po-27 | 34S_Au4*109.adp | Pyrrhotite | 0.41 |
Analysis Spot | Analysis Position | Fe (wt%) | Cu (wt%) | Co (wt%) | Ni (wt%) | As (wt%) | S (wt%) | Total (wt%) |
---|---|---|---|---|---|---|---|---|
11 | core S11 | 45.85 | - | 0.36 | 0.08 | 0.04 | 53.60 | 99.93 |
12 | rim S12 | 46.41 | - | 0.10 | 0.11 | 0.01 | 54.32 | 100.94 |
14 | core S13 | 46.73 | 0.02 | 0.04 | 0.01 | - | 53.77 | 100.57 |
15 | rim S14 | 46.15 | - | 0.09 | 0.08 | 0.05 | 54.01 | 100.37 |
5 | core S15, S27 | 46.05 | 0.04 | 0.05 | - | 0.18 | 53.85 | 100.17 |
6 | rim S16, S26 | 46.67 | - | 0.05 | 0.02 | 0.32 | 53.82 | 100.88 |
7 | rim S16, S26 | 46.21 | 0.01 | 0.07 | 0.04 | 0.25 | 54.03 | 100.60 |
8 | rim S16, S26 | 46.57 | 0.03 | 0.07 | 0.03 | 0.13 | 52.47 | 99.30 |
9 | core S24 | 46.37 | - | 0.05 | 0.01 | 0.02 | 53.75 | 100.19 |
10 | rim S25 | 46.33 | - | 0.10 | 0.03 | - | 52.60 | 99.06 |
3 | Rim S28 | 46.99 | 0.01 | 0.08 | - | - | 51.87 | 98.95 |
4 | Rim S28 | 46.32 | - | 0.11 | 0.02 | 0.02 | 53.95 | 100.42 |
1 | core S29 | 45.62 | - | 0.05 | - | - | 54.70 | 100.37 |
2 | core S29 | 46.54 | - | 0.07 | 0.02 | 0.00 | 52.72 | 99.35 |
13 | core S30 | 45.99 | - | 0.22 | - | - | 53.74 | 99.95 |
Analysis Spot | Analysis Position | Fe (mol%) | Cu (mol%) | Co (mol%) | Ni (mol%) | As (mol%) | S (mol%) | Total (mol%) |
11 | core S11 | 32.83 | - | 0.25 | 0.06 | 0.02 | 66.85 | 100.00 |
12 | rim S12 | 32.86 | - | 0.07 | 0.07 | 0.01 | 67.00 | 100.00 |
14 | core S13 | 33.27 | 0.01 | 0.03 | 0.01 | - | 66.69 | 100.00 |
15 | rim S14 | 32.86 | - | 0.06 | 0.05 | 0.02 | 67.00 | 100.00 |
5 | core S15, S27 | 32.87 | 0.03 | 0.04 | - | 0.09 | 66.97 | 100.00 |
6 | rim S16, S26 | 33.16 | - | 0.04 | 0.01 | 0.17 | 66.62 | 100.00 |
7 | rim S16, S26 | 32.86 | 0.01 | 0.05 | 0.03 | 0.13 | 66.93 | 100.00 |
8 | rim S16, S26 | 33.70 | 0.02 | 0.05 | 0.02 | 0.07 | 66.14 | 100.00 |
9 | core S24 | 33.11 | - | 0.03 | 0.00 | 0.01 | 66.85 | 100.00 |
10 | rim S25 | 33.56 | - | 0.07 | 0.02 | - | 66.36 | 100.00 |
3 | Rim S28 | 34.18 | 0.00 | 0.05 | - | - | 65.74 | 99.98 |
4 | Rim S28 | 32.98 | - | 0.07 | 0.01 | 0.01 | 66.92 | 99.99 |
1 | core S29 | 32.36 | - | 0.04 | - | - | 67.60 | 100.00 |
2 | core S29 | 33.61 | - | 0.05 | 0.01 | 0.00 | 66.33 | 100.00 |
13 | core S30 | 32.89 | - | 0.15 | - | - | 66.95 | 99.99 |
Analysis Spot | Analysis Position | Fe (wt%) | Cu (wt%) | Co (wt%) | Ni (wt%) | As (wt%) | S (wt%) | Total (wt%) |
---|---|---|---|---|---|---|---|---|
1 | rim D1 | 46.03 | - | 0.11 | - | 0.06 | 52.32 | 98.51 |
9 | core SgD1 | 45.25 | - | 0.06 | 0.03 | 0.11 | 54.17 | 99.62 |
5 | rim SgD3 | 45.62 | - | 0.09 | 0.11 | 0.12 | 53.78 | 99.71 |
4 | rim D2 | 45.24 | 0.06 | 0.40 | 0.07 | 0.04 | 53.94 | 99.75 |
12 | rim D2 | 46.25 | - | 0.29 | 0.13 | 0.02 | 53.17 | 99.86 |
13 | rim D2 | 45.84 | 0.01 | 0.55 | 0.09 | 0.04 | 52.06 | 98.58 |
14 | rim D2 | 46.23 | - | 0.44 | 0.09 | 0.02 | 53.46 | 100.24 |
Analysis Spot | Analysis Position | Fe (mol%) | Cu (mol%) | Co (mol%) | Ni (mol%) | As (mol%) | S (mol%) | Total (mol%) |
1 | rim D1 | 33.52 | - | 0.08 | - | 0.03 | 66.37 | 100.00 |
9 | core SgD1 | 32.37 | - | 0.04 | 0.02 | 0.06 | 67.51 | 99.99 |
5 | rim SgD3 | 32.68 | - | 0.06 | 0.07 | 0.06 | 67.12 | 100.00 |
4 | rim D2 | 32.38 | 0.04 | 0.27 | 0.05 | 0.02 | 67.24 | 100.00 |
12 | rim D2 | 33.20 | - | 0.20 | 0.09 | 0.01 | 66.50 | 100.00 |
13 | rim D2 | 33.42 | 0.01 | 0.38 | 0.06 | 0.02 | 66.11 | 100.00 |
14 | rim D2 | 33.05 | - | 0.30 | 0.06 | 0.01 | 66.58 | 100.00 |
References
- Chryssoulis, S.L.; Cabri, L.J. Significance of gold mineralogical balances in mineral processing. Trans. Inst. Min. Metall. 1990, 99, C1–C10. [Google Scholar]
- Palenik, C.S.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Wang, L.; Ewing, R.C. “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. Am. Min. 2004, 89, 1359–1366. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Renock, D.; Ewing, R.C.; Ramana, C.V.; Becker, U.; Kesler, S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochim. Cosmochim. Acta 2008, 72, 2919–2933. [Google Scholar] [CrossRef]
- Deditius, A.P.; Utsunomiya, S.; Reich, M.; Kesler, S.E.; Ewing, R.C.; Hough, R.; Walshe, J. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 2011, 42, 32–46. [Google Scholar] [CrossRef]
- Tauson, V.L.; Lipko, S.V.; Smagunov, N.V.; Kravtsova, R.G. Trace Element Partitioning Dualism under Mineral–Fluid Interaction: Origin and Geochemical Significance. Minerals 2018, 8, 282. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Kokh, M.A.; Proux, O.; Hazemann, J.L.; Bazarkina, E.F.; Testemale, D.; Escoda, C.; Boiron, M.C.; Blanchard, M.; Aigouy, T.; et al. The nature and partitioning of invisible gold in the pyrite-fluid system. Ore Geol. Rev. 2019, 109, 545–563. [Google Scholar] [CrossRef]
- Chryssoulis, S.L.; Cabri, L.J.; Lennard, W. Calibration of the ion microprobe for quantitative trace precious metal analyses of ore minerals. Econ. Geol. 1989, 84, 1684–1689. [Google Scholar] [CrossRef]
- Cabri, L.J.; Chryssoulis, S.L.; de Villiers, J.P.R.; Laflamme, J.H.G.; Buseck, P.R. The nature of “invisible” gold in arsenopyrite. Can. Miner. 1989, 27, 353–362. [Google Scholar]
- Chryssoulis, S.L.; Weisener, C.G. Secondary Ion Mass Spectrometry Relative Sensitivity Factors for Ru, Rb, Pb, Ag, Os, Ir, Pt and Au in Sulfide Minerals. In Secondary Ion Mass Spectrometry: SIMS X; Benninghoven, A., Hagenhoff, B., Werner, H.W., Eds.; John Wiley & Sons: New York, NY, USA, 1997; pp. 983–986. [Google Scholar]
- Cabri, L.J.; McMahon, G. SIMS analysis of sulfide minerals for Pt and Au: Methodology and relative sensitivity factors (RSF). Can. Miner. 1995, 33, 349–359. [Google Scholar]
- Larocque, A.C.L.; Cabri, L.J. Ion-microprobe quantification of precious metals in sulfide minerals. Rev. Econ. Geol. 1998, 7, 155–167. [Google Scholar]
- Chouinard, A.; Paquette, J.; Williams-Jones, A.E. Crystallographic Controls on Trace-Element Incorporation in Auriferous Pyrite from the Pascua Epithermal High-Sulfidation Deposit, Chile Argentina. Can. Miner. 2005, 43, 951–963. [Google Scholar] [CrossRef]
- Morishita, Y.; Hammond, N.Q. Sub-microscopic gold from the Kalahari Goldridge deposit, Kraaipan Greenstone belt, South Africa. In The Ninth Biennial SGA Meeting; Andrew, C.J., Ed.; Irish Association for Econmic Geology: Dublin, Ireland, 2007; Volume 2, pp. 1019–1022. [Google Scholar]
- Silberman, M.L.; Berger, B.R. Relationship of trace-element patterns to alteration and morphology in epithermal precious-metal deposits. SEG Rev. Econ. Geol. 1985, 2, 203–232. [Google Scholar]
- Cook, N.J.; Chryssoulis, S.L. Concentrations of "invisible gold" in the common sulfides. Can. Miner. 1990, 28, 1–16. [Google Scholar]
- Arehart, G.B.; Chryssoulis, S.L.; Kesler, S.E. Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits; implications for depositional processes. Econ. Geol. 1993, 88, 171–185. [Google Scholar] [CrossRef]
- Pals, D.W.; Spry, P.G.; Chryssoulis, S. Invisible Gold and Tellurium in Arsenic-Rich Pyrite from the Emperor Gold Deposit, Fiji: Implications for Gold Distribution and Deposition. Econ. Geol. 2003, 98, 479–493. [Google Scholar] [CrossRef]
- Reich, M.; Kesler, S.E.; Utsunomiya, S.; Palenik, C.S.; Chryssoulis, S.L.; Ewing, R.C. Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta 2005, 69, 2781–2796. [Google Scholar] [CrossRef]
- Morishita, Y.; Shimada, N.; Shimada, K. Invisible gold and arsenic in pyrite from the high-grade Hishikari gold deposit, Japan. Appl. Surf. Sci. 2008, 255, 1451–1454. [Google Scholar] [CrossRef]
- Morishita, Y.; Shimada, N.; Shimada, K. Invisible gold in arsenian pyrite from the high-grade Hishikari gold deposit, Japan: Significance of variation and distribution of Au/As ratios in pyrite. Ore Geol. Rev. 2018, 95, 79–93. [Google Scholar] [CrossRef]
- Barton, P.B., Jr.; Skinner, B.J. Sulfide mineral stabilities. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; Wiley Interscience: New York, NY, USA, 1979; pp. 278–403. [Google Scholar]
- Heald, P.; Foley, N.K.; Hayba, D.O. Comparative anatomy of volcanic-hosted epithermal deposits; acid-sulfate and adularia-sericite types. Econ. Geol. 1987, 82, 1–26. [Google Scholar] [CrossRef]
- Geological Survey of Japan, AIST. Geological map of Japan 1:2,000,000, 5th ed. In 1:2,000,000 Map Series, 4th ed.; Geological Survey of Japan: Tsukuba, Ibaraki, Japan, 2002. [Google Scholar]
- Izawa, E.; Urashima, Y. Quaternary gold mineralization and its geologic environments in Kyushu, Japan. In Society of Economic Geologists Guidebook Series (CD-ROM); Society of Economic Geologists: Littletown, CO, USA, 2001; Volume 34, pp. 1–9. [Google Scholar]
- Izawa, E.; Urashima, Y. Quaternary gold mineralization at its geologic environments in Kyushu, Japan. Econ. Geol. 1989, 6, 233–241. [Google Scholar]
- Izawa, E. Evolution of volcanic and hydrothermal systems in southern Kyushu. Geol. Surv. Jpn. Rep. 1992, 279, 84–88. [Google Scholar]
- Hedenquist, J.W.; Matsuhisa, Y.; Izawa, E.; White, N.C.; Giggenbach, W.F.; Aoki, M. Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu District. Jpn. Econ. Geol. 1994, 89, 1–30. [Google Scholar] [CrossRef]
- Urashima, Y.; Izawa, E.; Hedenquist, J.W. Nansatsu-Type Gold Mineralization in the Makurazaki District. In Society of Mining Geologists of Japan Guidebook2; Mining Geologists of Japan: Akasaka, Tokyo, Japan, 1987; Volume 2, pp. 13–22. [Google Scholar]
- Izawa, E.; Urashima, Y.; Ibaraki, K.; Suzuki, R.; Yokoyama, T.; Kawasaki, K.; Koga, A.; Taguchi, S. The Hishikari gold deposit: High-grade epithermal veins in Quaternary volcanics of southern Kyushu Jpn. J. Geochem. Explor. 1990, 36, 1–56. [Google Scholar] [CrossRef]
- Hammond, N.Q.; Morishita, Y. Source of ore fluids at the Kalahari Goldridge deposit, Kraaipan greenstone belt, South Africa: Evidence from Sr, C and O isotope signatures in carbonates. Geofluids 2009, 9, 356–364. [Google Scholar] [CrossRef]
- Tokunaga, M. Geology and ore deposits of the Kasuga mine and Akeshi mine, in the Makurazaki district, Kagoshima prefecture. Min. Geol. 1954, 4, 205–212, (In Japanese with English abstract). [Google Scholar]
- Morishita, Y.; Nakano, T. Role of basement in epithermal deposits: The Kushikino and Hishikari gold deposits, southwestern Japan. Ore Geol. Rev. 2008, 34, 597–609. [Google Scholar] [CrossRef]
- Hammond, N.Q.; Moore, J.M. Archaean lode gold mineralization in banded iron formation at the Kalahari Goldridge deposit, Kraaipan greenstone belt, South Africa. Miner. Depos. 2006, 41, 483–503. [Google Scholar] [CrossRef]
- Hammond, N.Q.; Moore, J.M.; Sheets, R.W. Physico-chemical conditions of ore-forming fluids associated with genesis of the Kalahari Goldridge deposit, Kraaipan Greenstone Belt, South Africa. Ore Geol. Rev. 2007, 30, 106–134. [Google Scholar] [CrossRef]
- Anhaeusser, C.R.; Walraven, F. Episodic granitoid emplacement in western Kaapvaal Craton: Evidence from the Achaean Kraaipan granite-greenstone terrane, South Africa. J. Afr. Earth Sci. 1999, 28, 289–309. [Google Scholar] [CrossRef]
- Gold Fields Ltd. 2017 Mineral Resources and Mineral Reserves Supplement. 2017. Available online: https://www.goldfields.com/pdf/investors/integrated-annual-reports/2017/mrr-2017-hires.pdf (accessed on 19 April 2019).
- Robb, L.J.; Robb, V.M. Gold in the Witwatersrand Basin. In The Mineral Resources of South Africa: Handbook; Wilson, M.G.C., Anhaeusser, C.R., Eds.; Council for Geoscience: Silverton, CO, USA, 1998; Volume 16, pp. 294–349. [Google Scholar]
- Robb, L.J.; Meyer, F. The Witwatersrand Basin, South Africa: Geological framework and mineralization processes. Ore Geol. Rev. 1995, 10, 67–94. [Google Scholar] [CrossRef]
- Gold Fields Ltd. Kloof-Driefontein Complex (KDC) Technical Short Form Report 31 December 2011. Available online: https://goldfields.com/reports/ar_dec_2011/minerals/pdf/kdc_mine.pdf (accessed on 19 April 2019).
- Tucker, R.F.; Viljoen, R.P.; Viljoen, M.J. A Review of the Witwatersrand Basin–The World’s Greatest Goldfield. Episodes 2016, 39, 105. [Google Scholar] [CrossRef]
- Gold Fields Ltd. Gold Fields 2018 Results. Available online: http://www.goldfields.com/reports/fy2018/pdf/booklet.pdf (accessed on 19 April 2019).
- Sibanye-Stillwater Ltd. Company Financial Statements 2017. Available online: http://reports.sibanyestillwater.com/2017/download/SBY-CFS2017.pdf (accessed on 19 April 2019).
- Sibanye-Stillwater Ltd. Operating and Financial Results for the six Months and Year Ended 31 December 2018. Available online: https://thevault.exchange/?get_group_doc=245/1550722223-sibanye-results-booklet-H2-YE-2018-21feb2019.pdf (accessed on 19 April 2019).
- Phillipps, G.N.; Law, J.D.M. Witwatersrand Gold Fields: Geology, Genesis, and Exploration. Rev. Econ. Geol. 2000, 13, 439–500. [Google Scholar]
- MITI. Report on the Regional Survey of the Nansatsu Region, Heisei 11 (FY); Ministry of International Trade and Industry: Tokyo, Japan, 2000; p. 58. (In Japanese)
- Pettijohn, F.J. Sedimentary Rocks, 3rd ed.; Harper & Row: New York, NY, USA, 1975; pp. 56–61. [Google Scholar]
- Tauson, V.L. Gold solubility in the common gold-bearing minerals: Experimental evaluation and application to pyrite. Eur. J. Miner. 1999, 11, 937–948. [Google Scholar] [CrossRef]
- Simon, G.; Kao, L.S.; Huang, H.; Penner-Hahn, J.E.; Kesler, S.E. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. Am. Miner. 1999, 84, 1071–1079. [Google Scholar] [CrossRef]
- Groves, D.I.; England, G.L.; Rasmussen, B.; Krapež, B. Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology. 2002, 49, 1133–1156. [Google Scholar]
- Sung, Y.H.; Brugger, J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Nugus, M. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Gold fields Province, Western Australia. Min. Depos. 2009, 44, 765–791. [Google Scholar] [CrossRef]
Type | Sub-Type/Region | Name | Mineral Assemblage |
---|---|---|---|
Epithermal | high-sulfidation Nansatsu-type | Kasuga | quartz, enargite, pyrite, native gold, alunite, kaolinite, dickite, covelline, native sulfur, goethite [27,28] |
Epithermal | high-sulfidation Nansatsu-type | Iwato | quartz, pyrite, native gold, alunite, kaolinite, dickite, goethite [28] |
Epithermal | high-sulfidation Nansatsu-type | Akeshi | quartz, luzonite, pyrite, native gold, covelline, alunite, native sulfur, kaolinite, dickite, smectite, scorodite, goethite [28] |
Epithermal | low-sulfidation vein-type | Hishikari | quartz, adularia, smectite, pyrite, marcasite, electrum, naumannite-aguilarite, pyrargyrite, chalcopyrite [29] |
BIF-hosted hydrothermal | Kraaipan greenstone belt | Kalahari Goldridge | quartz, siderite, ankerite, calcite, pyrite, pyrrhotite, stilpnomelane, chlorite, magnetite, epidote, plagioclase [30] |
Sedimentary & hydrothermal | auriferous palaeoplacer/Witwatersrand basin | South Deep | quartz, pyrite, native gold |
Sedimentary & hydrothermal | auriferous palaeoplacer/Witwatersrand basin | KDC West | quartz, pyrite, native gold |
Deposit | Sample Name | Locality | Analysis Spot | Analysis No. | Mineral | Au (ppm) | As (ppm) | Analysis Position-Size-Roundness |
---|---|---|---|---|---|---|---|---|
Kasuga | S113 | 19.6 m depth | N1 | Au5*246.adp | pyrite | 0.06 | 44 | core-260 μm × 320 μm-subangular |
Kasuga | S113 | 19.6 m | N11 | Au5*256.adp | pyrite | 0.04 | 2 | core-the same grain as above |
Kasuga | S113 | 19.6 m | N2 | Au5*247.adp | pyrite | 0.09 | 6 | core-120 μm × 130 μm-subangular |
Kasuga | S113 | 19.6 m | N3 | Au5*248.adp | pyrite | 0.05 | 44 | rim-the same grain as above |
Kasuga | S113 | 19.6 m | N4 | Au5*249.adp | pyrite | 0.10 | 2 | rim-the same grain as above |
Kasuga | S113 | 20.5 m | N6 | Au5*251.adp | pyrite | 0.24 | 3 | core-400 μm × 400 μm-subangular |
Kasuga | S113 | 20.5 m | N7 | Au5*252.adp | pyrite | 0.17 | 3 | rim-50 μm × 60 μm-subangular |
Kasuga | S113 | 90.2 m | N8 | Au5*253.adp | pyrite | 0.17 | 64 | core-200 μm × 300 μm-subangular |
Kasuga | S113 | 138.3 m | N10 | Au5*255.adp | pyrite | 0.14 | 1 | core-100 μm × 250 μm-subangular |
Kasuga | S113 | 19.6 m | N12 | Au5*257.adp | pyrite | 0.09 | 2 | core-50 μm × 90 μm-subangular |
Kasuga | S113 | 19.6 m | N13 | Au5*258.adp | pyrite | 0.09 | 17 | core-50 μm × 100 μm-subangular |
Kasuga | S113 | 19.6 m | N14 | Au5*259.adp | pyrite | 0.06 | 2 | core-120 μm × 140 μm-angular |
Kasuga | S113 | 19.6 m | N15 | Au5*260.adp | pyrite | 23.58 | 176 | core-20 μm × 40 μm-subangular |
Kasuga | S113 | 19.6 m | N16 | Au5*261.adp | pyrite | 22.40 | 395 | core-20 μm × 30 μm-subangular |
Iwato | S176 | Maruyama | Py1a | Au5a*285.adp | pyrite | 1.59 | 24 | rim-150 μm × 200 μm-mosaic |
Iwato | S176 | Maruyama | Py1b | Au5a*287.adp | pyrite | 2.84 | 14 | rim-the same grain as above |
Iwato | S176 | Maruyama | Py4a | Au5a*286.adp | pyrite | 0.16 | 19 | core-100 μm × 200 μm-mosaic |
Iwato | S176 | Maruyama | Py3a | Au5a*288.adp | pyrite | 0.25 | 43 | core-30 μm × 40 μm-subangular |
Akeshi | S174 | No.1 ore body | #2 | Au5a*290.adp | pyrite | 0.17 | 847 | rim-50 μm × 70 μm-crystalline |
Akeshi | S174 | No.1 ore body | #4 | Au5a*292.adp | pyrite | 1.60 | 1083 | rim-20 μm × 40 μm-subangular |
Akeshi | S174 | No.1 ore body | #5 | Au5a*293.adp | pyrite | 0.08 | 403 | core-30 μm × 50 μm-subangular |
Akeshi | S174 | No.1 ore body | #6 | Au5a*294.adp | pyrite | 0.04 | 420 | rim-20 μm × 50 μm-subangular |
Akeshi | S174 | No.1 ore body | #3 | Au5a*295.adp | pyrite | 33.53 | 703 | rim-30 μm × 60 μm-irregular |
Akeshi | S174 | No.1 ore body | #7 | Au5a*296.adp | pyrite | 0.07 | 56 | core-50 μm × 90 μm-subangular |
Akeshi | S174 | No.1 ore body | #8 | Au5a*297.adp | pyrite | 0.54 | 111 | core-50 μm × 60 μm-crystalline |
Kalahari | S79 | D zone 118/21/11A | #3 | Au4*2.adp | pyrite | 0.01 | 22 | core-500 μm × 1000 μm-subangular |
Kalahari | S82 | D zone 118/21/15A | K2_2 | 0703_8 #1 | pyrite | 0.32 | 17 | core-80 μm × 100 μm-subangular |
Kalahari | S82 | D zone 118/21/15A | #31 Po | Au5aa*31.adp | Pyrrhotite | 0.53 | 8 | core-250 μm × 250 μm-mosaic |
Kalahari | S82 | D zone 118/21/15A | #32 Po | Au5aa*32.adp | Pyrrhotite | 0.80 | 12 | core-the same grain as above |
Kalahari | S82 | D zone 118/21/15A | #23 Po | Au5aa*33.adp | Pyrrhotite | 0.86 | 6 | core-the same grain as above |
Kalahari | S82 | D zone 118/21/15A | K1_3 | 0703_2 #1 | Pyrrhotite | 0.87 | 19 | core-the same grain as above |
Kalahari | S82 | D zone 118/21/15A | K1_4 | 0703_3 #1 | Pyrrhotite | 0.25 | 17 | core-the same grain as above |
Kalahari | S82 | D zone 118/21/15A | K1_5 | 0703_4 #1 | Pyrrhotite | 0.07 | 13 | core-the same grain as above |
Kalahari | S82 | D zone 118/21/15A | K1_6 | 0703_5 #1 | Pyrrhotite | 0.01 | 8 | core-50 μm × 50 μm-mosaic |
Kalahari | S82 | D zone 118/21/15A | K2_1 | 0703_7 #1 | Pyrrhotite | 0.01 | 8 | core-200 μm × 250 μm-rounded |
Kalahari | S82 | D zone 118/21/15A | K2_3 | 0703_9 #1 | Pyrrhotite | 0.01 | 8 | core-100 μm × 100 μm-mosaic |
South Deep | S196 | MIT in Upper Elsburgs | S11 | 0702_4 #1 | pyrite | 0.04 | 21 | core-350 μm × 450 μm-rounded |
South Deep | S196 | MIT in Upper Elsburgs | S12 | 0702_5 #1 | pyrite | 0.02 | 19 | rim-the same grain as above |
South Deep | S196 | MIT in Upper Elsburgs | S13 | 0702_6 #1 | pyrite | 0.03 | 103 | core-200 μm × 400 μm-subangular |
South Deep | S196 | MIT in Upper Elsburgs | S14 | 0702_7 #1 | pyrite | 0.03 | 827 | rim-the same grain as above |
South Deep | S196 | MIT in Upper Elsburgs | S15 | 0702_8 #1 | pyrite | 0.22 | 1988 | core-200 μm × 270 μm-angular |
South Deep | S196 | MIT in Upper Elsburgs | S16 | 0702_9 #1 | pyrite | 0.34 | 2297 | rim-the same grain as above |
South Deep | S196 | MIT in Upper Elsburgs | S26 | 1026_6 #1 | pyrite | 0.14 | 2789 | rim-the same grain as above |
South Deep | S196 | MIT in Upper Elsburgs | S27 | 1026_7 #1 | pyrite | 1.09 | 4042 | core-the same grain as above |
South Deep | S196 | MIT in Upper Elsburgs | S21 | 1026_1 #1 | pyrite | 0.05 | 8 | core-300 μm × 600 μm-round |
South Deep | S196 | MIT in Upper Elsburgs | S22 | 1026_2 #1 | pyrite | 0.05 | 115 | rim-160 μm × 250 μm-subangular |
South Deep | S196 | MIT in Upper Elsburgs | S23 | 1026_3 #1 | pyrite | 0.04 | 49 | core-the same grain as above |
South Deep | S196 | MIT in Upper Elsburgs | S24 | 1026_4 #1 | pyrite | 0.05 | 102 | core-200 μm × 300 μm-subangular |
South Deep | S196 | MIT in Upper Elsburgs | S25 | 1026_5 #1 | pyrite | 0.04 | 177 | rim-the same grain as above |
South Deep | S196 | MIT in Upper Elsburgs | S28 | 1026_8 #1 | pyrite | 0.03 | 33 | rim-600 μm × 650 μm-rounded |
South Deep | S196 | MIT in Upper Elsburgs | S29 | 1026_9 #1 | pyrite | 0.02 | 19 | core-the same grain as above |
South Deep | S196 | MIT in Upper Elsburgs | S30 | 1026_10 #1 | pyrite | 0.08 | 59 | core-50 μm × 80 μm-subangular |
KDC West | S197 | 2B (Carbon Leader) | D3 | Au5aa*1.adp | pyrite | 0.12 | 1546 | core-250 μm × 350 μm-subangular |
KDC West | S197 | 2B (Carbon Leader) | D1 | Au5aa*3.adp | pyrite | 0.22 | 1238 | rim-250 μm × 350 μm-subangular |
KDC West | S197 | 2B (Carbon Leader) | D2 | Au5aa*2.adp | pyrite | 0.62 | 200 | rim-300 μm × 300 μm-rounded |
KDC West | S197 | 2B (Carbon Leader) | D14 | 0702_3 #1 | pyrite | 0.63 | 153 | rim-the same grain as above |
KDC West | S197 | 2B (Carbon Leader) | D13 | 0702_2 #1 | pyrite | 0.42 | 100 | core-the same grain as above |
KDC West | S197 | 2B (Carbon Leader) | D12 | 0702_1 #1 | pyrite | 0.04 | 22 | core-150 μm × 200 μm-rounded |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morishita, Y.; Hammond, N.Q.; Momii, K.; Konagaya, R.; Sano, Y.; Takahata, N.; Ueno, H. Invisible Gold in Pyrite from Epithermal, Banded-Iron-Formation-Hosted, and Sedimentary Gold Deposits: Evidence of Hydrothermal Influence. Minerals 2019, 9, 447. https://doi.org/10.3390/min9070447
Morishita Y, Hammond NQ, Momii K, Konagaya R, Sano Y, Takahata N, Ueno H. Invisible Gold in Pyrite from Epithermal, Banded-Iron-Formation-Hosted, and Sedimentary Gold Deposits: Evidence of Hydrothermal Influence. Minerals. 2019; 9(7):447. https://doi.org/10.3390/min9070447
Chicago/Turabian StyleMorishita, Yuichi, Napoleon Q. Hammond, Kazunori Momii, Rimi Konagaya, Yuji Sano, Naoto Takahata, and Hirotomo Ueno. 2019. "Invisible Gold in Pyrite from Epithermal, Banded-Iron-Formation-Hosted, and Sedimentary Gold Deposits: Evidence of Hydrothermal Influence" Minerals 9, no. 7: 447. https://doi.org/10.3390/min9070447
APA StyleMorishita, Y., Hammond, N. Q., Momii, K., Konagaya, R., Sano, Y., Takahata, N., & Ueno, H. (2019). Invisible Gold in Pyrite from Epithermal, Banded-Iron-Formation-Hosted, and Sedimentary Gold Deposits: Evidence of Hydrothermal Influence. Minerals, 9(7), 447. https://doi.org/10.3390/min9070447