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Abstract: We study the stability of a unique weak solution to certain parabolic systems with nonstan-
dard growth condition, which are additionally dependent on a cross-diffusion term. More precisely,
we show that two unique weak solutions of the considered system with different initial values are
controlled by their initial values.
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1. Introduction

In [1], we have recently established the existence of a unique weak solution to the
following parabolic problem involving nonstandard p(x, t)-growth conditions and a cross-
diffusion term δ∆u with δ ≥ 0:

∂tu− div(a(x, t,∇u)) = div(|F|p(x,t)−2F), in ΩT ,
∂tv− div(a(x, t,∇v)) = δ∆u, in ΩT ,
u = v = 0, on ∂Ω× (0, T),
u(·, 0) = u0, v(·, 0) = v0, on Ω× {0},

(1)

where the vector-field a(x, t, ·) fulfils nonstandard growth and monotonicity properties,
which we will specify later. Moreover, Ω ⊂ Rn, n ≥ 2 denotes an open, bounded Lipschitz
domain and ΩT := Ω× (0, T) represents the space-time cylinder over Ω of height T > 0.
Furthermore, the partial derivatives of a function u are represented with respect to time t
by ut or ∂tu and with respect to the space variable x by ∇u.

Since in [1] the stability of the solution remained open, we will now catch up this
and we will establish the desired stability result. More precisely, we will prove that two
(unique) weak solutions with different initial values are controlled by their initial values.

The investigation of problems like the one in [1] is motivated by several aspects and
issues. First of all, many applications, e.g., in physics or biology, motivate the study of
parabolic problems. In particular, evolutionary equations are used to model biological or
physical processes, see [2,3], including climate modelling and climatology [4].

The second interesting aspect here is the variable exponent p(x, t) and the nonstandard
growth setting, which arises by modelling and investigating certain classes of stationary
and non-stationary non-Newtonian fluids such as electro-rheological fluids or fluids with
viscosity depending on the temperature [5–9]. In addition, one uses such diffusion models
in the context of the restoration in image processing [10–12] and applications include also
models for flows in porous media [13] or parabolic obstacle problems [14]. Moreover, in past
years parabolic nonstandard growth problems gained increased interest in mathematics,
see e.g., [15–20].

A further important aspect is the effect of a cross-diffusion term, which arises for in-
stance by the modelling of interaction between species [21]. As already mentioned in [1,22],
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this may lead to unexpected behaviour, e.g., in our case the cross-diffusion term δ∆u,
δ ≥ 0 requires that the growth exponent p(x, t) ≥ 2. Only if δ = 0 we may assume that

2n
n+2 < p(x, t), n ≥ 2. Furthermore, the cross-diffusion term δ∆u for δ > 0 will complicate
the derivation of the desired stability estimate and requires certain additional assumption,
which we will discuss later in detail.

2. General Assumptions, Settings and Notation

We suppose that the vector-fields a : ΩT ×Rn → Rn are Carathéodory functions, i.e.,
a(z, w) is measurable in the first argument for every w ∈ Rn and continuous in the second
one for a.e. z = (x, t) ∈ ΩT ⊂ Rn+1. In addition, a(z, w) satisfy the following nonstandard
growth and monotonicity conditions with variable exponents p : ΩT → [2, ∞), µ ∈ [0, 1]
and 0 < ν ≤ 1 ≤ L:

|a(z, w)| ≤ L(1 + |w|)p(z)−1, (2)

(a(z, w)− a(z, w0)) · (w− w0) ≥ ν(µ2 + |∇w|2 + |∇w0|2)
p(z)−2

2 |∇(w− w0)|2, (3)

for all z ∈ ΩT and w, w0 ∈ Rn, cf. [23], where the exponent function p : ΩT → [2, ∞) fulfils
the following conditions: there exist two constants γ1 and γ2, such that

2 ≤ γ1 ≤ p(z) ≤ γ2 < ∞ and |p(z1)− p(z2)| ≤ ω(dP (z1, z2)) (4)

hold true for any choice of z1, z2 ∈ ΩT , where ω : [0, ∞) → [0, 1] denotes a mod-
ulus of continuity, which is assumed to be a concave, non-decreasing function with
limρ↓0 ω(ρ) = 0 = ω(0). Furthermore, the parabolic distance is given by dP (z1, z2) :=
max{|x1 − x2|,

√
|t1 − t2|} for z1 = (x1, t1), z2 = (x2, t2) ∈ Rn+1 and we suppose the fol-

lowing weak logarithmic continuity condition

lim sup
ρ↓0

ω(ρ) log
(

1
ρ

)
< +∞. (5)

The spaces Lp(Ω), W1,p(Ω) and W1,p
0 (Ω) denote the usual Lebesgue and Sobolev

spaces, while the nonstandard p(z)–Lebesgue space Lp(z)(ΩT ,Rk) is defined as the set of
those measurable functions v : ΩT → Rk for k ∈ N, which satisfy |v|p(z) ∈ L1(ΩT ,Rk), i.e.,

Lp(z)(ΩT ,Rk) :=
{

v : ΩT → Rk is measurable in ΩT :
∫

ΩT

|v|p(z)dz < +∞
}

.

The set Lp(z)(ΩT ,Rk) equipped with the Luxemburg norm

‖v‖Lp(z)(ΩT)
:= inf

{
δ > 0 :

∫
ΩT

∣∣∣v
δ

∣∣∣p(z)dz ≤ 1
}

becomes a Banach space. Now, we are able to specify the regularity assumption on the
inhomogeneity, i.e., we suppose that F ∈ Lp(z)(ΩT ,Rn). Note as an abbreviation for the
exponent p(z) we will also write p(·).

Furthermore, we denote by Wp(·)
g (ΩT) the Banach space

Wp(·)
g (ΩT) :=

{
u ∈ [g + L1(0, T; W1,1

0 (Ω))] ∩ Lp(·)(ΩT) | ∇u ∈ Lp(·)(ΩT ,Rn)
}

equipped with the norm ‖u‖Wp(·)(ΩT)
:= ‖u‖Lp(·)(ΩT)

+ ‖∇u‖Lp(·)(ΩT)
. If g = 0 we write

Wp(·)
0 (ΩT) instead of Wp(·)

g (ΩT). In addition, we denote by Wp(·)(ΩT)
′ the dual of

the space Wp(·)
0 (ΩT).

Finally, we can state the definition of a weak solution to system (1):
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Definition 1. We call u, v ∈ C0([0, T]; L2(Ω)) ∩Wp(·)
0 (ΩT) a (weak) solution to the Dirichlet

problem (1), if and only if
∫

ΩT
[u · ϕt − a(z,∇u) · ∇ϕ]dz =

∫
ΩT

|F|p(x,t)−2F · ∇ϕdz,∫
ΩT

[v · ζt − a(z,∇v) · ∇ζ]dz =
∫

ΩT

δ∇u · ∇ζdz,
(6)

whenever ϕ, ζ ∈ C∞
0 (ΩT), δ ≥ 0, the boundary condition u = v = 0 on ∂Ω× {0} and initial

conditions u(·, 0) = u0 ∈ L2(Ω), v(·, 0) = v0 ∈ L2(Ω) a.e. on Ω are satisfied.

Remark 1. We will also use the notation (u, v) ∈ (C0([0, T]; L2(Ω)) ∩Wp(·)(ΩT))
2 instead of

u, v ∈ C0([0, T]; L2(Ω)) ∩Wp(·)(ΩT) and similarly, (u0, v0) ∈ (L2(Ω))2 instead of u0, v0 ∈
L2(Ω).

3. Main Result

In this section, we will state and prove our main result, which reads as follows:

Theorem 1. Let δ ≥ 0, Ω ⊂ Rn be an open, bounded Lipschitz domain and p : ΩT →
[γ1, γ2] satisfies (4) and (5). Furthermore, assume that F ∈ Lp(z)(ΩT ,Rn) and suppose that
the vector-field a : ΩT ×Rn → Rn is a Carathéodory function satisfying the growth condition (2)
and the monotonicity condition (3). Then, for two unique weak solutions (u, v), (u∗, v∗) ∈
(C0([0, T]; L2(Ω)) ∩Wp(·)

0 (ΩT))
2 with (∂tu, ∂tv), (∂tu∗, ∂tv∗) ∈ (Wp(·)(ΩT)

′)2 and differ-
ent initial values (u0, v0), (u∗0 , v∗0) ∈ (L2(Ω))2 [i.e., (u0, v0) 6= (u∗0 , v∗0)] to system (1) the
stability estimates

‖u(·, t)− u∗(·, t)‖2
L2(Ω) ≤ ‖u0 − u∗0‖2

L2(Ω) (7)

and

‖v(·, t)− v∗(·, t)‖2
L2(Ω) ≤ ‖v0 − v∗0‖2

L2(Ω) +
δ2

γ1ν2 ‖u0 − u∗0‖2
L2(Ω) +

γ2 − 2
γ1 − 1

4δ|ΩT | (8)

holds true for a.e. t ∈ [0, T), i.e., the solutions are controlled by their initial values.

Remark 2. Our first remark related to our result is that we have to assume a different monotonicity
condition as in [1] to be able to prove the stability estimate. Nevertheless, the existence result
from [1] still holds true under this assumption, cf. [23,24]. Additionally, we want to remark that
regarding the stability estimates (7) and (8), we see that in the case δ = 0, i.e., problem (1) without
cross-diffusion, we would derive the ’standard’ stability estimates:

‖u(x, t)− u∗(x, t)‖L2(Ω) ≤ ‖u0 − u∗0‖L2(Ω) and

‖v(x, t)− v∗(x, t)‖L2(Ω) ≤ ‖v0 − v∗0‖L2(Ω)

(9)

for a.e. t ∈ [0, T). Furthermore, in the case p(·) ≡ 2 or µ ≡ 1 the stability estimate (8) will be
reduce to

‖v(x, t)− v∗(x, t)‖2
L2(Ω) ≤ ‖v0 − v∗0‖2

L2(Ω) +
δ2

2ν2 ‖u0(x)− u∗0(x)‖2
L2(Ω) (10)

for a.e. t ∈ [0, T), cf. proof of Theorem 1. Finally, we want to refer to ([24] [Remark 2 & Remark 3])
regarding L1-estimates for the solutions, i.e., using Hölder’s inequality to derive

‖u(x, t)− u∗(x, t)‖L1(Ω) ≤ |Ω|
1
2 ‖u(x, t)− u∗(x, t)‖L2(Ω) ≤ |Ω|

1
2 ‖u0 − u∗0‖L2(Ω)

for a.e. t ∈ [0, T) (similar holds true for v− v∗), and the possible extension of problem (1).
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Proof. Our aim is to prove the stability of weak solutions to the Dirichlet problem (1). To
this end, we consider the unique weak solution (u, v) ∈ (C0([0, T]; L2(Ω)) ∩Wp(·)

0 (ΩT))
2

with (∂tu, ∂tv) ∈ (Wp(·)(ΩT)
′)2 to system (1) and the unique weak solution (u∗, v∗) ∈

(C0([0, T]; L2(Ω))∩Wp(·)
0 (ΩT))

2 with (∂tu∗, ∂tv∗) ∈ (Wp(·)(ΩT)
′)2 to the following Dirich-

let problem: 
∂tu∗ − div(a(x, t,∇u∗)) = div(|F|p(x,t)−2F), in ΩT ,
∂tv∗ − div(a(x, t,∇v∗)) = δ∆u∗, in ΩT ,
u∗ = v∗ = 0 on ∂Ω× (0, T),
u∗(·, 0) = u∗0 , v∗(·, 0) = v∗0 on Ω× {0},

(11)

where the initial values (u0, v0), (u∗0 , v∗0) ∈ (L2(Ω))2 are not equal. Next, we choose

ϕ = u − u∗ ∈ Wp(·)
0 (ΩT) and ζ = v − v∗ ∈ Wp(·)

0 (ΩT), since Wp(·)(ΩT)
′ is the dual of

Wp(·)
0 (ΩT), as admissible test functions and subtract the weak formulations of system (11)

from the one of (1), which yields
∫

ΩT
[(u− u∗) · ϕt − (a(z,∇u)− a(z,∇u∗)) · ∇ϕ]dz = 0,∫

ΩT
[(v− v∗) · ζt − (a(z,∇v)− a(z,∇v∗)) · ∇ζ]dz =

∫
ΩT

δ∇(u− u∗) · ∇ζdz,

cf. (6). Then, using integration by parts and inserting ϕ = u− u∗ and ζ = v− v∗, we get
∫

ΩT

(u− u∗)t(u− u∗) + (a(z,∇u)− a(z,∇u∗))∇(u− u∗)dz = 0,∫
ΩT

(v− v∗)t(v− v∗) + (a(z,∇v)− a(z,∇v∗))∇(v− v∗) + δ∇(u− u∗)∇(v− v∗)dz = 0.
(12)

From the first equation of (12), we can conclude by applying the monotonicity condi-
tion (3) that

0 ≥
∫

ΩT

(u− u∗)t(u− u∗)dz + ν
∫

ΩT

2
2−p(·)

2 |∇(u− u∗)|p(·)dz, (13)

where we also used that

|∇(u− u∗)|p(·) = (|∇(u− u∗)|2)
p(·)−2

2 |∇(u− u∗)|2

≤ 2
p(·)−2

2 (|∇u|2 + |∇u∗|2)
p(·)−2

2 |∇(u− u∗)|2,

if p(·) ≥ 2. Therefore, if follows from (13) that

‖u0(x)− u∗0(x)‖2
L2(Ω) ≥ ‖u(x, t)− u∗(x, t)‖2

L2(Ω) + 2ν
∫

ΩT

2
2−p(·)

2 |∇(u− u∗)|p(·)dz

and finally, the stability estimate (7). Moreover, we have∫
ΩT

2
2−p(·)

2 |∇(u− u∗)|p(·)dz ≤ 1
2ν
‖u0(x)− u∗0(x)‖2

L2(Ω). (14)

Notice that in case µ = 1 the monotonicity condition (3) implies that

(a(z,∇u)− a(z,∇u∗))∇(u− u∗) ≥ ν|∇(u− u∗)|2,
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since (µ2 + |∇u|2 + |∇u∗|2)
p(·)−2

2 ≥ 1 and hence, we can conclude that∫
ΩT

|∇(u− u∗)|2dz ≤ 1
2ν
‖u0(x)− u∗0(x)‖2

L2(Ω). (15)

Our next aim is to treat the last term of the second equation in (12). Here, we will see
the reason to choose a slightly different monotonicity condition compared to [1]. To this

end, we first consider the case that p(·) ≡ 2 or (µ2 + |∇u|2 + |∇u∗|2)
p(·)−2

2 ≥ 1 to conclude
by means of Hölder’s inequality and (15) that

−δ
∫

ΩT

∇(u− u∗)∇(v− v∗)dz ≤ δ

∣∣∣∣∫ΩT

∇(u− u∗)∇(v− v∗)dz
∣∣∣∣

≤ δ

(∫
ΩT

|∇(u− u∗)|2dz
) 1

2
(∫

ΩT

|∇(v− v∗)|2dz
) 1

2

≤ δ√
2ν
‖u0(x)− u∗0(x)‖L2(Ω)

(∫
ΩT

|∇(v− v∗)|2dz
) 1

2

=
δ√
2ν
‖u0(x)− u∗0(x)‖L2(Ω)

(
ν
∫

ΩT

|∇(v− v∗)|2dz
) 1

2
.

Then, by Cauchy’s inequality we gain (10). Finally, for p(·) ≥ γ1 > 2 we can conclude
by using Young’s inequality twice (first with 1

p(·) +
p(·)−1

p(·) = 1 and then with 1
p(·)−1 +

p(·)−2
p(·)−1 = 1) and (14) the following:

δ
∫

ΩT

|∇(u− u∗)||∇(v− v∗)|dz =
∫

ΩT

(
δ2

ν
2

2−p(·)
2

) 1
p(·)
|∇(u− u∗)|×(

δp(·)−2 ν

2
2−p(·)

2

) 1
p(·)

|∇(v− v∗)|dz

≤ 1
γ1

δ2

ν

∫
ΩT

2
2−p(·)

2 |∇(u− u∗)|p(·)dz

+
∫

ΩT

p(·)− 1
p(·)

(
δp(·)−2 ν

2
2−p(·)

2

) 1
p(·)−1

|∇(v− v∗)|p′(·)dz

≤ 1
γ1

δ2

2ν2 ‖u0(x)− u∗0(x)‖2
L2(Ω)

+
∫

ΩT

(
δp(·)−2 ν

2
2−p(·)

2

) 1
p(·)−1

|∇(v− v∗)|p′(·)dz

=
1

γ1

δ2

2ν2 ‖u0(x)− u∗0(x)‖2
L2(Ω)

+
∫

ΩT

(2δ)
p(·)−2
p(·)−1

(
ν2

2−p(·)
2 |∇(v− v∗)|p(·)

) 1
p(·)−1

dz

≤ 1
γ1

δ2

2ν2 ‖u0(x)− u∗0(x)‖2
L2(Ω) +

γ2 − 2
γ1 − 1

2δ|ΩT |

+
ν

γ1 − 1

∫
ΩT

2
2−p(·)

2 |∇(v− v∗)|p(·)dz.
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Then, we get from the second equation in (12) the following estimate:

‖v(x, t)− v∗(x, t)‖2
L2(Ω) + 2

∫
ΩT

(a(z,∇v)− a(z,∇v∗))∇(v− v∗)dz ≤ ‖v0 − v∗0‖2
L2(Ω)

+
δ2

γ1ν2 ‖u0(x)− u∗0(x)‖2
L2(Ω) +

γ2 − 2
γ1 − 1

4δ|ΩT |+
2ν

γ1 − 1

∫
ΩT

2
2−p(·)

2 |∇(v− v∗)|p(·)dz,

provided p(·) ≥ γ1 > 2. Finally, applying the monotonicity condition (3) as for concluding
estimate (13) and reabsorbing the last term on the right-hand side on its left-hand side, we
derive at (8).

4. Conclusions and Discussion

Summarising, we were able to show that the unique weak solution to system (1)
satisfies certain stability estimates, i.e., we proved that two weak solutions to system (1)
with different initial values are controlled by their initial values. Remarkable is that
the solution of the first equation of system (1) is controlled only by its corresponding
initial values, while the solution of the second equation of system (1) is controlled by its
corresponding initial values and the ones from the first equation due to the cross-diffusion
term. Moreover, the stability estimate (8) is also dependent on several system parameters.
Notable is also that the left-hand side of the stability estimate (8) may increase or decrease
independently on the initial values of the solution but dependent on the system parameters
δ, ν, γ1 and γ2, and the measure of ΩT , which affects the stability. Notice that for small δ,
e.g., 0 ≤ δ � 1, the last two terms in (8) are less or not dominating and in the limit case
δ→ 0 they disappear, which is to expect. Finally, we want to discuss some special cases.

(i) If one is a priori able to guarantee that δ
∫

ΩT
∇(u− u∗)∇(v− v∗)dz ≤ 0, then one can

immediately conclude that the stability estimate (9) holds true and one can use the
structure assumption on the vector-field a(z, ·) from [1].

(ii) Furthermore, if one can assume that the vector-field a(z, ·) satisfies the monotonicity
condition (a(z, w)− a(z, w0)) · (w− w0) ≥ |∇(w− w0)|2 for all z ∈ ΩT and w, w0 ∈
Rn, then again, the stability estimates (7) and (10) are satisfied.
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