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Abstract: This work proposes an interval-based uncertain Susceptible–Infected–Recovered (SIR)
epidemic model. The interval model has been numerically solved by the homotopy analysis method
(HAM). The SIR epidemic model is proposed and solved under different uncertain intervals by
the HAM to obtain the numerical solution of the model. Furthermore, the SIR ODE model was
transformed into a stochastic differential equation (SDE) model and the results of the stochastic and
deterministic models were compared using numerical simulations. The results obtained were com-
pared with the numerical solution and found to be in good agreement. Finally, various simulations
were done to discuss the solution.

Keywords: homotopy analysis method; uncertainty; interval analysis; simulation; stochastic; suscep-
tible; infected; recovered

1. Introduction

Interval analysis is a method developed by mathematicians in the 1950s as a way
of handling bounds or rounding errors and measurement errors in mathematical com-
putation. It is useful in formulating numerical methods that yield desirable results. In
short, it defines each value as a range of possibilities. This work aims to formulate interval
arithmetic that solves upper and lower endpoints for the range of values of a particular
function in one or more variables. These limitations are not necessarily the supremum or
infimum since the exact solution of those values can be very intractable or even impos-
sible. The treatments of interval arithmetic for real intervals of quantities with the form
[u, v] = {x ∈ R : u ≤ x ≤ v}, where u = −∞ and v = ∞, are permitted. The permission

is based on the fact that if one of the real intervals is infinite, we would have an unbounded
interval, and if both are infinite, we would have the extended real number system. Con-
sidering the classical calculation with real numbers, simple arithmetic operations and
functions on elementary intervals must initially be defined. It is after this that complicated
functions can be evaluated from the basic elements. In interval arithmetic, we state the
range of possible outcomes explicitly.

Thus, the results are no longer stated as numbers but as intervals, which denotes
imprecise values. With the size of the intervals, we express the extent of uncertainties, which
are similar to error bars to a metric. The evaluations of the outer bounds of intervals are
enabled by simple arithmetic operations, for example, basic arithmetic and trigonometric.
Interval arithmetic was introduced by [1] as an approach to bound rounding errors in
mathematical computation. The theory of interval analysis emerged considering the
computation of both the exact solution and the error term as a single entity, that is, the

Axioms 2021, 10, 114. https://doi.org/10.3390/axioms10020114 https://www.mdpi.com/journal/axioms

https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-4385-691X
https://doi.org/10.3390/axioms10020114
https://doi.org/10.3390/axioms10020114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/axioms10020114
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms10020114?type=check_update&version=2


Axioms 2021, 10, 114 2 of 19

interval. Though a simple idea, it is a very powerful technique with numerous applications
in mathematics, computer science, and engineering.

In their survey, they discussed the basic concepts of interval arithmetic and some of its
extensions. They also reviewed the successful application of this theory in computer science,
in particular. The authors of [2] investigated the solution of linear and nonlinear ordinary
differential equations with the fuzzy initial condition. They proposed two Euler-type
methods to obtain a numerical solution to the problem. They also compared their solution
with existing results. They observed that the results obtained were tighter than the results
from the existing method. The authors of [3] also investigated the numerical solution
of n-th order fuzzy differential equations in the fuzzy environment using a homotopy
perturbation method (HPM). They used triangular fuzzy convex normalized sets for the
fuzzy parameter and variables.

They also compared their results obtained with the existing solution in terms of plots
to show the efficiency of their method. The authors of [4] gave an overview of applications
of interval arithmetic and discussed the verification methods for linear and nonlinear
systems of equations. They also then discussed item software in the field and gave some
historical remarks. The authors of [5] provided algorithms for computing the operations of
interval arithmetic. They generated data that are sufficiently detailed to convert directly to
a program to efficiently implement the interval operations. Finally, they extended these
results to the case of general intervals, which are defined as connected sets of rules that are
not necessarily closed. For this present work, we considered an interval-based uncertain
epidemic model.

A related mathematical model was proposed first for SIR transmission dynamics
and then the HAM was applied to find the solution. This method employs the concept
of the homotopy from topology to generate a convergent series solution of nonlinear
systems. The convergent series solution of nonlinear systems was enabled by utilizing
a homotopy–MacLaurin series to deal with the nonlinearity in the system. The HAM is
much better than most of the existing analytic approximation method because most of
the existing methods are valid only for weakly nonlinear problems [6]. It overcomes the
restrictions of all other analytic approximation methods and is valid for highly nonlinear
problems [6]. The HAM is always valid even if small physical parameters exist or not, it
provides an easy way to guarantee the convergence of approximation series, and lastly,
it provides sufficient freedom to choose the equation type of sub-problems and the base
function of solutions [6]. The strength of the HAM to naturally exhibit convergence of
the series solution is strange in most analytic and semi-analytic approaches to nonlinear
PDEs [7]. Recently, [8] used the HAM approach to solve the SIS and SIR models of [9]. The
authors of [10], extended the work of [8] to solve the SIR epidemic model in the presence
of a constant vaccination strategy. The authors of [7] also applied the HAM to solve the
SIR epidemic model. They obtained an explicit analytic solution of the coupled nonlinear
differential equations describing the epidemic model proposed. They also compared the
numerical results, which showed that the two results are in good agreement. The authors
of [11] studied a new approach for solving the SIR epidemic model using the HAM that
was based on dividing the entire domain into subintervals.

Other works on the homotopy analysis method with the SIR model can be found
in [12–20]. The aim of this work was to obtain the numerical solution of an interval-based
uncertain SIR epidemic model using the HAM and comparing their stochastic version.
The homotopy analysis method (HAM) has been applied here to study the solution of
the epidemic model under uncertain intervals. The results obtained by the HAM were
compared with the approximate solution and were found to be in strong agreement. We
have also developed the stochastic version of the SIR epidemic model presented in this
paper in order to measure the effect of randomness of the variables in the model. To the
best of our knowledge, no work has been done in the area of an interval-based uncertain
SIR epidemic model and very few works have been done on the stochastic model of SIR
epidemic models so far. The paper is organized as follows: in Section 2, preliminaries
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and basic definitions are presented. In Section 3, the presentation of the proposed model
is made. In Section 4, we describe the interval-based uncertain model. In Section 5, we
present the homotopy analysis approach to a non-linear system, while in Section 6, we
present the solution of the SIR epidemic model by the HAM. In Section 7, we present the
solution, numerical results, and a discussion on the interval-based uncertain SIR epidemic
model. Section 8 showcases the stochastic version of the model. In Section 9, the graphical
illustrations of our results are discussed. In Section 10, the numerical solution of the SDE
model are discussed. In Section 11, we present the discussion, conclusion, and possible
extensions, and finally, the references are presented.

2. Preliminaries

In this section, we present some notations, definitions, and preliminaries that are used
further in this paper.

A. Interval Arithmetic [1]

Interval arithmetic is defined on the sets of intervals, instead of sets of real numbers.
Interval arithmetic defines a set of operations on intervals, as follows:

Y ∗W = {x : ∃ u ∈ Y ∧ ∃ v ∈W : x = u ∗ v},

where u and v are intervals.

B. Closed Interval [1]

A closed interval, denoted by [m, n], is the set of real numbers given by

[m, n] = {x ∈ R : m ≤ x ≤ n}.

C. Endpoint notation, interval equality [1]

Two intervals, A and B, are said to be equal if they are the same sets. Hence, opera-
tionally this occurs if their corresponding endpoints are equal; A = B if A = B and A = B.
Here A, represents the left endpoint of an interval A while A represents the right endpoint
of an interval A, such that A =

[
A, A

]
.

D. Midpoint of A [1]

The midpoint of A is given by

m(A) =
1
2
(

A + A
)
.

E. Interval Arithmetic and Operations [1]

The key point in the definition of arithmetic operations is that computing intervals are
computing with sets. Let

A = [a : a ∈ A] and B = [b : b ∈ B]

Then, the following properties hold:

(i) The sum of two intervals, A and B, is the set

A + B = {a + b : a ∈ A, b ∈ B}.

(ii) The difference of two intervals, A and B, is the set

A− B = {a− b : a ∈ A, b ∈ B}.

(iii) The product of A and B is given by

A ∗ B = {a ∗ b : a ∈ A, b ∈ B}.
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(iv) The quotient of A/B is defined as

A
B

=
{ a

b
: a ∈ A, b ∈ B, b 6= 0

}
.

3. Model Formulation

A population comprising three kinds of individuals, denoted by S (susceptible human),
I (infected human), and R (recovered human), are considered. The susceptible human ((S(t))
is the number of susceptible humans at time t, that is, humans who are vulnerable and
are yet to contract the disease but have a probability of contracting it. The infected human
((I(t)) is the population of the infected and infectious persons who have the disease and
can transmit it to others, while the recovered human ((R(t)) is the population of recovered
humans who cannot get the disease or transmit it, because they have natural immunity,
they have recovered from the disease and are immune to re-infection, they have been
placed in isolation, or they have died.

The population of susceptible humans is generated through the reduction of the rate
of transmission β with the infected, such that the rate of change of the population of
susceptible humans is given by the following:

dS
dt

= −βSI, β > 0. (1)

The rate of change of the population of infected humans is increased by the rate
of transmission β with the susceptible, and reduced by the rate at which the infected
population becomes isolate or recovered γ. Hence it is given by

dI
dt

= −βSI − γI, β > 0, γ > 0. (2)

The population of recovered humans is generated by the rate at which the infected
population becomes isolated or recovered. Hence it is given by

dR
dt

= γI, γ > 0. (3)

Hence, the governing equation by [9] related to the present model is given by

dS
dt

= −βSI,

dI
dt

= −βSI − γI, (4)

dR
dt

= γI.

Subject to the initial conditions,

S(0) = S0, I(0) = I0, R(0) = R0.

4. Interval-Based Uncertain Model

As mentioned in the introduction, if we assumed that the parameters involved in a
model are given in terms of an interval then it will become an interval-based model and
the solution has to be handled carefully. As such, let us suppose that we have the rate of
transmission β and the rate at which the infected population become isolated or recovered
γ in terms of intervals β̃ =

[
β, β
]

and γ̃ =
[
γ, γ

]
then the corresponding interval model

may be written as
dS
dt

= −β̃SI,
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dI
dt

= −β̃SI − γ̃I, (5)

dR
dt

= γ̃I,

with the initial conditions

S0 = S(0), I0 = I(0), R0 = R(0)

where S, I, and R are all now in interval form.
It may be noted from the open literature that the involved parameters, such as β

and γ, are usually given in term of some ranges, so we have investigated the problem
considering those ranges in terms of intervals. Hence, the intervals of β and γ are taken as
the following:

(i) β̃ = [0.01, 0.03],
(ii) γ̃ = [0.005, 0.015].

Next, the above interval model has been solved by the homotopy analysis method
(HAM). We provide, in the next section, some mathematical results.

5. Mathematical Results

We assume here that all parameters in Equation (5) are positive intervals. For the
SIR model (5) to be meaningful biologically, we need to prove that all its stated variables
are non-negative (except S) for all time, that is, the solutions of the Equation (5) with
non-negative initial data will remain non-negative for all time t > 0.

Proposition 1. If the initial values S ≥ 0, I ≥ 0, R ≥ 0, then the solutions (S(t), I(t), R(t))
of the model (5) are non-negative for all t ≥ 0.

Proof. Let Ωp = {t > 0; S(t) > 0, I(t) > 0, R(t) > 0}, We say that, from the equations of
Equation (5) that

dS
dt

= −β̃SI,

where β̃ =
[

β, β
]

and γ̃ =
[
γ, γ

]
. Therefore,

d
dt

S(t) exp
[(

β̃I
)

t
]
= 0.

Hence, S(t1) exp
[(

β̃I
)

t
]
− S(0) = 0, so S(t1) = −S0 exp

[(
β̃I
)

t1

]
< 0.

Then,
d
dt I(t) exp

[(
−β̃S + γ̃

)
t
]
= 0,

I(t) exp
[(
−β̃S + γ̃

)
t
]
− I(0) = 0,

I(t1) = I(0) exp
[
−
(
−β̃S + γ̃

)
t1

]
.

Such that
I(t1) = I(0) exp

[(
β̃S− γ̃

)
t1

]
> 0.

Similarly,
R(t1) = R(0)(γ̃I)t1 > 0.

Hence, the solutions (S(t), I(t), R(t)) of the Equation (5) are non-negative (except S) for
all t > 0. �

Proposition 2. Suppose Equation (5) has a unique interval-based positive solution (S, I, R)
defined on a horizon of infinite time.
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Proof. We established that Equation (5) can be rewritten in the following form:

dS
dt

= f1(S, I, R)S,
dI
dt

= f2(S, I, R)I,

where S + I + R = 1, so R = 1− S− I.

The functions f1 and f2 are C∞. Thus, according to the Cauchy–Lipschitz theorem [21],
Equation (5) has a unique positive solution (S, I) on the infinite time horizon, whenever
S0 > 0, I0 > 0. �

Corollary 1. The compact domain Ω1 = {(S, I, R) ∈ Ω : 0 ≤ S + I + R ≤ 1} is positively
invariant and attracts all trajectories from Ω.

Proposition 3. The domain Ω is positively invariant through the positive semi-wave
produced by Equation (5).

Proof. Equation (5) can be rewritten as follows:

d
dt

 S
I
R

 =

 f1(S, I, R)
f2(S, I, R)
f3(S, I, R)

 = F(S, I, R).

Applying the assumption that

f1(S = 0, I, R) = 0 for (I, R) ≥ 0,

f1(S = c, I, R) = −β̃cI ≤ 0 for (I, R) ≥ 0,

f2(S, I = 0, R) = 0 for (S, R) ≥ 0,

f3(S, I, R = 0) = γ̃I ≥ 0 for (S, I) ≥ 0.

Thus, the field remains on the domain Ω.

In contrast, we show that by setting S(t) and I(t) as continuous intervals, such that
S(0) = S0 > 0 and I(0) = I0 > 0, if I

(̃
t
)
< 0, then by the intermediate value theorem, there

exists τ1 ∈
[
0, t̃
]
, such that I(τ1) = 0. By applying the second equation of Equation (5), we

obtain I(t) = I(τ1)eg = 0 for t ≥ t0, where g is the base of −β̃I(t) −γ̃I. Therefore, I(t) = 0
for t ≥ τ1 which is a contradiction. We apply the same arguments to S(t). We show this
according to Proposition 4. �

Proposition 4 ([22]). Suppose S(t), I(t), R(t) is a solution of Equation (5), then S(t) ≥ 0,
I(t) ≥ 0 and R(t) ≥ 0 for all t > 0.

If we add the first two equations of Equation (5) together, we obtain

d
dt

[S(t) + I(t)] = −γ̃I ≤ 0.

Now, by applying Proposition 4 and S(0) + I(0) = N, we have S(t) + I(t) ≤ N. From
Proposition 4, we also have N − S(t)− I(t) = R(t). Hence, we conclude that R(t) ≥ 0.
From Proposition 4, we have S(t) + I(t) ≤ 0, which implies that N − S(t) − I(t) ≤ N.
Therefore, R(t) = N − S(t)− I(t) ≤ N because

dI
dt
÷ dS

dt
=

dI
dS

=

(
γ̃I
β̃SI
− 1

)
dS,
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then ∫ t

0
dI =

∫ t

0

(
γ̃

β̃
S− 1

)
dS,I(t)− I0 =

γ̃

β̃
loge S0 − S(t)− S0.

Therefore,

I(S(t)) = I0 + S0 +
γ̃

β̃
loge

(
S(t)
S0

)
.

The quantity γ̃

β̃
S− 1 is positive if S < γ̃

β̃
. From Equation (5), it is clear that I(0) = −∞

and I(S0) = I(0) > 0.
Hence, there exists a point S∞, uniquely, 0 < S∞ < S0 such that I(S∞) = 0 and

I(S) > 0 for S∞ < S ≤ S0. The point (S∞, 0) is called the equilibrium point of the first two
Equations of (5) since both dS/dt and dI/dt vanish at t = 0. We show this according to
Proposition 5.

Proposition 5 ([22]). If (S(t), I(t),R(t)) is a solution of the interval base uncertain model
Equation (5) then S(t) + I(t) ≥ N, and 0 ≤ R(t) ≤ N for all t > 0.

By dividing dS
dt by dR

dt , which yields

dS
dR

=
−β̃SI

γ̃I
=
−β̃S

γ̃
.

therefore,
∫ t

0
dS
S =

∫ t
0

(
− β̃

γ̃

)
dR. By the initial condition, we obtain

loge

(
S(t)
S0

)
= loge S(t)− loge S(0) = − β̃

γ̃

∫ t
0 dR,

loge

(
S(t)
S0

)
= − β̃

γ̃ [R(t)− R(0)],

loge

(
S(t)
S0

)
= − β̃

γ̃ R(t) + β̃
γ̃ R0.

So that S(t)
S0

= e−
β̃
γ̃ R(t)·e

β̃
γ̃ R0 , and

S(t) = S0e−
β̃
γ̃ [R(t)−R(0)].

From Proposition 5, 0 < R(t) ≤ N and we have that S0e−
β̃N

γ̃ ≤ S0e−
β̃
γ̃ [R(t)−R(0)] ≤ S0.

Because S0 > 0, we conclude that 0 < S(t) ≤ S0 for all t ≥ 0. We show this according to
Lemma 1.

Lemma 1 ([22]). Suppose (S(t), I(t), R(t)) be a solution of Equation (5) in the domain

Γ2 = {(S, I) : S ≥ 0, I ≥ 0, S + I ≤ N} then 0 < S(t) ≤ S0 and S(t) = S0e
β̃(R(t)−R(0))

γ̃ ≥

S0e−
β̃N

γ̃ for all t ≥ 0.

Recall that from the first equation of Equation (5) and Proposition 5, we have
dS
dt = −β̃SI ≤ 0 and we say S(t) is a decreasing function, then lim

t→∞
S(t) = S∞, such that S∞

is a finite number. Recall also from Equation (5), the third equation dR
dt = γ̃I ≥ 0 and we

say R(t) is an increasing function. Hence, by Proposition 5, lim
t→∞

R(t) = R∞, then R∞ is a

finite number. We show this according to Lemma 2.

Lemma 2 ([22]). If (S(t), I(t), R(t)) is a solution of Equation (5), then S(t)→ S∞ as
R(t)→ R∞ as t→ ∞ , such that S∞ and R∞ are finite numbers.
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Recall from Proposition 5 and from Lemma 2, lim
t→∞

R(t) = R∞. So that lim
t→∞

∫ t
0 I(m)dm = R∞

γ̃ .

Therefore,
∫ dR

dt =
∫

γ̃Idt = R(t) = γ̃
∫ t

0 I(m)dm implies that lim
t→∞

R(t)
γ̃ = lim

t→∞

∫ t
0 I(m)dm.

Then, lim
t→∞

∫ t
0 I(m)dm converges. Therefore, ∑∞

v=0 I(v) is convergent and lim
t→∞

I(t) = 0.

Alternately, we integrate the first equation of Equation (5):∫ ∞

0

dS
dt

dt = −β̃
∫ ∞

0
S(t)I(t)dt.

Because S∞ − S0 = −β̃
∫ ∞

0 S(t)I(t)dt and S0 − S∞ = β̃
∫ ∞

0 S(t)I(t)dt, then

S0 − S∞ ≥ β̃
∫ ∞

0
S(t)I(t)dt,

which implies that I(t) is integrable in the interval [0, ∞), and hence, lim
t→∞

I(t) = 0. We show

this according to Lemma 3.

Lemma 3 ([20]). If (S(t), I(t), R(t)) is a solution of Equation (5) then I(t)→ 0 as t→ ∞ .

We hereby present below the procedure for the HAM for the benefit of finding the
numerical solution of our interval-based uncertain model. Consider a nonlinear equation
of the form

A[v(t)] = 0, (6)

where A is a linear operator, t denotes the time, and v(t) is an unknown function. Let v0(t)
denote an initial approximation of v(t) and Z denote an auxiliary linear operator [21]. We
construct the zero-order deformation equation

(1− q)Z[ϕ(t; q)− ϑ0(t)] = qh1H(t)A(t; p), (7)

where q ∈ [0, 1] is the embedding parameter and h 6= 0 is a non-zero auxiliary function.
When q = 0 and q = 1, the zero-order deformation equation becomes, respectively,

ϕ(t; 0) = ϑ0(t) (8)

and
ϕ(t; 1) = ϑ0(t). (9)

Thus, as q increases from 0 to 1, the solution ϕ(t; q) varies continuously from the initial
approximation ϑ0(t) of the exact solution ϑ(t). Such a kind of continuous variation is called
deformation in topology. Expanding ϕ(t; p) by the Taylor series in the power series of q,
we have

ϕ(t; q) = ϑ0(t) +
∞

∑
m=1

ϑmqm, (10)

where

ϑm(t) =
1

m!
∂m ϕ(t; q)

∂qm (11)

is the deformation derivative. If the auxiliary linear operator A, the initial approximation
v0(t), the auxiliary parameter hI and the auxiliary function H(t) are properly chosen so that

(i) the solution ϕ(t; q) of the zero-order deformation Equation (6) exists for all q ∈ [0, 1],
(ii) the deformation derivative (11) exists for all m = 1, 2, . . .,
(iii) the series (10) converge at q = 1,

then, we have the series solution:

ϕ(t; 1) = ϑ0(t) +
∞

∑
m=1

ϑm(t). (12)
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Define the vector as

→
ϑ m(t) = {ϑ0(t), ϑ1(t), . . . , ϑm(t)}. (13)

According to the definition (10), the governing equation can be derived from the zero-
order deformation Equation (6). Differentiating (6) m-times with respect to the embedding
parameter q, then by setting q = 0, and finally, dividing by m, we have the m-th order
deformation equation

Z[bm(t)− λmϑm−1(t)] = hH(t)Pm

(→
ϑ m−1(t)

)
, (14)

where

Pm

(→
ϑ m−1(t)

)
=

1
(m− 1)!

∂m−1 A[ϕ(t; q)]
∂qm−1 , (15)

λm =

{
0 if m ≤ 1,

1 if m > 1.
(16)

Note that according to definition (16), the right-hand side of (15) depends only on
→
ϑ m−1(t). Thus, we easily gain the series ϑ1(t), ϑ2(t), . . . by solving the linear higher-order
deformation Equation (15) using the well-known symbolic computation software such as
Maple, Matlab, or Mathematica. Prediction and controlling the infection was studied in
detail not only in [22] but also in other papers, for example [4,23–36]. We discuss in the
next section the homotopy analysis method.

6. Homotopy Analysis Method

For this section, we solved the interval-based uncertain model (5) by considering inter-
vals of the transmission as β̃ = [0.01, 0.03] and the interval of recovery as γ̃ = [0.005, 0.015],
respectively. To solve the interval-based uncertain model Equation (5) by the HAM, we
consider the first equation in the interval-based uncertain model Equation (5) and choose
the linear operator

A[S(t; q)] =
dS(t; q)

dt
(17)

with the property that
A[α1] = 0, (18)

where α1 is a constant of integration. The inverse operator A−1 is given by

A−1(·) =
∫ t

0
(·)dt. (19)

Let the nonlinear operator be defined as

A[S(t; q)] =
dS(t; q)

dt
− βS(t; q)I(t; q). (20)

The proper selection of the auxiliary parameter and function during the implementa-
tion of the HAM method can yield uniformly valid and accurate solutions [19].

By constructing the zero-order deformation equation we have the following:

(1− q)A[S(t; q)− S0(t; q)] = qh1H(t)A[S(t; p)], (21)

where

(i) if q = 0 then S(t; 0) = S0(t),
(ii) if q = 1 then S(t; 1) = S(t).
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Therefore, we have the m-th order deformation equation

A[Sh,m(t)− λSm−1(t)] = h1H(t)P
(→

S m−1(t)
)

, m ≥ 1, (22)

where

Pm

(→
S m−1(t)

)
=

dm−1Sm−1(t)]
dt

− β̃SI. (23)

The solution of the m-th order deformation Equation (22) for m > 1 and using h1 = −1
and H(t) = 1 is given by

Sm(t) = λmSm−1(t)−
∫ t

∞

[
dm−1Sm−1(t)

dt
+ β

m−1

∑
k=0

Sk(t)Im−1−k(t)

]
dt, m ≥ 1. (24)

Following earlier steps, we obtain

Im(t) = λm Im−1(t)−
∫ t

∞

[
dm−1 Im−1(t)

dt
− β

m−1

∑
k=0

Sk(t)Im−1−k(t) + γIm−1(t)

]
dt (25)

and

Rm(t) = λmRm−1(t)−
∫ t

∞

[
dm−1Rm−1(t)

dt
− γIm−1(t)

]
dt, (26)

where m ≥ 1 in both last equations.

7. Numerical Results and Discussion

In this section, we present the results of the homotopy analysis method for solving
an interval-based uncertain model. The solutions of the interval-based uncertain model
with interval β̃ = [0.01, 0.03] and constant value γ = 0.01 in Table A1, and with interval
γ̃ = [0.01, 0.015] and constant value β = 0.01 in Table A2. Tables A3 and A4 present the
minimum, maximum, and midpoints of the susceptible, infected, and recovered human
population with intervals of β and γ. The results of the HAM show strong agreement
with the approximation technique. In Table A3, we present the result obtained by the
Runge–Kutta of fourth order method for the susceptible, infected, and recovered humans.
Then, we observed that the results are in good agreement with the homotopy analysis
method (HAM) in Table A4.

In Table A1, we present the result of the susceptible, infected, and recovered humans,
where β is considered an interval and γ is given as a constant. In Table A2, β is considered
a constant and γ is given as an interval. It is observed from Table A1 that as time increases,
the lower bound (minimum) and the upper bound (maximum) are decreasing for the
susceptible human population. It is also detected that the lower bound (minimum) and the
upper bound (maximum) of both the infected and recovered human populations increase
with time.

In Table A2, it is observed that the same situation seems to be occurring in both the
lower bound (minimum) and the upper bound (maximum) for the susceptible humans. It
is also noticed that the lower bound (minimum) and the upper bound (maximum) of both
the infected and recovered human populations increase with time.

It is seen from Tables A3 and A4 that the lower bound (minimum) and the upper
bound of the susceptible population is decreasing with time, as seen from Tables A1 and A2.
At the same time, the lower bound (minimum) and the upper bound (maximum) of both
the infected and recovered human populations increase with time. In Tables A3 and A4,
the interval [β = 0.02, γ = 0.01] denotes the center for the intervals β̃ = [0.01, 0.03] and
γ̃ = [0.01, 0.015], while in Tables A1 and A2, the interval [β = 0.02, γ = 0.01] represents
the center for β and constant value γ. In the next section we discuss the stochastic version
of the model.
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8. Stochastic Version of the Model

In this part, we denote the complete probability space with a filtration {Ft}t≥0 with
(Ω,F, Q) and it satisfies the condition that it is increasing and continuous while F0 have
every Q-empty sets. We introduce randomness into Equation (5) and assume that the
white noise depends on the size of the corresponding populations where we applied the
corresponding pattern fi(S(t).I(t), R(t))dW(t), such that fi represents the intensity of the
random perturbation i ∈ [1, 3] and W(t)t≥0 is a single dimensional Brownian motion that
is defined on a complete probability space

(
Ω,F, {Ft}t≥0, Q

)
. Then, the stochastic model

of the SIR system (5) is described by the stochastic differential equations (SDEs):

dS =
(
−β̃SI

)
dt + f1S(t)dW(t),

dI =
(

β̃SI − γ̃I
)

dt + f2 I(t)dW(t),

dR = γ̃Idt + f3R(t)dW(t).

(27)

Let X(t) = (S(t), I(t), R(t)). Then, we can rewrite Equation (5) in the pattern of a
single dimensional SDE of the form

dX(t) = F(X(t), t)dt + G(X(t), t)dW(t)

such that F : R2
+ ×R2

+ → R2
+ , which is given by

F =

 −β̃SI
β̃SI − γ̃I

γ̃I

 (28)

and the function G : R2
+ ×R2

+ → R2
+ is given by

G =

 f1S(t)
f2 I(t)
f3R(t)

. (29)

In the next section, we discuss the graphical illustration of our results.

9. Graphical Illustration of Our Results

Figure 1 shows the plot of the maximum, midpoint, and the minimum of the suscepti-
ble human intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015]. It reveals that as the maximum
value is decreasing, the midpoint is also decreasing, as is the minimum point. It is clearly
seen from the plot that the uncertainty lies between the upper and lower bounds. Figure 2
shows the plot of the maximum, midpoint, and the minimum of the infected human
intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015]. It reveals that as the maximum value is
increasing, the midpoint is also increasing, as is the minimum point. It is clearly seen from
the plot that the uncertainty lies between the upper and lower bounds. Figure 3 shows
the plot of the maximum, midpoint, and the minimum of the recovered human intervals
β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015]. It reveals that as the maximum value is increasing,
the midpoint is also increasing, as is the minimum point. It is clearly seen from the plot
that the uncertainty lies between the upper and lower bounds. We discuss in Section 10 the
numerical solutions of the stochastic differential equation model.
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10. Numerical Solution of the SDE Model

In this section, we present the simulation of the SDE model (27) with the use of the
Milstein method given the parameter value intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015].
We obtained our numerical results of the SDE model for 500 runs of the stochastic model
simulation and the results of the corresponding deterministic model are presented in
Figures 1–4, in which we display the time series solution of all the variables in the SDE
model. It was obtained that in the Figures 1–4, the SDE model simulations are lower than
their deterministic model simulation.

Figure 1 shows the simulations of the dynamic behaviors of the susceptible and the
infected populations under the intervals β̃ = 0.01 and γ̃ = 0.005. It was observed that the
stochastic simulations of the susceptible and the infected populations were lower than their
deterministic simulations. Figure 2 shows the simulations of the dynamic behaviors of the
recovered population under the intervals β̃ = 0.01 and γ̃ = 0.005. It was observed that the
stochastic simulations of the recovered population were higher than their deterministic
simulations. Figure 3 shows the simulations of the dynamic behaviors of the susceptible
and the infected populations under the intervals β̃ = 0.03 and γ̃ = 0.015. It was observed
that the stochastic simulations of the susceptible and the infected populations were lower
than their deterministic simulations. Figure 4 shows the simulations of the dynamic
behaviors of the recovered populations under the intervals β̃ = 0.03 and γ̃ = 0.015. It was
observed that the stochastic simulations of the recovered population were lower than their
deterministic simulations.
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11. Discussion and Conclusions

In this work, we have studied the interval-based uncertain model of a three-compartment
mathematical model rigorously. The homotopy analysis approach has been employed to
solve the system of nonlinear equations of SIR interval uncertainty, in particular. The results
obtained were compared with the known solution and are found to be in good agreement.
Hence, it was established here that the homotopy analysis method has greater advantages
over other analytical methods in many different ways. The HAM is a series expansion
method that is directly dependent on small or large physical parameters, and hence, it
is applicable for not only weakly but also strongly nonlinear problems. It also allows
for the strong convergence of the solution over larger spatial and parameter domains. It
also gives excellent flexibility in the expression of the solution and how the solution is
explicitly obtained. It provides a simple way to ensure the convergence of the solution
series. Comparing the stochastic and deterministic versions of the model, we saw that
the population of the susceptible, infected, and recovered populations fell between the
intervals obtained in the interval-based model. These suggest that the interval-based model
give a very good range for the general SIR epidemic model. In the future, we plan to use
fuzzy differential equations to capture the dynamics, and we also plan to look into a more
practical problem that may be grounded with epidemiological data.
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Appendix A

The solutions obtained by the homotopy analysis method and the Runge–Kutta of
the fourth order method for various intervals β̃ =

[
β, β
]

and γ̃ =
[
γ, γ

]
and for various

constant values of β and γ are stated in Tables A1–A4. Further, Figures A1–A3 are plotted
with the maximum, center, and minimum of susceptible, infected and recovered humans
under the intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015].

Table A1. The solutions obtained by the homotopy analysis method with the interval β̃ = [0.01, 0.03] and the constant
value of γ = 0.01.

S I R

Time (t) [min, max] Midpoint of
[min, max]

[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01]

0.1 [19.095,
19.700] 19.396 19.397 [15.270,

15.875] 15.573 15.587 [10.015,
10.015] 10.015 10.015

0.2 [18.183,
19.398] 18.791 18.791 [15.542,

16.757] 16.150 16.178 [10.031,
10.032] 10.032 10.031

0.3 [17.268,
19.097] 18.183 18.182 [15.813,

17.642] 16.728 16.770 [10.046,
10.049] 10.048 10.048

0.4 [16.357,
18.794] 17.576 17.572 [16.086,

18.524] 17.305 17.363 [10.062,
10.067] 10.065 10.065

0.5 [15.452,
18.492] 16.972 16.962 [16.358,

19.398] 17.878 17.955 [10.078,
10.086] 10.082 10.082

0.6 [14.560,
18.190] 16.375 16.354 [16.631,

20.260] 18.446 18.545 [10.095,
10.106] 10.101 10.101

0.7 [13.684,
17.887] 15.786 15.749 [16.903,

21.107] 19.418 19.131 [10.112,
10.127] 10.120 10.119

0.8 [12.828,
17.585] 15.207 15.149 [17.176,

21.932] 19.554 19.712 [10.129,
10.148] 10.139 10.139

0.9 [11.997,
17.283] 14.640 14.555 [17.447,

22.734] 20.091 20.286 [10.146,
10.170] 10.158 10.159

1.0 [11.193,
16.982] 14.088 13.969 [17.719,

23.508] 20.614 20.852 [10.164,
10.193] 10.179 10.179

Table A2. The solutions obtained by the homotopy analysis method with the interval γ̃ = [0.01, 0.015] and the constant
value of β = 0.01.

S I R

Time (t) [min, max] Midpoint of
[min, max]

[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01]

0.1 [19.699,
19.700] 19.700 19.700 [15.255,

15.286] 15.270 15.270 [10.015,
10.015] 10.015 10.015

0.2 [19.398,
19.399] 19.399 19.398 [15.511,

15.572] 15.542 15.542 [10.031,
10.032] 10.032 10.031

0.3 [19.095,
19.098] 19.097 19.097 [15.767,

15.860] 15.814 15.813 [10.046,
10.049] 10.048 10.048

0.4 [18.792,
18.797] 18.795 18.794 [16.023,

16.148] 16.086 16.086 [10.062,
10.067] 10.065 10.065
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Table A2. Cont.

S I R

Time (t) [min, max] Midpoint of
[min, max]

[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01]

0.5 [18.489,
18.496] 18.493 18.492 [16.280,

16.437] 16.359 16.358 [10.078,
10.086] 10.082 10.082

0.6 [18.184,
18.195] 18.190 18.190 [16.536,

16.726] 16.631 16.631 [10.095,
10.106] 10.101 10.101

0.7 [17.880,
17.894] 17.887 17.887 [16.792,

17.015] 16.904 16.903 [10.112,
10.127] 10.120 10.119

0.8 [17.576,
17.594] 17.585 17.585 [17.047,

17.304] 17.176 17.176 [10.129,
10.148] 10.139 10.139

0.9 [17.272,
17.294] 17.283 17.283 [17.302,

17.593] 17.448 17.447 [10.146,
10.170] 10.158 10.159

1.0 [16.968,
16.995] 16.982 16.982 [17.556,

17.881] 17.719 17.719 [10.164,
10.193] 10.179 10.179

Table A3. The solutions obtained by the Runge–Kutta of the fourth order method with intervals β̃ = [0.01, 0.03] and
γ̃ = [0.01, 0.015].

S I R

Time (t) [min, max] Midpoint of
[min, max]

[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01]

0.1 [19.095,
19.699] 19.397 19.397 [15.278,

15.898] 15.588 15.587 [10.008,
10.023] 10.015 10.015

0.2 [18.180,
19.398] 18.789 18.791 [15.556,

16.804] 16.179 16.178 [10.015,
10.048] 10.031 10.031

0.3 [17.263,
19.095] 18.179 18.182 [15.835,

17.713] 16.774 16.770 [10.023,
10.073] 10.048 10.048

0.4 [16.347,
18.793] 17.570 17.572 [16.113,

18.619] 17.366 17.363 [10.031,
10.101] 10.066 10.065

0.5 [15.438,
18.490] 16.964 16.962 [16.392,19.519] 17.956 17.956 [10.039,

10.129] 10.084 10.082

0.6 14.541,
18.187] 16.364 16.354 [16.670,

20.406] 18.538 18.545 [10.048,
10.159] 10.103 10.101

0.7 [13.659,
17.884] 15.772 15.749 [16.948,

21.277] 19.113 19.131 [10.056,
10.189] 10.123 10.119

0.8 [12.822,
17.581] 15.202 15.149 [17.225,

22.127] 19.676 19.712 [10.065,
10.222] 10.143 10.139

0.9 [11.962,
17.279] 14.620 14.555 [17.502,

22.953] 20.227 20.286 [10.073,
10.256] 10.165 10.159

1.0 [11.152,
16.976] 14.064 13.969 [17.778,

23.750] 20.764 20.852 [10.083,
10.291] 10.186 10.179

Table A4. The solutions obtained by the homotopy analysis method with intervals β̃ = [0.01, 0.03] and γ̃ = [0.01, 0.015].

S I R

Time (t) [min, max] Midpoint of
[min, max]

[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01]

0.1 [19.094,
19.699] 19.397 19.399 [15.255,

15.891] 15.573 15.572 [10.008,
10.023] 10.015 10.015

0.2 [18.181,
19.399] 18.790 18.792 [15.511,

16.789] 16.149 16.148 [10.015,
10.048] 10.031 10.031

0.3 [17.265,
19.098] 18.181 18.184 [15.767,

17.690] 16.729 16.726 [10.023,
10.073] 10.048 10.048



Axioms 2021, 10, 114 17 of 19

Table A4. Cont.

S I R

Time (t) [min, max] Midpoint of
[min, max]

[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01] [min, max] Midpoint of

[min, max]
[β = 0.02,
γ = 0.01]

0.4 [16.350,
18.797] 17.574 17.576 [16.024,

18.589] 17.307 17.304 [10.031,
10.100] 10.066 10.065

0.5 [15.443,
18.496] 16.969 16.968 [16.279,

19.482] 17.881 17.882 [10.039,
10.129] 10.084 10.082

0.6 [14.547,
18.195] 16.371 16.363 [16.536,

20.363] 18.500 18.457 [10.048,
10.158] 10.103 10.100

0.7 [13.667,
17.894] 15.780 15.761 [16.792,

21.228] 19.010 19.029 [10.056,
10.189] 10.123 10.119

0.8 [12.807,
17.594] 15.201 15.164 [17.047,

22.073] 19.560 19.597 [10.065,
10.221] 10.143 10.138

0.9 [11.972,
17.294] 14.633 14.573 [17.302,

22.893] 20.098 20.158 [10.073,
10.255] 10.164 10.164

1.0 [11.164,
16.968] 14.066 13.989 [17.556,

23.686] 20.621 20.712 [10.082,
10.289] 10.186 10.179
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0.5 [15.438, 18.490] 16.964 16.962 [16.392,19.519] 17.956 17.956 [10.039, 10.129] 10.084 10.082 
0.6 14.541, 18.187] 16.364 16.354 [16.670, 20.406] 18.538 18.545 [10.048, 10.159] 10.103 10.101 
0.7 [13.659, 17.884] 15.772 15.749 [16.948, 21.277] 19.113 19.131 [10.056, 10.189] 10.123 10.119 
0.8 [12.822, 17.581] 15.202 15.149 [17.225, 22.127] 19.676 19.712 [10.065, 10.222] 10.143 10.139 
0.9 [11.962, 17.279] 14.620 14.555 [17.502, 22.953] 20.227 20.286 [10.073, 10.256] 10.165 10.159 
1.0 [11.152, 16.976] 14.064 13.969 [17.778, 23.750] 20.764 20.852 [10.083, 10.291] 10.186 10.179 

Table A4. The solutions obtained by the homotopy analysis method with intervals ߚ෨ = [0.01, 0.03] and ߛ෤ = [0.01, 0.015]. 

 ࡾ ࡵ ࡿ 

Time (࢚) [ܠ܉ܕ ,ܖܑܕ] Midpoint of 
 [ܠ܉ܕ ,ܖܑܕ]

ࢼ] = ૙. ૙૛,
ࢽ = ૙. ૙૚] [min, max] 

Midpoint of 
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ࢽ = ૙. ૙૚] [ܠ܉ܕ ,ܖܑܕ] Midpoint of 

[min, max] 
ࢼ] = ૙. ૙૛,
ࢽ = ૙. ૙૚] 

0.1 [19.094, 19.699] 19.397 19.399 [15.255, 15.891] 15.573 15.572 [10.008, 10.023] 10.015 10.015 
0.2 [18.181, 19.399] 18.790 18.792 [15.511, 16.789] 16.149 16.148 [10.015, 10.048] 10.031 10.031 
0.3 [17.265, 19.098] 18.181 18.184 [15.767, 17.690] 16.729 16.726 [10.023, 10.073] 10.048 10.048 
0.4 [16.350, 18.797] 17.574 17.576 [16.024, 18.589] 17.307 17.304 [10.031, 10.100] 10.066 10.065 
0.5 [15.443, 18.496] 16.969 16.968 [16.279, 19.482] 17.881 17.882 [10.039, 10.129] 10.084 10.082 
0.6 [14.547, 18.195] 16.371 16.363 [16.536, 20.363] 18.500 18.457 [10.048, 10.158] 10.103 10.100 
0.7 [13.667, 17.894] 15.780 15.761 [16.792, 21.228] 19.010 19.029 [10.056, 10.189] 10.123 10.119 
0.8 [12.807, 17.594] 15.201 15.164 [17.047, 22.073] 19.560 19.597 [10.065, 10.221] 10.143 10.138 
0.9 [11.972, 17.294] 14.633 14.573 [17.302, 22.893] 20.098 20.158 [10.073, 10.255] 10.164 10.164 
1.0 [11.164, 16.968] 14.066 13.989 [17.556, 23.686] 20.621 20.712 [10.082, 10.289] 10.186 10.179 
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