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1. Introduction

The common coupled coincidence points and common coupled fixed points in con-
ventional metric spaces and probabilistic metric spaces have been studied for a long time
in which the symmetric condition is satisfied. In this paper, we shall consider the fuzzy
semi-metric space in which the symmetric condition is not satisfied. In this case, the role of
triangle inequality should be re-interpreted. Therefore, four kinds of triangle inequalities
are considered, which can also refer to Wu [1].

Schweizer and Sklar [2–4] introduced probabilistic metric space, in which the (con-
ventional) metric space is associated with the probability distribution functions. For more
details on the theory of probabilistic metric space, we can refer to Hadžić and Pap [5] and
Chang et al. [6]. An interesting special kind of probabilistic metric space is the so-called
Menger space. Kramosil and Michalek [7] proposed the fuzzy metric space based on
the idea of Menger space. The definition of fuzzy metric space is presented below. Let
X be a nonempty universal set associated with a t-norm ∗. Given a mapping M from
X × X × [0, ∞) into [0, 1], the 3-tuple (X, M, ∗) is called a fuzzy metric space when the
following conditions are satisfied:

• for any x, y ∈ X, M(x, y, t) = 1 for all t > 0 if and only if x = y;
• M(x, y, 0) = 0 for all x, y ∈ X;
• M(x, y, t) = M(y, x, t) for all x, y ∈ X and t ≥ 0; and,
• M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t ≥ 0.

The mapping M in the fuzzy metric space (X, M, ∗) can be treated as a membership
function of a fuzzy subset of the product space X × X × [0, ∞). According to the first
and second conditions of fuzzy metric space, the function value M(x, y, t) means that the
membership degree of the distance that is less than or equal to t between x and y.

In this paper, we are going to consider the semi-metric space that is completely differ-
ent from the fuzzy metric space. The so-called fuzzy semi-metric space does not assume the
symmetric condition M(x, y, t) = M(y, x, t). Without this condition, the concept of triangle
inequalities should be carefully treated. In this paper, there are four kinds of different
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triangle inequalities considered. It will be realized that, when the symmetric condition is
satisfied, these four different kinds of triangle inequalities will be equivalent to the classical
one. Being inspired by the intuitive observations, the concepts of rational condition and
distance condition are proposed for the purpose of simplifying the discussions regarding
the common coupled coincidence points and common coupled fixed points in a fuzzy
semi-metric space.

Rakić et al. [8,9] studied the fixed points in b-fuzzy metric spaces.
Mecheraoui et al. [10] obtained the sufficient condition for a G-Cauchy sequence to be an
M-Cauchy sequence in fuzzy metric space. On the other hand, Gu and Shatanawi [11] used
the concept of w-compatible mappings for studying the common coupled fixed points of
two hybrid pairs of mappings in partial metric spaces. Petruel [12,13] studied the fixed
point for graphic contractions and fixed point for multi-valued locally contractive operators.
Hu et al. [14], Mohiuddine and Alotaibi [15], Qiu and Hong [16], and the references therein
studied the common coupled coincidence points and common coupled fixed points in fuzzy
metric spaces. Wu [17] also studied the common coincidence points in fuzzy semi-metric
spaces. In this paper, the common coupled coincidence points and common coupled fixed
points in fuzzy semi-metric spaces will be studied by considering four kinds of triangle
inequalities. Although the common coupled fixed points are the common coupled coinci-
dence points, the sufficient conditions will be completely different when considering the
uniqueness.

This paper is organized, as follows. In Section 2, the concept of fuzzy semi-metric
spaces will be introduced. Because the symmetric condition is not satisfied, four different
kinds of triangle inequalities will be taken into account to study the common coupled fixed
points. In Section 3, in order to study the Cauchy sequence in fuzzy semi-metric space,
the auxiliary functions that are based on the supremun are proposed. In Section 4, while
using the auxiliary functions proposed in Section 3, the desired property regarding the
Cauchy sequence in fuzzy semi-metric space will be presented. In Section 5, many kinds
of common coupled coincidence points in fuzzy semi-metric spaces will be investigated
by considering the four different kinds of triangle inequalities. Finally, in Section 6, the
common coupled fixed points shown in fuzzy semi-metric spaces will also be studied
based on the four different kinds of triangle inequalities.

2. Fuzzy Semi-Metric Spaces

The concept of fuzzy semi-metric space is based on the concept of t-norm (triangular
norm), which will be introduced below. Let ∗ : [0, 1]× [0, 1] → [0, 1] be a function that
is defined on the product set [0, 1]× [0, 1]. We say that ∗ is a t-norm when the following
conditions are satisfied:

• a ∗ 1 = a.
• a ∗ b = b ∗ a.
• b < c implies a ∗ b ≤ a ∗ c.
• (a ∗ b) ∗ c = a ∗ (b ∗ c).

The following properties regarding t-norm will be used in the further study.

Proposition 1. We have the following properties.

(i) Suppose that the t-norm ∗ is left-continuous at 1 with respect to the first or second component.
For any a, b ∈ (0, 1) with a > b, there exists r ∈ (0, 1) that satisfies a ∗ r ≥ b.

(ii) Suppose that the t-norm ∗ is left-continuous at 1 with respect to the first or second component.

For any a ∈ (0, 1) and any p ∈ N, there exists r ∈ (0, 1) satisfying
p times︷ ︸︸ ︷

r ∗ r ∗ · · · ∗ r> a.
(iii) Given any fixed a, b ∈ [0, 1], suppose that the t-norm ∗ is continuous at a and b with respect

the first or second component, and that {an}∞
n=1 and {bn}∞

n=1 are two sequences in [0, 1]
satisfying an → a and bn → b as n→ ∞. Subsequently, we have an ∗ bn → a ∗ b as n→ ∞.

(iv) Given any fixed a, b ∈ (0, 1], suppose that the t-norm ∗ is left-continuous at a and b with
respect to the first or second component, and that {an}∞

n=1 and {bn}∞
n=1 are two sequences in
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[0, 1] satisfying an → a− and bn → b− as n→ ∞. Afterwards, we have an ∗ bn → a ∗ b as
n→ ∞.

(v) Given any fixed a, b ∈ [0, 1), suppose that the t-norm ∗ is right-continuous at a and b with
respect to the first or second component, and that {an}∞

n=1 and {bn}∞
n=1 are two sequences in

[0, 1] satisfying an → a+ and bn → b+ as n→ ∞. Subsequently, we have an ∗ bn → a ∗ b
as n→ ∞.

Wu [1,17,18] proposed the concept of fuzzy semi-metric space. The formal definition
is given below.

Definition 1. Let X be a nonempty set and let M be a mapping from X× X× [0, ∞) into [0, 1].
We say that (X, M) is fuzzy semi-metric space when the following conditions are satisfied:

• for any x, y ∈ X, M(x, y, t) = 1 for all t ≥ 0 if and only if x = y;
• M(x, y, 0) = 0 for all x, y ∈ X with x 6= y;

The mapping M is said to satisfy the symmetric condition when M(x, y, t) = M(y, x, t) for
any x, y ∈ X and t ≥ 0.

Definition 2. Let (X, M) be a fuzzy semi-metric space. We say that M satisfies the distance
condition when, for any x, y ∈ X with x 6= y, there exists t0 > 0, such that M(x, y, t0) 6= 0.

Because the symmetric condition is not necessarily be satisfied in fuzzy semi-metric
space (X, M), by referring to Wu [1,17,18], four kinds of triangle inequalities are proposed
below.

Definition 3. Let X be a nonempty set, let ∗ be a t-norm, and let M be a mapping that is defined
on X× X× [0, ∞) into [0, 1].

• We say that M satisfies the ./-triangle inequality when the following inequality is satisfied:

M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0.

• We say that M satisfies the .-triangle inequality when the following inequality
is satisfied:

M(x, y, t) ∗M(z, y, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0.

• We say that M satisfies the /-triangle inequality when the following inequality
is satisfied:

M(y, x, t) ∗M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0.

• We say that M satisfies the �-triangle inequality when the following inequality
is satisfied:

M(y, x, t) ∗M(z, y, s) ≤ M(x, z, t + s) for all x, y, z ∈ X and s, t > 0.

Remark 1. Suppose that the mapping M satisfies the ./-triangle inequality. Subsequently, we have

M(a, b, t1) ∗M(b, c, t2) ∗M(c, d, t3) ≤ M(a, c, t1 + t2) ∗M(c, d, t3) ≤ M(a, d, t1 + t2 + t3)

and
M(b, a, t1) ∗M(c, b, t2) = M(c, b, t2) ∗M(b, a, t1) ≤ M(c, a, t1 + t2),

which implies

M(b, a, t1) ∗M(c, b, t2) ∗M(d, c, t3) ≤ M(d, a, t1 + t2 + t3).
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In general, we have

M(x1, x2, t1) ∗M(x2, x3, t2) ∗ · · · ∗M
(
xp, xp+1, tp

)
≤ M

(
x1, xp+1, t1 + t2 + · · ·+ tp

)
and

M(x2, x1, t1) ∗M(x3, x2, t2) ∗ · · · ∗M
(

xp+1, xp, tp+1
)
≤ M

(
xp+1, x1, t1 + t2 + · · ·+ tp

)
.

For the case of satisfying the .-triangle inequality, /-triangle inequality and �-triangle in-
equality, we can refer to Wu [17].

Proposition 2 (Wu [1]). Let (X, M) be a fuzzy semi-metric space. Then we have the following
properties.

(i) Suppose that the mapping M satisfies the ./-triangle inequality. Subsequently, M is non-
decreasing in the sense of M(x, y, t1) ≥ M(x, y, t2) for any fixed x, y ∈ X and t1 > t2.

(ii) Suppose that the mapping M satisfies the �-triangle inequality. Subsequently, M is symmet-
rically non-decreasing in the sense of M(x, y, t1) ≥ M(y, x, t2) for any fixed x, y ∈ X and
t1 > t2.

(iii) Suppose that the mapping M satisfies the .-triangle inequality or the /-triangle inequality.
Afterwards, M is both non-decreasing and symmetrically non-decreasing.

Let {xn}∞
n=1 be a sequence in the fuzzy semi-metric space (X, M).

• We write xn
M.

−→ x as n→ ∞ when M(xn, x, t)→ 1 as n→ ∞ for all t > 0.

• We write xn
M/

−→ x as n→ ∞ when M(x, xn, t)→ 1 as n→ ∞ for all t > 0.

• We write xn
M−→ x as n→ ∞ when xn

M.

−→ x and xn
M/

−→ x as n→ ∞.

Proposition 3 (Wu [17]). Let (X, M) be a fuzzy semi-metric space, and let {xn}∞
n=1 be a sequence

in X. Suppose that the t-norm ∗ is left-continuous at 1 with respect to the first or second component.
Afterwards, we have the following results.

(i) Assume that the mapping M satisfies the ./-triangle inequality or �-triangle inequality.
Subsequently, we have the following properties.

• If xn
M/

−→ x and xn
M.

−→ y as n→ ∞, then x = y.

• If xn
M.

−→ x and xn
M/

−→ y as n→ ∞, then x = y.

(ii) Assume that M satisfies the /-triangle inequality. If xn
M.

−→ x and xn
M.

−→ y as n→ ∞, then
x = y.

(iii) Assume that M satisfies the .-triangle inequality. If xn
M/

−→ x and xn
M/

−→ y as n→ ∞, then
x = y.

Proposition 4 (Wu [18]). Let (X, M) be a fuzzy semi-metric space, and let {(xn, yn, tn)}∞
n=1 be

a sequence in X× X× (0, ∞). Assume that the t-norm ∗ is left-continuous with respect to the first
or second component. For any sequences {an}∞

n=1 and {bn}∞
n=1 in [0, 1], we also assume that the

following inequality is satisfied

sup
n
(an ∗ bn) ≥

(
sup

n
an

)
∗
(

sup
n

bn

)
.

(i) Suppose that M satisfies the ./-triangle inequality, and that tn → t◦, xn
M−→ x◦ and

yn
M−→ y◦ as n→ ∞. Subsequently, the following statements hold true.

• If M is continuous with respect to the distance at t◦, then M(xn, yn, tn)→ M(x◦, y◦, t◦)
as n→ ∞.
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• If M is symmetrically continuous with respect to the distance at t◦, then M(xn, yn, tn)→
M(y◦, x◦, t◦) as n→ ∞.

(ii) Suppose that M satisfies the ◦-triangle inequality for ◦ ∈ {., /}, and that tn → t◦, xn
M−→

x◦ and yn
M−→ y◦ as n→ ∞. If M is continuous or symmetrically continuous with respect

to the distance at t◦, then M(xn, yn, tn)→ M(x◦, y◦, t◦) = M(y◦, x◦, t◦) as n→ ∞.

(iii) Suppose that M satisfies the �-triangle inequality, and that tn → t◦ as n→ ∞, xn
M.

−→ x◦,

and yn
M.

−→ y◦ as n → ∞ simultaneously, or xn
M/

−→ x◦ and yn
M/

−→ y◦ as n → ∞
simultaneously. If M is continuous or symmetrically continuous with respect to the distance
at t◦, then M(xn, yn, tn)→ M(y◦, x◦, t◦) = M(x◦, y◦, t◦) as n→ ∞.

Definition 4. Let {xn}∞
n=1 be a sequence in the fuzzy semi-metric space (X, M).

• We say that {xn}∞
n=1 is a >-Cauchy sequence when, given any pair (r, t) with t > 0 and

0 < r < 1, there exists nr,t ∈ N satisfying M(xm, xn, t) > 1− r for all pairs (m, n) of
integers m and n with m > n ≥ nr,t.

• We say that {xn}∞
n=1 is a <-Cauchy sequence when, given any pair (r, t) with t > 0 and

0 < r < 1, there exists nr,t ∈ N satisfying M(xn, xm, t) > 1− r for all pairs (m, n) of
integers m and n with m > n ≥ nr,t.

• We say that {xn}∞
n=1 is a Cauchy sequence when, given any pair (r, t) with t > 0 and

0 < r < 1, there exists nr,t ∈ N satisfying M(xm, xn, t) > 1− r and M(xn, xm, t) > 1− r
for all pairs (m, n) of integers m and n with m, n ≥ nr,t and m 6= n.

• We say that (X, M) is (>, .)-complete when each >-Cauchy sequence {xn}∞
n=1 is convergent

in the sense of xn
M.

−→ x.
• We say that (X, M) is (>, /)-complete when each >-Cauchy sequence {xn}∞

n=1 is convergent

in the sense of xn
M/

−→ x.
• We say that (X, M) is (<, .)-complete when each <-Cauchy sequence {xn}∞

n=1 is convergent

in the sense of xn
M.

−→ x.
• We say that (X, M) is (<, /)-complete when each <-Cauchy sequence {xn}∞

n=1 is convergent

in the sense of xn
M/

−→ x.

Definition 5. Let (X, M) be a fuzzy semi-metric space. Four types of continuities are defined below.

• We say that the function f : X → X is (., .)-continuous with respect to M when, given any

sequence {xn}∞
n=1 in X, xn

M.

−→ x, as n→ ∞ implies f (xn)
M.

−→ f (x) as n→ ∞.
• We say that the function f : X → X is (., /)-continuous with respect to M when, given any

sequence {xn}∞
n=1 in X, xn

M.

−→ x, as n→ ∞ implies f (xn)
M/

−→ f (x) as n→ ∞.
• We say that the function f : X → X is (/, .)-continuous with respect to M when, given any

sequence {xn}∞
n=1 in X, xn

M/

−→ x, as n→ ∞ implies f (xn)
M.

−→ f (x) as n→ ∞.
• We say that the function f : X → X is (/, /)-continuous with respect to M when, given any

sequence {xn}∞
n=1 in X, xn

M/

−→ x, as n→ ∞ implies f (xn)
M/

−→ f (x) as n→ ∞.

3. Auxiliary Functions Based on the Supremum

The concept of auxiliary function based on X2 was proposed by Wu [17] to study the
common coincidence point. In this paper, we are going to consider the auxiliary function
that is based on X4 to study the common coupled coincidence point.

Definition 6. Let (X, M) be a fuzzy semi-metric space. We say that the mapping M satisfies the
rational condition when M(x, y, t)→ 0, as t→ 0+ for any fixed x, y ∈ X.
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Let (X, M) be a fuzzy semi-metric space along with a t-norm ∗. We define the mapping
η : X4 × [0, ∞)→ [0, 1] on the product space X4 × [0, ∞), as follows

η(x, y, u, v, t) = M(x, y, t) ∗M(u, v, t).

Subsequently, we have the following interesting result that will be used to define the
auxiliary functions.

Proposition 5. Let (X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the
rational condition. Suppose that the t-norm ∗ is right-continuous at 0 with respect to the first or
second component. Subsequently, we have

lim
t→0+

η(x, y, u, v, t) = 0. (1)

The following definition of auxiliary functions are based on X4. This new concept
extends the auxiliary functions based on X2, as proposed by Wu [17].

Definition 7. Let (X, M) be a fuzzy semi-metric space, such that M satisfies the rational condition
in which the t-norm ∗ is also right-continuous at 0 with respect to the first or second component. For
any fixed x, y, u, v ∈ X and λ ∈ [0, 1) with x 6= y or u 6= v, we define a function Φ : X4 → [0, ∞)
on the product space X4 by

Φ(λ, x, y, u, v) = sup{t > 0 : η(x, y, u, v, t) ≤ 1− λ}

and Φ(λ, x, x, u, u) = 0 for λ ∈ [0, 1).

For x 6= y or u 6= v, we need to claim that the set {t > 0 : η(x, y, u, v, t) ≤ 1− λ} is
not empty. Suppose that {t > 0 : η(x, y, u, v, t) ≤ 1− λ} = ∅. By definition, we must have
η(x, y, u, v, t) > 1− λ for all t > 0. This says that

lim
t→0+

η(x, y, u, v, t) ≥ 1− λ,

which contradicts (1). Therefore, we indeed have {t > 0 : η(x, y, u, v, t) ≤ 1− λ} 6= ∅,
which says that the function Φ is well-defined.

Proposition 6. Let (X, M) be a fuzzy semi-metric space such that the mapping M satisfies the
rational condition in which the t-norm ∗ is right-continuous at 0 with respect to the first or second
component. Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), we have the following properties.

(i) Suppose that Φ(λ, x, y, u, v) < ∞. For any ε > 0, we have

η(x, y, u, v, Φ(λ, x, y, u, v) + ε) > 1− λ

(ii) Assume that ε > 0 is sufficiently small satisfying Φ(λ, x, y, u, v) > ε. Subsequently, we
have the following properties.

• If the mapping M satisfies the ./-triangle inequality or the .-triangle inequality or the
/-triangle inequality, then

η(x, y, u, v, Φ(λ, x, y, u, v)− ε) ≤ 1− λ.

• If the mapping M satisfies the .-triangle inequality or the /-triangle inequality, then

η(y, x, u, v, Φ(λ, x, y, u, v)− ε) ≤ 1− λ and η(x, y, v, u, Φ(λ, x, y, u, v)− ε) ≤ 1− λ.
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• If the mapping M satisfies the .-triangle inequality or the /-triangle inequality or the
�-triangle inequality, then

η(y, x, v, u, Φ(λ, x, y, u, v)− ε) ≤ 1− λ.

Proof. The proof is similar to the argument in Wu [17] by considering X4 instead of X2.

Proposition 7. Let (X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the
rational condition in which the t-norm ∗ is right-continuous at 0 with respect to the first or second
component. Given any fixed x, y, u, v ∈ X and λ ∈ (0, 1), we have the following properties.

(i) Assume that η(x, y, u, v, t) ≤ 1− λ. Then, we have the following results.

• If the mapping M satisfies the ./-triangle inequality or the .-triangle inequality or the
/-triangle inequality, then t ≤ Φ(λ, x, y, u, v).

• If the mapping M satisfies the .-triangle inequality or the /-triangle inequality, then
t ≤ Φ(λ, y, x, u, v) and t ≤ Φ(λ, x, y, v, u).

• If the mapping M satisfies the .-triangle inequality or the /-triangle inequality or the
�-triangle inequality, then t ≤ Φ(λ, y, x, v, u).

(ii) We have the following results.

• Suppose that the mapping M satisfies the ./-triangle inequality or the .-triangle inequal-
ity or the /-triangle inequality. If η(x, y, u, v, t) > 1− λ, then Φ(λ, x, y, u, v) < ∞
and t ≥ Φ(λ, x, y, u, v).

• Suppose that the mapping M satisfies the .-triangle inequality or the /-triangle inequality.

– If η(x, y, u, v, t) > 1− λ, then Φ(λ, y, x, u, v) < ∞ and Φ(λ, x, y, v, u) < ∞.
– If η(x, y, u, v, t) > 1− λ and Φ(λ, x, y, u, v) < ∞, then t ≥ Φ(λ, x, y, u, v).

• Suppose that the mapping M satisfies the .-triangle inequality or the /-triangle inequal-
ity or the �-triangle inequality.

– If η(x, y, u, v, t) > 1− λ, then Φ(λ, y, x, v, u) < ∞.
– If η(x, y, u, v, t) > 1− λ and Φ(λ, x, y, u, v) < ∞, then t ≥ Φ(λ, x, y, u, v).

Proof. The proof is similar to the argument in Wu [17] by considering X4 instead of X2.

Proposition 8. Let (X, M) be a fuzzy semi-metric space, such that M satisfies the rational condi-
tion, in which the t-norm ∗ is right-continuous at 0 and left-continuous at 1 with respect to the first
or second component.

(i) Suppose that M satisfies the ./-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · ,
yp ∈ X and any fixed µ ∈ (0, 1], there exists λ ∈ (0, 1), such that

Φ(µ, x1, xp, y1, yp) ≤ Φ(λ, x1, x2, y1, y2) + Φ(λ, x2, x3, y2, y3) + · · ·
+ Φ(λ, xp−2, xp−1, yp−2, yp−1) + Φ(λ, xp−1, xp, yp−1, yp)

Φ(µ, x1, xp, yp, y1) ≤ Φ(λ, x1, x2, y2, y1) + Φ(λ, x2, x3, y3, y2) + · · ·
+ Φ(λ, xp−2, xp−1, yp−1, yp−2) + Φ(λ, xp−1, xp, yp, yp−1)

Φ(µ, xp, x1, y1, yp) ≤ Φ(λ, xp, xp−1, yp−1, yp) + Φ(λ, xp−1, xp−2, yp−2, yp−1)

+ · · ·+ Φ(λ, x3, x2, y2, y3) + Φ(λ, x2, x1, y1, y2)

Φ(µ, xp, x1, yp, y1) ≤ Φ(λ, xp, xp−1, yp, yp−1) + Φ(λ, xp−1, xp−2, yp−1, yp−2)

+ · · ·+ Φ(λ, x3, x2, y3, y2) + Φ(λ, x2, x1, y2, y1).
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(ii) Suppose that M satisfies the .-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · ,
yp ∈ X and any fixed µ ∈ (0, 1], there exists λ ∈ (0, 1) such that

max
{

Φ(µ, x1, xp, y1, yp), Φ(µ, x1, xp, yp, y1), Φ(µ, xp, x1, y1, yp), Φ(µ, xp, x1, yp, y1)
}

≤ Φ(λ, x1, x2, y1, y2) + Φ(λ, x3, x2, y3, y2) + Φ(λ, x4, x3, y4, y3)

+ · · ·+ Φ(λ, xp, xp−1, yp, yp−1)

(iii) Suppose that M satisfies the /-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · ,
yp ∈ X and any fixed µ ∈ (0, 1], there exists λ ∈ (0, 1), such that

max
{

Φ(µ, x1, xp, y1, yp), Φ(µ, x1, xp, yp, y1), Φ(µ, xp, x1, y1, yp), Φ(µ, xp, x1, yp, y1)
}

≤ Φ(λ, x2, x1, y2, y1) + Φ(λ, x2, x3, y2, y3) + Φ(λ, x3, x4, y3, y4)

+ · · ·+ Φ(λ, xp−1, xp, yp−1, yp)

(iv) Suppose that M satisfies the �-triangle inequality. Given any fixed x1, x2, · · · , xp, y1, y2, · · · ,
yp ∈ X and any fixed µ ∈ (0, 1], there exists λ ∈ (0, 1), such that the following inequalities
are satisfied.

• If p is even and Φ(µ, x1, xp, y1, yp) < ∞, then

Φ(µ, x1, xp, y1, yp) ≤ Φ(λ, x1, x2, y1, y2) + Φ(λ, x2, x3, y2, y3) + Φ(λ, x4, x3, y4, y3)

+ Φ(λ, x4, x5, y4, y5) + Φ(λ, x6, x5, y6, y5) + Φ(λ, x6, x7, y6, y7)

+ · · ·+ Φ(λ, xp, xp−1, yp, yp−1) (2)

• If p is even and Φ(µ, x1, xp, yp, y1) < ∞, then

Φ(µ, x1, xp, yp, y1) ≤ Φ(λ, x1, x2, y2, y1) + Φ(λ, x2, x3, y3, y2) + Φ(λ, x4, x3, y3, y4)

+ Φ(λ, x4, x5, y5, y4) + Φ(λ, x6, x5, y5, y6) + Φ(λ, x6, x7, y7, y6)

+ · · ·+ Φ(λ, xp, xp−1, yp−1, yp) (3)

• If p is even and Φ(µ, xp, x1, y1, yp) < ∞, then

Φ(µ, xp, x1, y1, yp) ≤ Φ(λ, x2, x1, y1, y2) + Φ(λ, x3, x2, y2, y3) + Φ(λ, x3, x4, y4, y3)

+ Φ(λ, x5, x4, y4, y5) + Φ(λ, x5, x6, y6, y5) + Φ(λ, x7, x6, y6, y7)

+ · · ·+ Φ(λ, xp−1, xp, yp, yp−1) (4)

• If p is even and Φ(µ, xp, x1, yp, y1) < ∞, then

Φ(µ, xp, x1, yp, y1) ≤ Φ(λ, x2, x1, y2, y1) + Φ(λ, x3, x2, y3, y2) + Φ(λ, x3, x4, y3, y4)

+ Φ(λ, x5, x4, y5, y4) + Φ(λ, x5, x6, y5, y6) + Φ(λ, x7, x6, y7, y6)

+ · · ·+ Φ(λ, xp−1, xp, yp−1, yp) (5)

• If p is odd and Φ(µ, x1, xp, y1, yp) < ∞, then

Φ(µ, x1, xp, y1, yp) ≤ Φ(λ, x2, x1, y2, y1) + Φ(λ, x3, x2, y3, y2) + Φ(λ, x3, x4, y3, y4)

+ Φ(λ, x5, x4, y5, y4) + Φ(λ, x5, x6, y5, y6) + Φ(λ, x7, x6, y7, y6)

+ · · ·+ Φ(λ, xp−1, xp, yp−1, yp) (6)

• If p is odd and Φ(µ, x1, xp, yp, y1) < ∞, then

Φ(µ, x1, xp, yp, y1) ≤ Φ(λ, x2, x1, y1, y2) + Φ(λ, x3, x2, y2, y3) + Φ(λ, x3, x4, y4, y3)

+ Φ(λ, x5, x4, y4, y5) + Φ(λ, x5, x6, y6, y5) + Φ(λ, x7, x6, y6, y7)

+ · · ·+ Φ(λ, xp−1, xp, yp, yp−1) (7)
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• If p is odd and Φ(µ, xp, x1, y1, yp) < ∞, then

Φ(µ, xp, x1, y1, yp) ≤ Φ(λ, x1, x2, y2, y1) + Φ(λ, x2, x3, y3, y2) + Φ(λ, x4, x3, y3, y4)

+ Φ(λ, x4, x5, y5, y4) + Φ(λ, x6, x5, y5, y6) + Φ(λ, x6, x7, y7, y6)

+ · · ·+ Φ(λ, xp, xp−1, yp−1, yp) (8)

• If p is odd and Φ(µ, xp, x1, yp, y1) < ∞, then

Φ(µ, xp, x1, yp, y1) ≤ Φ(λ, x1, x2, y1, y2) + Φ(λ, x2, x3, y2, y3) + Φ(λ, x4, x3, y4, y3)

+ Φ(λ, x4, x5, y4, y5) + Φ(λ, x6, x5, y6, y5) + Φ(λ, x6, x7, y6, y7)

+ · · ·+ Φ(λ, xp, xp−1, yp, yp−1) (9)

Proof. The proof is similar to the argument put foward in Wu [17] by considering X4

instead of X2.

Proposition 9. Let (X, M) be a fuzzy semi-metric space, such that M satisfies the rational condi-
tion, in which the t-norm ∗ is right-continuous at 0 with respect to the first or second component.
Let {xn}∞

n=1 and {yn}∞
n=1 be two sequences in X.

(i) Assume that M satisfies the ./-triangle inequality or the .-triangle inequality or the /-triangle
inequality. Subsequently, we have the following results.

• {xn}∞
n=1 and {yn}∞

n=1 are two >-Cauchy sequences if and only if, given any ε > 0 and
λ ∈ (0, 1), there exists nε,λ ∈ N satisfying Φ(λ, xm, xn, ym, yn) < ε for m > n ≥ nε,λ.

• {xn}∞
n=1 is a >-Cauchy sequences and {yn}∞

n=1 is a <-Cauchy sequences if and only if,
given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying Φ(λ, xm, xn, yn, ym) <
ε for m > n ≥ nε,λ.

• {xn}∞
n=1 is a <-Cauchy sequences and {yn}∞

n=1 is a >-Cauchy sequences if and only if,
given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying Φ(λ, xn, xm, ym, yn) <
ε for m > n ≥ nε,λ.

• {xn}∞
n=1 and {yn}∞

n=1 are two <-Cauchy sequences if and only if, given any ε > 0 and
λ ∈ (0, 1), there exists nε,λ ∈ N satisfying Φ(λ, xn, xm, yn, ym) < ε for m > n ≥ nε,λ.

(ii) Assume that M satisfies the �-triangle inequality. Then, we have the following results.

• Let {xn}∞
n=1 and {yn}∞

n=1 be two >-Cauchy sequences. Suppose that Φ(λ, xm, xn, ym, yn)
< ∞ for all λ ∈ (0, 1) and m > n. Subsequently, given any ε > 0, there exists
nε,λ ∈ N satisfying Φ(λ, xm, xn, ym, yn) < ε for m > n ≥ nε,λ.

• Let {xn}∞
n=1 be a >-Cauchy sequence and let {yn}∞

n=1 be a <-Cauchy sequence. Suppose
that Φ(λ, xm, xn, yn, ym) < ∞ for any all λ ∈ (0, 1) and m > n. Afterwards, given
any ε > 0, there exists nε,λ ∈ N satisfying Φ(λ, xm, xn, yn, ym) < ε for m > n ≥ nε,λ.

• Let {xn}∞
n=1 be a <-Cauchy sequence and let {yn}∞

n=1 be a >-Cauchy sequence. Suppose
that Φ(λ, xn, xm, ym, yn) < ∞ for all λ ∈ (0, 1) and m > n. Subsequently, given any
ε > 0, there exists nε,λ ∈ N satisfying Φ(λ, xn, xm, ym, yn) < ε for m > n ≥ nε,λ.

• Let {xn}∞
n=1 and {yn}∞

n=1 be two <-Cauchy sequences. Suppose that Φ(λ, xn, xm, yn, ym)
< ∞ for all λ ∈ (0, 1) and m > n. Subsequently, given any ε > 0, there exists
nε,λ ∈ N satisfying Φ(λ, xn, xm, yn, ym) < ε for m > n ≥ nε,λ.

• Suppose that, given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying
Φ(λ, xm, xn, ym, yn) < ε for m > n ≥ nε,λ. Then {xn}∞

n=1 and {yn}∞
n=1 are two

<-Cauchy sequences.
• Suppose that, given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying

Φ(λ, xm, xn, yn, ym) < ε for m > n ≥ nε,λ. Then {xn}∞
n=1 is a <-Cauchy sequences

and {yn}∞
n=1 is a >-Cauchy sequences.

• Suppose that, given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying
Φ(λ, xn, xm, ym, yn) < ε for m > n ≥ nε,λ. Subsequently, {xn}∞

n=1 is a >-Cauchy
sequences and {yn}∞

n=1 is a <-Cauchy sequences.
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• Suppose that, given any ε > 0 and λ ∈ (0, 1), there exists nε,λ ∈ N satisfying
Φ(λ, xn, xm, yn, ym) < ε for m > n ≥ nε,λ. Afterwards, {xn}∞

n=1 and {yn}∞
n=1 are

two >-Cauchy sequences.

Proof. The proof is similar to the argument in Wu [17] by considering X4 instead of X2.

4. Cauchy Sequences

Given any a ∈ [0, 1], for convenience, we write

(∗a)n =

n times︷ ︸︸ ︷
a ∗ a ∗ · · · ∗ a

and

[
∗η
(

a, b, c, d,
t

kn

)]2n

=

2n times︷ ︸︸ ︷
η

(
a, b, c, d,

t
kn

)
∗ η

(
a, b, c, d,

t
kn

)
∗ · · · ∗ η

(
a, b, c, d,

t
kn

)
.

The following results will be used for further discussion.

Proposition 10. Let (X, M) be a fuzzy semi-metric space such that M satisfies the rational
condition in which the t-norm is right-continuous at 0 and left-continuous at 1 in the first or second
component. Let 0 < k < 1 be any fixed constant, and let {xn}∞

n=1 and {yn}∞
n=1 be two sequences

in X.

(i) Suppose that M satisfies the ./-triangle inequality. Subsequently, we have the following
results.

• Assume that there exist fixed elements a1, b1, c1, d1 ∈ X satisfying

sup
λ∈[0,1)

Φ(λ, a1, b1, c1, d1) < ∞ (10)

and

η(xn, xn+1, yn, yn+1, t) ≥
[
∗η
(

a1, b1, c1, d1,
t

kn

)]2n

for each n ∈ N. (11)

Afterwards, {xn}∞
n=1 and {yn}∞

n=1 are <-Cauchy sequences.
• Assume that there exist fixed elements a2, b2, c2, d2 ∈ X satisfying

sup
λ∈[0,1)

Φ(λ, a2, b2, c2, d2) < ∞ (12)

and

η(xn, xn+1, yn+1, yn, t) ≥
[
∗η
(

a2, b2, c2, d2,
t

kn

)]2n

for each n ∈ N. (13)

Subsequently, {xn}∞
n=1 is a <-Cauchy sequence and {yn}∞

n=1 is a >-Cauchy sequence.
• Assume that there exist fixed elements a3, b3, c3, d3 ∈ X satisfying

sup
λ∈[0,1)

Φ(λ, a3, b3, c3, d3) < ∞ (14)

and

η(xn+1, xn, yn, yn+1, t) ≥
[
∗η
(

a3, b3, c3, d3,
t

kn

)]2n

for each n ∈ N. (15)
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Subsequently, {xn}∞
n=1 is a >-Cauchy sequence and {yn}∞

n=1 is a <-Cauchy sequence.
• Assume that there exist fixed elements a4, b4, c4, d4 ∈ X satisfying

sup
λ∈[0,1)

Φ(λ, a4, b4, c4, d4) < ∞ (16)

and

η(xn+1, xn, yn+1, yn, t) ≥
[
∗η
(

a4, b4, c4, d4,
t

kn

)]2n

for each n ∈ N. (17)

Afterwards, {xn}∞
n=1 and {yn}∞

n=1 are >-Cauchy sequences.

(ii) Suppose that the mapping M satisfies the .-triangle inequality or the /-triangle inequality,
and that the conditions (10), (11), (16) and (17) are satisfied. Subsequently, {xn}∞

n=1
and {yn}∞

n=1 are both >-Cauchy and <-Cauchy sequences. In other words, {xn}∞
n=1 and

{yn}∞
n=1 are Cauchy sequences.

(iii) Suppose that the mapping M satisfies the �-triangle inequality, and that any one of the
following two conditions is satisfied:

• conditions (10), (11), (16) and (17) are satisfied;
• conditions (12), (13), (14) and (15) are satisfied.

Afterwards, {xn}∞
n=1 and {yn}∞

n=1 are both >-Cauchy and <-Cauchy sequences.

Proof. To prove part (i), if [
∗η
(

a1, b1, c1, d1,
t

kn

)]2n

≤ 1− λ,

then, using Proposition 1, there exists λ̄(t) ∈ (0, 1) satisfying

η

(
a1, b1, c1, d1,

t
kn

)
≤ 1− λ̄(t).

Let
λ0 ≡ inf

t
λ̄(t) ∈ [0, 1).

Then λ0 depends only on λ and

η

(
a1, b1, c1, d1,

t
kn

)
≤ 1− inf

t
λ̄(t) ≡ 1− λ0.

It follows that{
t > 0 :

[
∗η
(

a1, b1, c1, d1,
t

kn

)]2n

≤ 1− λ

}
⊆
{

t > 0 : η

(
a1, b1, c1, d1,

t
kn

)
≤ 1− λ0

}
. (18)
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Therefore, we obtain

Φ(λ, xn, xn+1, yn, yn+1)

= sup{t > 0 : η(xn, xn+1, yn, yn+1, t) ≤ 1− λ}

≤ sup

{
t > 0 :

[
∗η
(

a1, b1, c1, d1,
t

kn

)]2n

≤ 1− λ

}
(by (11))

≤ sup
{

t > 0 : η

(
a1, b1, c1, d1,

t
kn

)
≤ 1− λ0

}
(by (18))

= sup{kn · t > 0 : η(a1, b1, c1, d1, t) ≤ 1− λ0}
= kn · sup{t > 0 : η(a1, b1, c1, d1, t) ≤ 1− λ0}
= kn ·Φ(λ0, a1, b1, c1, d1), (19)

where λ0 only depends on λ. Now, we assume that m, n ∈ N with m > n. Given any
µ ∈ (0, 1], by part (i) of Proposition 8, there exists λ ∈ (0, 1), such that

Φ(µ, xn, xm, yn, ym)

≤ Φ(λ, xn, xn+1, yn, yn+1) + Φ(λ, xn+1, xn+2, yn+1, yn+2) + · · ·+ Φ(λ, xm−1, xm, ym−1, ym)

≤ kn ·Φ(λ0, a1, b1, c1, d1) + kn+1 ·Φ(λ0, a1, b1, c1, d1) + · · ·+ km−1 ·Φ(λ0, a1, b1, c1, d1) (by (19))

= Φ(λ0, a1, b1, c1, d1) ·
kn · (1− km−n)

1− k
≤ Φ(λ0, a1, b1, c1, d1) ·

kn

1− k

≤
[

sup
λ∈[0,1)

Φ(λ, a1, b1, c1, d1)

]
· kn

1− k
→ 0 as n→ ∞, (20)

which also says that, given any ε ∈ (0, 1) and µ ∈ (0, 1), there exists nµ,ε ∈ N such
that m > n ≥ nµ,ε implies Φ(µ, xn, xm, yn, ym) < ε. By the fourth case of part (i) of
Proposition 9, it follows that {xn}∞

n=1 and {yn}∞
n=1 are <-Cauchy sequences. The other

results can be similarly obtained by using the corresponding cases of Proposition 9 and
part (i) of Proposition 8.

To prove part (ii), we consider two cases below.

• Suppose that the mapping M satisfies the .-triangle inequality. While using part (ii) of
Proposition 8, we have

max{Φ(µ, xn, xm, yn, ym), Φ(µ, xm, xn, yn, ym), Φ(µ, xn, xm, ym, yn), Φ(µ, xm, xn, ym, yn)}

≤ Φ(λ, xm, xm−1, ym, ym−1) + Φ(λ, xm−1, xm−2, ym−1, ym−2)

+ · · ·+ Φ(λ, xn+2, xn+1, yn+2, yn+1) + Φ(λ, xn, xn+1, yn, yn+1). (21)

By referring to (19), we can similarly obtain

Φ(λ, xn+1, xn, yn+1, yn) ≤ kn ·Φ(λ0, a4, b4, c4, d4). (22)

By using (19), (22), (21) and referring to (20), we have

max{Φ(µ, xn, xm, yn, ym), Φ(µ, xm, xn, yn, ym), Φ(µ, xn, xm, ym, yn), Φ(µ, xm, xn, ym, yn)}

≤ max

{[
sup

λ∈[0,1)
Φ(λ, a1, b1, c1, d1)

]
,

[
sup

λ∈[0,1)
Φ(λ, a4, b4, c4, d4)

]}
· kn

1− k
→ 0 as n→ ∞.

Using the above argument, we can show that {xn}∞
n=1 and {yn}∞

n=1 are both >-Cauchy
and <-Cauchy sequences in metric sense.

• Suppose that the mapping M satisfies the /-triangle inequality. While using part (iii)
of Proposition 8, we have
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max{Φ(µ, xn, xm, yn, ym), Φ(µ, xm, xn, yn, ym), Φ(µ, xn, xm, ym, yn), Φ(µ, xm, xn, ym, yn)}
≤ Φ(λ, xn+1, xn, yn+1, yn) + Φ(λ, xn+1, xn+2, yn+1, yn+2)

+ · · ·+ Φ(λ, xm−2, xm−1, ym−2, ym−1) + Φ(λ, xm−1, xm, ym−1, ym).

Using the above argument, we can show that {xn}∞
n=1 and {yn}∞

n=1 are both >-Cauchy
and <-Cauchy sequences in metric sense.

To prove part (iii), we consider two cases below.

• Assume that the conditions (10), (11), (16) and (17) are satisfied. If p is even, then,
using (2) and (5) in part (iv) of Proposition 8, we can similarly show that {xn}∞

n=1
and {yn}∞

n=1 are both >-Cauchy and <-Cauchy sequences in metric sense. If p is odd,
then, using (6) and (9) in Proposition 8, we can similarly obtain the desired results.

• Assume that the conditions (12), (13), (14) and (15) are satisfied. If p is even, then,
using (3) and (4) in part (iv) of Proposition 8, we can similarly show that {xn}∞

n=1 and
{yn}∞

n=1 are both >-Cauchy and <-Cauchy sequences in the metric sense. If p is odd,
then, using (7) and (8) in Proposition 8, we can similarly obtain the desired results.

This completes the proof.

5. Common Coupled Coincidence Points

In this section, we are going to investigate the common coupled coincidence points
in fuzzy semi-metric space under some suitable conditions. We consider two mappings
T : X× X → X and f : X → X.

• Recall that the mappings T and f commute when f (T(x, y)) = T( f (x), f (y)) for all
x, y ∈ X.

• Recall that an element (x∗, y∗) ∈ X × X is called a coupled coincidence point of
mappings T and f when T(x∗, y∗) = f (x∗) and T(y∗, x∗) = f (y∗). In particular, if
x∗ = f (x∗) = T(x∗, y∗) and y∗ = f (y∗) = T(y∗, x∗), then (x∗, y∗) is called a common
coupled fixed point of T and f .

Let {Tn}∞
n=1 be a sequence of mappings from the product space X× X into X, and let

f be a mapping from X into itself satisfying Tn(X, X) ⊆ f (X) for all n ∈ N. Given any two
initial elements x0, y0 ∈ X, since Tn(X, X) ⊆ f (X), there exist x1, y1 ∈ X satisfying

f (x1) = T1(x0, y0) and f (y1) = T1(y0, x0).

Similarly, there also exist x2, y2 ∈ X, satisfying

f (x2) = T2(x1, y1) and f (y2) = T2(y1, x1).

Continuing this process, we can construct two sequences {xn}∞
n=1 and {yn}∞

n=1, satisfying

f (xn) = Tn(xn−1, yn−1) and f (yn) = Tn(yn−1, xn−1) (23)

for n ∈ N.
In the sequel, the common coupled coincidence points will be separately studied by

considering the four different types of triangle inequalities.

Theorem 1 (Satisfying the ./-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the ./-triangle inequality. Suppose
that the following conditions are satisfied.

• The t-norm ∗ is left-continuous with respect to the first or second component.
• Given any fixed x, y ∈ X, the mapping M(x, y, ·) : (0, ∞)→ [0, 1] is left-continuous at each

point t ∈ (0, ∞).
• The mappings Tn : X× X → X and f : X → X satisfy the inclusions Tn(X, X) ⊆ f (X) for

all n ∈ N.



Axioms 2021, 10, 5 14 of 31

• The mappings f and Tn commute; that is, f (Tn(x, y)) = Tn( f (x), f (y)) for all x, y ∈ X and
all n ∈ N.

• Given any x, y, u, v ∈ X, the following contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ∗M( f (y), f (v), t), (24)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Subsequently, we have the following results.

(i) Suppose that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞,

and that any one of the following conditions is satisfied:

(a) (X, M) is (<, .)-complete and f is simultaneously (., .)-continuous and (., /)-
continuous with respect to M;

(b) (X, M) is (<, /)-complete and f is simultaneously (/, .)-continuous and (/, /)-
continuous with respect to M.

Afterwards, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

We further assume that the following conditions are satisfied.

• The inequality (24) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ·M( f (y), f (v), t), (25)

where the t-norm ∗ is replaced by the product of real numbers.
• The mapping M satisfies the distance condition in Definition 2.
• For any fixed x, y ∈ X and t > 0, the following mapping

$(α) = M
(

x, y, klog2 α · t
)

(26)

is differentiable on (0, ∞).

Afterwards, we have the following results.

(A) Suppose that (x̄, ȳ) is another coupled coincidence point of mappings f and Tn0 for
some n0 ∈ N. Subsequently, f (x◦) = f (x̄) and f (y◦) = f (ȳ).

(B) There exists (x◦, y◦) ∈ X × X such that ( f (x◦), f (y◦)) ∈ X × X is the common
coupled fixed point of the mappings {Tn}∞

n=1.

Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Afterwards, the point (x◦, y◦) ∈ X× X can be

obtained by taking the limit f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X× X can be

obtained by taking the limit f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).

(ii) Suppose that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞,

and that any one of the following conditions is satisfied:

(c) (X, M) is (>, .)-complete and f is simultaneously (., .)-continuous and (., /)-
continuous with respect to M;

(d) (X, M) is (>, /)-complete and f is simultaneously (/, .)-continuous and (/, /)-
continuous with respect to M.
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Afterwards, we have the same result as part (i).

Proof. We can generate two sequences {xn}∞
n=1 and {yn}∞

n=1 from the initial element
x0 = x∗ and y0 = y∗ according to (23). Then we have

f (x∗) = f (x0) and f (y∗) = f (y0)

and
T1(x∗, y∗) = T1(x0, y0) = f (x1) and T1(y∗, x∗) = T1(y0, x0) = f (y1).

To prove part (i), from (23) and (24), we obtain

M( f (x1), f (x2), t) = M(T1(x0, y0), T2(x1, y1), t)

≥ M
(

f (x0), f (x1),
t

k12

)
∗M

(
f (y0), f (y1),

t
k12

)
and

M( f (y1), f (y2), t) = M(T1(y0, x0), T2(y1, x1), t)

≥ M
(

f (y0), f (y1),
t

k12

)
∗M

(
f (x0), f (x1),

t
k12

)
.

By induction, we can obtain

M( f (xn), f (xn+1), t) ≥
[
∗M
(

f (x0), f (x1),
t

∏n
i=1 ki,i+1

)]2n−1

∗
[
∗M
(

f (y0), f (y1),
t

∏n
i=1 ki,i+1

)]2n−1

(27)

and

M( f (yn), f (yn+1), t) ≥
[
∗M
(

f (x0), f (x1),
t

∏n
i=1 ki,i+1

)]2n−1

∗
[
∗M
(

f (y0), f (y1),
t

∏n
i=1 ki,i+1

)]2n−1

. (28)

Part (i) of Proposition 2 says that the mapping M(x, y, ·) is nondecreasing. Because ki,i+1 ≤
k for each i ∈ N, using the increasing property of t-norm to (27) and (28), we also have

M( f (xn), f (xn+1), t) ≥
[
∗M
(

f (x0), f (x1),
t

kn

)]2n−1

∗
[
∗M
(

f (y0), f (y1),
t

kn

)]2n−1

=

[
∗η
(

f (x0), f (x1), f (y0), f (y1),
t

kn

)]2n−1

(29)

and

M( f (yn), f (yn+1), t) ≥
[
∗M
(

f (x0), f (x1),
t

kn

)]2n−1

∗
[
∗M
(

f (y0), f (y1),
t

kn

)]2n−1

=

[
∗η
(

f (x0), f (x1), f (y0), f (y1),
t

kn

)]2n−1

. (30)

Using the increasing property of t-norm to (29) and (30), we have
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η( f (xn), f (xn+1), f (yn), f (yn+1), t) = M( f (xn), f (xn+1), t) ∗M( f (yn), f (yn+1), t)

≥
[
∗η
(

f (x0), f (x1), f (y0), f (y1),
t

kn

)]2n

. (31)

From part (i) of Proposition 10, it follows that { f (xn)}∞
n=1 and { f (yn)}∞

n=1 are <-Cauchy
sequences. We consider the following cases

• Suppose that condition (a) is satisfied. Because (X, M) is (<, .)-complete, there exist
x◦, y◦ ∈ X, such that

f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦ as n→ ∞. (32)

Since f is simultaneously (., .)-continuous and (., /)-continuous with respect to M,
we have

f ( f (xn))
M.

−→ f (x◦) and f ( f (yn))
M.

−→ f (y◦) as n→ ∞

and
f ( f (xn))

M/

−→ f (x◦) and f ( f (yn))
M/

−→ f (y◦) as n→ ∞,

which say that, for all t > 0,

M( f ( f (xn)), f (x◦), t)→ 1− as n→ ∞ (33)

M( f ( f (yn)), f (y◦), t)→ 1− as n→ ∞ (34)

M( f (x◦), f ( f (xn)), t)→ 1− as n→ ∞ (35)

M( f (y◦), f ( f (yn)), t)→ 1− as n→ ∞. (36)

• Suppose that condition (b) is satisfied. Since (X, M) is (<, /)-complete, there exist
x◦, y◦ ∈ X, such that

f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦ as n→ ∞. (37)

Because f is simultaneously (/, .)-continuous and (/, /)-continuous with respect to
M, we can similarly obtain (33)–(36).

Using (23) and the commutativity of Tn and f , we obtain

f ( f (xn+1)) = f (Tn+1(xn, yn)) = Tn+1( f (xn), f (yn))) (38)

and
f ( f (yn+1)) = f (Tn+1(yn, xn)) = Tn+1( f (yn), f (xn))).

We shall show that f (x◦) = Tn(x◦, y◦) and f (y◦) = Tn(y◦, x◦) for all n ∈ N. Now we have

M( f ( f (xn+1)), Tn(x◦, y◦), kt) ≥ M( f ( f (xn+1)), Tn(x◦, y◦), kn+1,n · t)
= M(Tn+1( f (xn), f (yn))), Tn(x◦, y◦), kn+1,n · t) (by (38))

≥ M( f ( f (xn)), f (x◦), t) ∗M( f ( f (yn)), f (y◦), t) (by (24)). (39)

Using Proposition 1 and applying (33) and (34) to (39), we obtain

lim inf
n→∞

M( f ( f (xn+1)), Tn(x◦, y◦), t)

≥ lim
n→∞

[
M
(

f ( f (xn)), f (x◦),
t
k

)
∗M

(
f ( f (yn)), f (y◦),

t
k

)]
= 1 ∗ 1 = 1,

which says that

1 ≥ lim sup
n→∞

M( f ( f (xn+1)), Tn(x◦, y◦), t) ≥ lim inf
n→∞

M( f ( f (xn+1)), Tn(x◦, y◦), t) ≥ 1.
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Therefore, we obtain

lim
n→∞

M( f ( f (xn+1)), Tn(x◦, y◦), t) = 1, i.e., M( f ( f (xn+1)), Tn(x◦, y◦), t)→ 1− . (40)

Using the ./-triangle inequality, we see that

M( f (x◦), Tn(x◦, y◦), 2t) ≥ M( f (x◦), f ( f (xn+1)), t) ∗M( f ( f (xn+1)), Tn(x◦, y◦), t).

While using the left-continuity of t-norm ∗ to (35) and (40), we obtain M( f (x◦), Tn(x◦, y◦), 2t) =
1 for all t > 0. Therefore we must have f (x◦) = Tn(x◦, y◦) for all n ∈ N. We can similarly
show that f (y◦) = Tn(y◦, x◦) for all n ∈ N.

To prove property (A), let (x̄, ȳ) be another coupled coincidence point of f and Tn0 for
some n0 ∈ N, i.e., f (x̄) = Tn0(x̄, ȳ) and f (ȳ) = Tn0(ȳ, x̄). Because the mapping M(x, y, ·) is
non-decreasing, by (25), we have

M( f (x◦), f (x̄), t) = M(Tn0(x◦, y◦), Tn0(x̄, ȳ), t)

≥ M
(

f (x◦), f (x̄),
t

kn0,n0

)
·M
(

f (y◦), f (ȳ),
t

kn0,n0

)
≥ M

(
f (x◦), f (x̄),

t
k

)
·M
(

f (y◦), f (ȳ),
t
k

)
(41)

and

M( f (y◦), f (ȳ), t) = M(Tn0(y
◦, x◦), Tn0(ȳ, x̄), t)

≥ M
(

f (y◦), f (ȳ),
t

kn0,n0

)
·M
(

f (x◦), f (x̄),
t

kn0,n0

)
≥ M

(
f (y◦), f (ȳ),

t
k

)
·M
(

f (x◦), f (x̄),
t
k

)
. (42)

Therefore we obtain

M( f (x◦), f (x̄), t) ≥ M
(

f (x◦), f (x̄),
t
k

)
·M
(

f (y◦), f (ȳ),
t
k

)
(by (41))

≥
[

M
(

f (x◦), f (x̄),
t

k2

)
·M
(

f (y◦), f (ȳ),
t

k2

)]
·
[

M
(

f (x◦), f (x̄),
t

k2

)
·M
(

f (y◦), f (ȳ),
t

k2

)]
(by (41) and (42))

=

[
M
(

f (x◦), f (x̄),
t

k2

)]2

·
[

M
(

f (y◦), f (ȳ),
t

k2

)]2

≥ · · · ≥
[

M
(

f (x◦), f (x̄),
t

kn

)]2n−1

·
[

M
(

f (y◦), f (ȳ),
t

kn

)]2n−1

(by repeating to use (41) and (42))

≥
[

M
(

f (x◦), f (x̄),
t

kn

)]2n

·
[

M
(

f (y◦), f (ȳ),
t

kn

)]2n

(43)

(since M(x, y, t) ≤ 1 for any x, y ∈ X and t > 0),

Equivalently, we have

M( f (x◦), f (x̄), t) ≥
[

M
(

f (x◦), f (x̄),
t

klog2 n

)]n
·
[

M
(

f (y◦), f (ȳ),
t

klog2 n

)]n
.

which can be rewritten as

M
(

f (x◦), f (x̄), klog2 n · t
)
≥ [M( f (x◦), f (x̄), t)]n · [M( f (y◦), f (ȳ), t)]n. (44)
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We are going to claim that there exists t̄ > 0, such that M( f (y◦), f (ȳ), t) 6= 0 for all t ≥ t̄.
We consider the following two cases.

• If f (y◦) = f (ȳ), then M( f (y◦), f (ȳ), t) = 1 for all t > 0.
• If f (y◦) 6= f (ȳ), then the distance condition says that there exits t̄ > 0 such that

M( f (y◦), f (ȳ), t̄) 6= 0. Part (i) of Proposition 2 says that the mapping M(x, y, ·) is
nondecreasing. It follows that M( f (y◦), f (ȳ), t) 6= 0 for all t ≥ t̄.

Therefore, from (44), for any fixed t > 0 with t ≥ t̄, we have[
M
(

f (x◦), f (x̄), klog2 n · t
)]1/n

· 1
M( f (y◦), f (ȳ), t)

≥ M( f (x◦), f (x̄), t). (45)

Because 0 < k < 1 and the mapping M(x, y, ·) is non-decreasing, the function $ defined
in (26) is non-increasing, which says that $′(α) ≤ 0 on (0, ∞). Because M satisfies the
rational condition, we have

lim
t→0+

M(x, y, t) = 0 (46)

for any fixed x, y ∈ X with x 6= y. We consider

$(α) = M
(

f (x◦), f (x̄), klog2 α · t
)

.

Suppose that f (x◦) 6= f (x̄). Because 0 < k < 1, it follows that klog2 α · t → 0+ as α → ∞.
Therefore, (46) says that $(α)→ 0+ as α→ ∞. Subsequently, we obtain

lim
n→∞

[
M( f (x◦), f (x̄), klog2 n · t)

]1/n

= lim
n→∞

[$(n)]1/n = lim
n→∞

exp
[

ln $(n)
n

]
= exp

[
lim

n→∞

$′(n)
$(n)

]
(using the l’Hospital’s rule)

= 0 (since $′(n) ≤ 0 and $(n)→ 0+). (47)

By taking n → ∞ in (45) and using (47), it follows that M( f (x◦), f (x̄), t) = 0 for all
t ≥ t̄. Because f (x◦) 6= f (x̄), the distance condition says that there exits t0 > 0, such
that M( f (x◦), f (x̄), t0) 6= 0, i.e., M( f (x◦), f (x̄), t) 6= 0 for all t ≥ t0 by the nondecreasing
property of M(x, y, ·), which contradicts M( f (x◦), f (x̄), t) = 0 for all t ≥ t̄. Therefore, we
must have f (x◦) = f (x̄). We can similarly obtain f (y◦) = f (ȳ).

To prove property (B), using the commutativity of Tn and f , we have

f (Tn(x◦, y◦)) = Tn( f (x◦), f (y◦)) = Tn(Tn(x◦, y◦), Tn(y◦, x◦)) (48)

and
f (Tn(y◦, x◦)) = Tn( f (y◦), f (x◦)) = Tn(Tn(y◦, x◦), Tn(x◦, y◦)). (49)

By regarding x̄ as Tn(x◦, y◦) and ȳ as Tn(y◦, x◦), the equalities (48) and (49) say that

f (x̄) = Tn(x̄, ȳ) and f (ȳ) = Tn(ȳ, x̄).

Therefore, using property (A), we must have

f (x◦) = f (x̄) = f (Tn(x◦, y◦)) = Tn( f (x◦), f (y◦))

and
f (y◦) = f (ȳ) = f (Tn(y◦, x◦)) = Tn( f (y◦), f (x◦)),

which says that ( f (x◦), f (y◦)) ∈ X×X is the common coupled fixed point of the mappings
{Tn}∞

n=1.
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To prove part (ii), we can similarly obtain

η( f (xn+1), f (xn), f (yn+1), f (yn), t) ≥
[
∗η
(

f (x1), f (x0), f (y1), f (y0),
t

kn

)]2n

. (50)

From part (i) of Proposition 10, it follows that { f (xn)}∞
n=1 and { f (yn)}∞

n=1 are >-Cauchy
sequences. We consider two cases below.

• Suppose that condition (c) is satisfied. Because (X, M) is (>, .)-complete, there exist
x◦, y◦ ∈ X, such that

f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦ as n→ ∞.

Because f is simultaneously (., .)-continuous and (., /)-continuous with respect to
M, we can similarly obtain (33)–(36).

• Suppose that condition (d) is satisfied. Because (X, M) is (>, /)-complete, there exist
x◦, y◦ ∈ X, such that

f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦ as n→ ∞.

Because f is simultaneously (/, .)-continuous and (/, /)-continuous with respect to
M, we can similarly obtain (33)–(36).

The remaining proof follows from the similar argument of part (i). This completes the
proof.

In Theorem 1, since the fuzzy semi-metric M is not necessarily symmetric, if the
contractive inequalities (24) and (25) are not satisfied and, alternatively, the following
converse-contractive inequalities

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗M( f (v), f (y), t)

and
M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ·M( f (v), f (y), t)

are satisfied, then we can also obtain the desired results by assuming the different condi-
tions.

Theorem 2 (Satisfying the ./-Triangle Inequality: Converse-Contractive Inequality). Let
(X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the rational condition and
the ./-triangle inequality. Suppose that the following conditions are satisfied.

• The first four conditions in Theorem 1 are satisfied.
• For any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗M( f (v), f (y), t), (51)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Subsequently, we have the following results.

(i) Suppose that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞,

and that any one of the following conditions is satisfied:

(a) (X, M) is (<, .)-complete and f is (., .)-continuous or (., /)-continuous with
respect to M;

(b) (X, M) is (<, /)-complete and f is (/, .)-continuous or (/, /)-continuous with
respect to M.
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Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point

(x◦, y◦). We further assume that the following conditions are satisfied.

• The inequality (51) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ·M( f (v), f (y), t),

where the t-norm ∗ is replaced by the product of real numbers;
• The mapping M satisfies the distance condition in Definition 2.
• For any fixed x, y ∈ X and t > 0, the following mapping

$(α) = M
(

x, y, klog2 α · t
)

is differentiable on (0, ∞).

Afterwards, we have the following results.

(A) Suppose that (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N.
Then f (x◦) = f (x̄) and f (y◦) = f (ȳ).

(B) There exists (x◦, y◦) ∈ X × X, such that ( f (x◦), f (y◦)) ∈ X × X is the common
coupled fixed point of the mappings {Tn}∞

n=1.

Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Then the point (x◦, y◦) ∈ X× X can be obtained

by taking the limit f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X× X can be

obtained by taking the limit f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X, according to (23).

(ii) Suppose that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞,

and that any one of the following conditions is satisfied:

(c) (X, M) is (>, .)-complete and f is (., .)-continuous or (., /)-continuous with
respect to M;

(d) (X, M) is (>, /)-complete and f is (/, .)-continuous or (/, /)-continuous with
respect to M;

Subsequently, we have the same result as part (i).

Theorem 3 (Satisfying the .-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the .-triangle inequality. Let (x0, y0) ∈
X× X be an initial element that generates the sequences {xn}∞

n=1 and {yn}∞
n=1 according to (23).

Suppose that the following conditions are satisfied.

• The first four conditions in Theorem 1 are satisfied.
• The following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ∗M( f (y), f (v), t) (52)

or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗M( f (v), f (y), t), (53)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
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• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, .)-complete or (>, .)-complete and f is (., /)-continuous with respect
to M;

(b) (X, M) is (<, /)-complete or (>, /)-complete and f is (/, /)-continuous with respect
to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

We further assume that the following conditions are satisfied.

• The inequality (52) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ·M( f (y), f (v), t) (54)

and the inequality (53) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ·M( f (v), f (y), t), (55)

where the t-norm ∗ is replaced by the product of real numbers, such that any one of the
inequalities (54) and (55) is satisfied.

• The mapping M satisfies the distance condition in Definition 2.
• For any fixed x, y ∈ X and t > 0, the following mapping

$(α) = M
(

x, y, klog2 α · t
)

is differentiable on (0, ∞).

Afterwards, we have the following results.

(A) Suppose that (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N.
Subsequently, f (x◦) = f (x̄) and f (y◦) = f (ȳ).

(B) There exists (x◦, y◦) ∈ X × X, such that ( f (x◦), f (y◦)) ∈ X × X is the common coupled
fixed point of the mappings {Tn}∞

n=1.

Moreover, the point (x◦, y◦) ∈ X× X can be obtained as follows.

• Suppose that condition (a) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦.
• Suppose that condition (b) is satisfied. Afterwards, the point (x◦, y◦) ∈ X×X can be obtained

by taking the limit f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).

Theorem 4 (Satisfying the /-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space such
that the mapping M satisfies the rational condition and the .-triangle inequality. Let (x0, y0) ∈
X× X be an initial element that generates the sequences {xn}∞

n=1 and {yn}∞
n=1 according to (23).

Suppose that the following conditions are satisfied.

• The first four conditions in Theorem 1 are satisfied.
• The following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ∗M( f (y), f (v), t) (56)
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or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗M( f (v), f (y), t), (57)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞;

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, .)-complete or (>, .)-complete and f is (., .)-continuous with respect
to M;

(b) (X, M) is (<, /)-complete or (>, /)-complete and f is (/, .)-continuous with respect
to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

We further assume that the following conditions are satisfied.

• The inequality (56) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ·M( f (y), f (v), t) (58)

and the inequality (57) is replaced by the following inequality

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ·M( f (v), f (y), t), (59)

where the t-norm ∗ is replaced by the product of real numbers, such that any one of the
inequalities (58) and (59) is satisfied.

• The mapping M satisfies the distance condition in Definition 2.
• For any fixed x, y ∈ X and t > 0, the following mapping

$(α) = M
(

x, y, klog2 α · t
)

is differentiable on (0, ∞).

Subsequently, we have the following results.

(A) Suppose that (x̄, ȳ) is another coupled coincidence point of f and Tn0 for some n0 ∈ N.
Subsequently, f (x◦) = f (x̄) and f (y◦) = f (ȳ).

(B) There exists (x◦, y◦) ∈ X × X such that ( f (x◦), f (y◦)) ∈ X × X is the common coupled
fixed point of the mappings {Tn}∞

n=1.

Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Afterwards, the point (x◦, y◦) ∈ X×X can be obtained

by taking the limit f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).

Theorem 5 (Satisfying the �-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the �-triangle inequality. Suppose that
the following conditions are satisfied.

• All five conditions in Theorem 1 are satisfied.
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• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, .)-complete or (>, .)-complete, and f is (., .)-continuous or (., /)-
continuous with respect to M;

(b) (X, M) is (<, /)-complete or (>, /)-complete, and f is (/, .)-continuous or (/, /)-
continuous with respect to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Afterwards, the point (x◦, y◦) ∈ X×X can be obtained

by taking the limit f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).

Theorem 6 (Satisfying the �-Triangle Inequality: Converse-Contractive Inequality). Let
(X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the rational condition and
the �-triangle inequality. Let (x0, y0) ∈ X× X be an initial element that generates the sequences
{xn}∞

n=1 and {yn}∞
n=1 according to (23). Suppose that the following conditions are satisfied.

• The first four conditions in Theorem 1 are satisfied.
• For any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ∗M( f (v), f (y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, .)-complete or (>, .)-complete and f is simultaneously (., .)-continuous
and (., /)-continuous with respect to M;

(b) (X, M) is (<, /)-complete or (>, /)-complete and f is simultaneously (/, .)-continuous
and (/, /)-continuous with respect to M.

Subsequently, the mappings {Tn}∞
n=1 and f have a common coupled coincidence point (x◦, y◦).

Moreover, the point (x◦, y◦) ∈ X× X can be obtained as follows.

• Suppose that condition (a) is satisfied. Afeterwards, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦.
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The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).

6. Common Coupled Fixed Points

Consider the mappings T : X × X → X and f : X → X. Recall that an element
(x∗, y∗) ∈ X× X is called a common coupled fixed point when

x∗ = f (x∗) = T(x∗, y∗) and y∗ = f (y∗) = T(y∗, x∗).

The common coupled fixed points are also the common coupled coincidence points.
The uniqueness of common coupled coincidence points presented above was not guar-
anteed. In this section, we shall investigate the uniqueness of common coupled fixed
points.

The contractive inequality and converse-contractive inequality should consider the
product of real numbers instead of t-norm ∗ in order to obtain the unique common coupled
fixed point.

Theorem 7 (Satisfying the ./-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the ./-triangle inequality. Suppose
that the following conditions are satisfied.

• For any sequences {an}∞
n=1 and {bn}∞

n=1 in [0, 1], the following inequality is satisfied:

sup
n
(an ∗ bn) ≥

(
sup

n
an

)
∗
(

sup
n

bn

)
.

• The t-norm ∗ is left-continuous with respect to the first or second component.
• Given any fixed x, y ∈ X, the mapping M(x, y, ·) : (0, ∞)→ [0, 1] is continuous on (0, ∞).
• The mapping M satisfies the distance condition in Definition 2.
• Given any fixed x, y ∈ X and t > 0, the following mapping

$(α) = M
(

x, y, klog2 α · t
)

is differentiable on (0, ∞).
• The mappings Tn : X → X and f : X → X satisfy the inclusion Tn(X, X) ⊆ f (X) for all

n ∈ N.
• The mappings f and Tn commute.
• Any one of the following conditions is satisfied:

– the mapping f is simultaneously (., .)-continuous and (., /)-continuous with respect
to M;

– the mapping f is simultaneously (/, .)-continuous and (/, /)-continuous with respect
to M.

• for any x, y, u, v ∈ X, the following contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ·M( f (y), f (v), t), (60)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Subsequently, we have the following results.

(i) Suppose that the space (X, M) is simultaneously (<, .)-complete and (<, /)-complete. We
also assume that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞.

Afterwards, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point (x◦, y◦).
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(ii) Suppose that the space (X, M) is simultaneously (>, .)-complete and (>, /)-complete. We
also assume that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

Then the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point (x◦, y◦).

Moreover, the point (x◦, y◦) ∈ X× X can be obtained as follows.

• The point x◦ can be obtained by taking the limit f (xn)
M.

−→ x◦ or the limit f (xn)
M/

−→ x◦;

• The point y◦ can be obtained by taking the limit f (yn)
M.

−→ y◦ or the limit f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).

Proof. According to (23), we can generate two sequences {xn}∞
n=1 and {yn}∞

n=1 from the
initial element x0 = x∗ and y0 = y∗. To prove part (i), while using part (i) of Theorem
1, we have f (x◦) = Tn(x◦, y◦) and f (y◦) = Tn(y◦, x◦) for all n ∈ N. According to the
proof of part (i) of Theorem 1, we see that { f (xn)}∞

n=1 and { f (yn)}∞
n=1 are <-Cauchy

sequences. Since (X, M) issimultaneously (<, .)-complete and (<, /)-complete, using

part (i) of Proposition 3, there exists x◦, y◦ ∈ X satisfying f (xn)
M.

−→ x◦, f (xn)
M/

−→ x◦,

f (yn)
M.

−→ y◦ and f (yn)
M/

−→ y◦ as n → ∞, which also says that f (xn)
M−→ x◦ and

f (yn)
M−→ y◦ as n→ ∞.

Next, we are going to claim that x◦ is a fixed point of f . While using (60) and the
nondecreasing property of M(x, y, ·) by part (i) of Proposition 2, we have

M( f (xn+1), f (x◦), t) = M(Tn+1(xn, yn), Tn(x◦, y◦), t)

≥ M
(

f (xn), f (x◦),
t

kn+1,n

)
·M
(

f (yn), f (y◦),
t

kn+1,n

)
≥ M

(
f (xn), f (x◦),

t
k

)
·M
(

f (yn), f (y◦),
t
k

)
(61)

and

M( f (yn+1), f (y◦), t) = M(Tn+1(yn, xn), Tn(y◦, x◦), t)

≥ M
(

f (yn), f (y◦),
t

kn+1,n

)
·M
(

f (xn), f (x◦),
t

kn+1,n

)
≥ M

(
f (yn), f (y◦),

t
k

)
·M
(

f (xn), f (x◦),
t
k

)
(62)

Because f (xn)
M−→ x◦ and f (yn)

M−→ y◦ as n→ ∞, applying part (i) of Proposition 4 to (61)
and (62), we obtain

M(x◦, f (x◦), t) ≥ M
(

x◦, f (x◦),
t
k

)
·M
(

y◦, f (y◦),
t
k

)
.

and

M(y◦, f (y◦), t) ≥ M
(

x◦, f (x◦),
t
k

)
·M
(

y◦, f (y◦),
t
k

)
.

By referring to (43), we can obtain

M(x◦, f (x◦), t) ≥
[

M
(

x◦, f (x◦),
t

kn

)]2n

·
[

M
(

y◦, f (y◦),
t

kn

)]2n

,
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which is equivalent to

M(x◦, f (x◦), klog2 n · t) ≥ [M(x◦, f (x◦), t)]n · [M(y◦, f (y◦), t)]n. (63)

We are going to claim that there exists t̄ > 0, such that M(y◦, f (y◦), t) 6= 0 for all t ≥ t̄. We
consider the following cases.

• If f (y◦) = y◦, then M(y◦, f (y◦), t) = 1 for all t > 0.
• If f (y◦) 6= y◦, then the distance condition says that there exits t̄ > 0, such that

M(y◦, f (y◦), t̄) 6= 0. Part (i) of Proposition 2 says that the mapping M(x, y, ·) is
nondecreasing. Therefore, we have M(y◦, f (y◦), t) 6= 0 for all t ≥ t̄.

From (63), for any fixed t > 0 with t ≥ t̄, we have[
M
(

x◦, f (x◦), klog2 n · t
)]1/n

· 1
M(y◦, f (y◦), t)

≥ M(x◦, f (x◦), t). (64)

Because 0 < k < 1 and the mapping M(x, y, ·) is nondecreasing, the function $ that is
defined in (26) is non-increasing, which says that $′(α) ≤ 0 on (0, ∞). Because M satisfies
the rational condition, we have

lim
t→0+

M(x, y, t) = 0 (65)

for any fixed x, y ∈ X with x 6= y. We consider

$(α) = M
(

x◦, f (x◦), klog2 α · t
)

.

Suppose that f (x◦) 6= x◦. Since 0 < k < 1, it follows that klog2 α · t → 0+ as α → ∞.
Therefore, (65) says that $(α)→ 0+ as α→ ∞. Subsequently, we obtain

lim
n→∞

[
M(x◦, f (x◦), klog2 n · t)

]1/n

= lim
n→∞

[$(n)]1/n = lim
n→∞

exp
[

ln $(n)
n

]
= exp

[
lim

n→∞

$′(n)
$(n)

]
(using the l’Hospital’s rule)

= 0 (since $′(n) ≤ 0 and $(n)→ 0+). (66)

Applying (66) to (64), we obtain M(x◦, f (x◦), t) = 0 for all t ≥ t̄. Because f (x◦) 6= x◦,
the distance condition says that there exits t0 > 0 such that M(x◦, f (x◦), t0) 6= 0, i.e.,
M(x◦, f (x◦), t) 6= 0 for all t ≥ t0 by the nondecreasing property of M(x, y, ·), which
contradicts M(x◦, f (x◦), t) = 0 for all t ≥ t̄. Therefore we must have f (x◦) = x◦. We can
similarly obtain f (y◦) = y◦; that is,

x◦ = f (x◦) = Tn(x◦, y◦) and y◦ = f (y◦) = Tn(y◦, x◦)

for all n ∈ N.
In order to prove the uniqueness, let (x̄, ȳ) be another common coupled fixed point

of f and {Tn}∞
n=1, i.e., x̄ = f (x̄) = Tn(x̄, ȳ) and ȳ = f (ȳ) = Tn(ȳ, x̄) for all n ∈ N. The

inequality (43) is equivalent to

M(x◦, x̄, klog2 n · t) ≥ [M(x◦, x̄, t)]n · [M(y◦, ȳ, t)]n. (67)

We can similarly show that there exists t̂ > 0, such that M(y◦, ȳ, t) 6= 0 for all t ≥ t̂.
Therefore, from (67), for any fixed t > 0 with t ≥ t̂, we have[

M
(

x◦, x̄, klog2 n · t
)]1/n

· 1
M(y◦, ȳ, t)

≥ M(x◦, x̄, t). (68)

By referring to (68), it follows that M(x◦, x̄, t) = 0 for all t ≥ t̂. Because x̄ 6= x◦, the distance
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condition says that there exits t0 > 0, such that M(x◦, x̄, t0) 6= 0, i.e., M(x◦, x̄, t) 6= 0 for all
t ≥ t0 by the non-decreasing property of M(x, y, ·), which contradicts M(x◦, x̄, t) = 0 for
all t ≥ t̂. Therefore, we must have x̄ = x◦. We can similarly obtain ȳ = y◦. This proves
the uniqueness. Finally, part (ii) can be obtained by applying part (ii) of Theorem 1 to the
above argument. This completes the proof.

Theorem 8 (Satisfying the ./-Triangle Inequality: Converse-Contractive Inequality). Let
(X, M) be a fuzzy semi-metric space such that the mapping M satisfies the rational condition and
the ./-triangle inequality. Suppose that the following conditions are satisfied.

• The first eight conditions of Theorem 7 are satisfied.
• For any x, y, u, v ∈ X, the following converse-contractive inequality is satisfied:

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ·M( f (v), f (y), t), (69)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.

Subsequently, we have the following results.

(i) Suppose that the space (X, M) is simultaneously (<, .)-complete and (<, /)-complete. We
also assume that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞.

Afterwards, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point (x◦, y◦).

(ii) Suppose that the space (X, M) is simultaneously (>, .)-complete and (>, /)-complete. We
also assume that there exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

Subsequently, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point

(x◦, y◦).

Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• The point x◦ can be obtained by taking the limit f (xn)
M.

−→ x◦ or the limit f (xn)
M/

−→ x◦.

• The point y◦ can be obtained by taking the limit f (yn)
M.

−→ y◦ or the limit f (yn)
M/

−→ y◦,

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X, according to (23).

Theorem 9 (Satisfying the .-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the .-triangle inequality. Suppose that
the following conditions are satisfied.

• The first eight conditions of Theorem 7 are satisfied.
• The following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ·M( f (y), f (v), t) (70)

or the following converse-contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ·M( f (v), f (y), t), (71)

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X, satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞
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and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• The mapping f is (., /)-continuous or (/, /)-continuous with respect to M.
• Any one of the following conditions is satisfied:

– (X, M) is (<, .)-complete and (<, /)-complete simultaneously;
– (X, M) is (>, .)-complete and (>, /)-complete simultaneously.

Subsequently, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point

(x◦, y◦). Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• The point x◦ can be obtained by taking the limit f (xn)
M.

−→ x◦ or the limit f (xn)
M/

−→ x◦.

• The point y◦ can be obtained by taking the limit f (yn)
M.

−→ y◦ or the limit f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).

Theorem 10 (Satisfying the /-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space,
such that the mapping M satisfies the rational condition and the /-triangle inequality. Suppose that
the following conditions are satisfied.

• The first eight conditions of Theorem 7 are satisfied.
• The following contractive inequalities is satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (x), f (u), t) ·M( f (y), f (v), t)

or the following converse-contractive inequalities are satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ·M( f (v), f (y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• The mapping f is (., .)-continuous or (/, .)-continuous with respect to M.
• Any one of the following conditions is satisfied:

– (X, M) is (<, .)-complete and (<, /)-complete simultaneously;
– (X, M) is (>, .)-complete and (>, /)-complete simultaneously.

Subsequently, the mappings {Tn}∞
n=1 and f have a unique common coupled fixed point

(x◦, y◦). Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• The point x◦ can be obtained by taking the limit f (xn)
M.

−→ x◦ or the limit f (xn)
M/

−→ x◦.

• The point y◦ can be obtained by taking the limit f (yn)
M.

−→ y◦ or the limit f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).

Theorem 11 (Satisfying the �-Triangle Inequality). Let (X, M) be a fuzzy semi-metric space
such that the mapping M satisfies the rational condition and the �-triangle inequality. Suppose that
the following conditions are satisfied.

• All nine conditions of Theorem 7 are satisfied.
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• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞;

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, .)-complete or (>, .)-complete and f is (., .)-continuous or (., /)-
continuous with respect to M;

(b) (X, M) is (<, /)-complete or (>, /)-complete and f is (/, .)-continuous or (/, /)-
continuous with respect to M.

Afterwards, the mappings T and f have a unique common coupled fixed point (x◦, y◦)
Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Afterwards, the point (x◦, y◦) ∈ X×X can be obtained

by taking the limit f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦.
• Suppose that condition (b) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X, according to (23).

Theorem 12 (Satisfying the �-Triangle Inequality: Converse-Contractive Inequality). Let
(X, M) be a fuzzy semi-metric space, such that the mapping M satisfies the rational condition and
the �-triangle inequality. Suppose that the following conditions are satisfied.

• The first eight conditions of Theorem 7 are satisfied.
• The following converse-contractive inequalities are satisfied

M(Ti(x, y), Tj(u, v), kij · t) ≥ M( f (u), f (x), t) ·M( f (v), f (y), t),

where kij satisfies 0 < kij ≤ k < 1 for all i, j ∈ N and for some constant k.
• There exist x∗, y∗ ∈ X satisfying

sup
λ∈(0,1)

Φ(λ, f (x∗), T1(x∗, y∗), f (y∗), T1(y∗, x∗)) < ∞

and
sup

λ∈(0,1)
Φ(λ, T1(x∗, y∗), f (x∗), T1(y∗, x∗), f (y∗)) < ∞.

• Any one of the following conditions is satisfied:

(a) (X, M) is (<, .)-complete or (>, .)-complete and f is (., .)-continuous and (., /)-
continuous with respect to M;

(b) (X, M) is (<, /)-complete or (>, /)-complete and f is (/, .)-continuous and (/, /)-
continuous with respect to M.

Subsequently, the mappings T and f have a unique common coupled fixed point (x◦, y◦)
Moreover, the point (x◦, y◦) ∈ X× X can be obtained, as follows.

• Suppose that condition (a) is satisfied. Subsequently, the point (x◦, y◦) ∈ X × X can be

obtained by taking the limit f (xn)
M.

−→ x◦ and f (yn)
M.

−→ y◦.
• Suppose that condition (b) is satisfied. Afterwards, the point (x◦, y◦) ∈ X×X can be obtained

by taking the limit f (xn)
M/

−→ x◦ and f (yn)
M/

−→ y◦.

The sequences {xn}∞
n=1 and {yn}∞

n=1 are generated from the initial element (x0, y0) =
(x∗, y∗) ∈ X× X according to (23).
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7. Conclusions

Four different kinds of triangle inequalities play the important role of studying the
common coupled coincidence points and common coupled fixed points in fuzzy semi-
metric spaces. We separately present the theorems of common coupled coincidence points
that are based on the different kinds of triangle inequalities.

• Suppose that the fuzzy semi-metric space satisfies the ./-triangle inequality. Theorem 1
studies the common coupled coincidence points. Because the symmetric condition
is not satisfied. Theorem 2 also studies the common coupled coincidence points by
considering the so-called converse-contractive inequality.

• Theorems 3 and 4 study the common coupled coincidence points when the fuzzy semi-
metric space satisfies the .-triangle inequality and /-triangle inequality, respectively.

• Suppose that the fuzzy semi-metric space satisfies the �-triangle inequality. Theorem 5
studies the common coupled coincidence points, and Theorem 6 studies the com-
mon coupled coincidence points by considering the so-called converse-contractive
inequality.

Because the common coupled fixed points are the common coupled coincidence points,
Theorems 1–6 can also be used to present the common coupled fixed points. However, the
uniqueness cannot be realized from Theorems 1–6. Section 6 studies the uniqueness of
common coupled fixed points.

• Suppose that the fuzzy semi-metric space satisfies the ./-triangle inequality. Theorem 7
studies the uniqueness of common coupled fixed points, and Theorem 8 also studies
the uniqueness of common coupled fixed points by considering the so-called converse-
contractive inequality.

• Theorems 9 and 10 study the uniqueness of common coupled fixed points when the
fuzzy semi-metric space satisfies the .-triangle inequality and /-triangle inequality,
respectively.

• Suppose that the fuzzy semi-metric space satisfies the �-triangle inequality. Theorem 11
studies the uniqueness of common coupled fixed points and Theorem 12 studies the
uniqueness of common coupled fixed points by considering the so-called converse-
contractive inequality.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Wu, H.-C. Fuzzy Semi-Metric Spaces. Mathematics 2018, 6, 106. [CrossRef]
2. Schweizer, B.; Sklar, A. Statistical Metric Spaces. Pac. J. Math. 1960, 10, 313–334. [CrossRef]
3. Schweizer, B.; Sklar, A.; Thorp, E. The Metrization of Statistical Metric Spaces. Pac. J. Math. 1960, 10, 673–675. [CrossRef]
4. Schweizer, B.; Sklar, A. Triangle Inequalities in a Class of Statistical Metric Spaces. J. Lond. Math. Soc. 1963, 38, 401–406. [CrossRef]
5. Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Klumer Academic Publishers: New, York, NY, USA, 2001.
6. Chang, S.S.; Cho, Y.J.; Kang, S.M. Nonlinear Operator Theory in Probabilistic Metric Space; Nova Science Publishers: New York, NY,

USA, 2001.
7. Kramosil, I.; Michalek, J. Fuzzy Metric and Statistical Metric Spaces. Kybernetika 1975, 11, 336–344.
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