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Abstract

:

In this paper, we construct an affine model of a Riemann surface with a flat Riemannian metric associated to a Schwarz–Christoffel mapping of the upper half plane onto a rational triangle. We explain the relation between the geodesics on this Riemann surface and billiard motions in a regular stellated n-gon in the complex plane.
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1. Introduction


We give a section by section summary of the contents of this paper.



In §1 we define the Schwarz–Christoffel conformal map   F Q   (2) of the complex plane less   { 0 , 1 }   onto a quadrilateral Q, which is formed by reflecting a rational triangle   T   n 0   n 1   n ∞     in the real axis.



In §2, following Aurell and Itzykson [1] we associate to the map   F Q   the affine Riemann surface  S  in    C  2   defined by     η  n  =   ξ   n −  n 0      ( 1 − ξ )   n −  n 1     , where    C  2   has coordinates   ( ξ , η )   and   n =  n 0  +  n 1  +  n ∞   . Thinking of  S  as a branched covering


  π : S → C   \   { 0 , 1 } : ( ξ , η ) ↦ ξ  








with branch points at   ( 0 , 0 )  ,   ( 1 , 0 )   and ∞ corresponding to the branch values 0, 1, and ∞, respectively, we show that  S  has genus      1   2      n + 2 − (  d 0  +  d 1  +  d ∞  )   , where    d j  = gcd  ( n ,  n j  )    for   j = 0 , 1 , ∞  . Let   S reg   be the set of nonsingular points of  S . The map    π ^  =  π   |   S reg    :  S reg  → C   \    { 0 , 1 }    is a holomorphic n-fold covering map with covering group the cyclic group generated by


  R :  S reg  ⊆   C  2  →  S reg  ⊆   C  2  :  ( ξ , η )  ↦  ( ξ ,   e   2 π i / n   η )  .  











In §3 we build a model    S ˜  reg   of the affine Riemann surface   S reg  . The quadrilateral Q is holomorphically diffeomorphic to a fundamental domain  D  of the action of the covering group on   S reg  . Rotating Q by


  R : C → C : z ↦   e   2 π i / n   z  








gives a regular stellated n-gon   K *  , which is invariant under the dihedral group G generated by the mappings R and   U : C → C : z ↦  z ¯   . We study the group theoretic properties of   K *  . We show that   K *   is invariant under the reflection    S  ( j )   =  R  n j   U   in the ray   { t    e   2 π i  n n  / n   ∈ C  |   t ≥ 0 }   for   j = 0 , 1 , ∞  . To construct the model    S ˜  reg   of the affine Riemann surface   S reg   from the regular stellated n-gon   K *   we follow Richens and Berry [2]. We identify two nonadjacent closed edges of   cl (  K *  )  , the closure of   K *  , if one edge is obtained from the other by a reflection    S k  ( j )   =  R k   S  ( j )    R  − k     for some   j = 0 , 1 , ∞  . The identification space    ( cl  (  K *  )    \   O )  ∼  , where  O  is the center of   K *  , is a complex manifold except at points corresponding to  O  or a vertex of   cl (  K *  )  , where it has a conical singularity. The action of G on    K *    \   O   induces a free and proper action on the identification space    (  K *    \   O )  ∼  , whose orbit space    S ˜  reg   is a complex manifold with compact closure in    CP  2  , with genus      1   2      n + 2 − (  d 0  +  d 1  +  d ∞  )   . Moreover    S ˜  reg   is holomorphically diffeomorphic to the affine Riemann surface   S reg  .



In §4, we construct an affine model    S ˜  reg   of the Riemann surface   S reg  . In other words, we find a discrete subgroup  G  of the 2-dimensional Euclidean group   E ( 2 )  , which acts freely and properly on   C   \     V  +    such that after forming an identification space    ( C   \     V  +  )  ∼   the  G  orbit space     ( C   \     V  +  )  ∼    /   G   is holomorphically diffeomorphic to   S reg  . We now describe the group  G . Reflect the regular stellated n-gon   K *   in its edges, and then in the edges of the reflected regular stellated n-gons, et cetera. We obtain a group  T  generated by   2 n   translations   τ k   so that     τ  1  ℓ 1       ∘    ⋯     ∘      τ   2 n   ℓ  2 n      sends the center  O  of   K *   to the center of a repeatedly reflected reflected n-gon. The set    V  +   is the union of the image under     τ  1  ℓ 1       ∘    ⋯     ∘      τ   2 n   ℓ  2 n      of a vertex of   cl (  K *  )   and its center  O  for every    (  ℓ 1  , … ,  ℓ  2 n   )  ∈   (  Z  ≥ 0   )   2 n    . Let  G  be the semi-direct product   G ⋉ T  . The fundamental domain of the  G  action on   C   \     V  +    is   cl (  K *  )   less its vertices and center. Identifying equivalent open edges of    K *    \   O   and then taking G orbits, it follows that the affine model    S ˜  reg   of the affine Riemann surface   S reg   is the  G  orbit space     ( C   \     V  +  )  ∼    /   G  .



In §5 we show that the mapping


   δ Q  : D ⊆  S reg  ⊆   C  2  → Q ⊆ C :  ( ξ , η )  ↦  (  F Q    ∘     π ^  )   ( ξ , η )  = z  








straightens the nowhere vanishing holomorphic vector field X (11) on   S reg  , that is,    T  ( ξ , η )    δ Q   X  ( ξ , η )  =  ∂  ∂ z   |    z =  δ Q   ( ξ , η )      for every   ( ξ , η ) ∈ D  . We pull back the flat metric   γ =    d   z   ⨀     d    z ¯    on  C  by   δ Q   to the metric  Γ  on   S reg  . So   δ Q   is a local developing map. Since   ∂  ∂ z    is the geodesic vector field on   ( Q , γ  | Q  )  , it follows that X is a holomorphic geodesic vector field on   (  S reg  , Γ )  .



In §6 we study the geometry of the developing map   δ Q  . The dihedral group  G  generated by  R  and   U :  S reg  →  S reg  :  ( ξ , η )  ↦  (  ξ ¯  ,  η ¯  )    is a group of isometries of   (  S reg  , Γ )  . The group G generated by R and   U : C → C : z ↦  z ¯    is a group of isometries of   ( Q , γ  | Q  )  . Extend the holomorphic map   δ Q   to a holomorphic map map    δ  K *   :  S reg  →  K *    by requiring that    R j    ∘       δ  K *   =  δ Q      ∘      R  j    on     R   − j    ( D )   . This works since  D  is a fundamental domain of the action of the covering group on   S reg  , which implies    S reg  =  ⨿  0 ≤ j ≤ n     R  j   ( D )   . Thus, the local holomorphic diffeomorphism   δ  K *    intertwines the  G  action on   (  S reg  , Γ )   with the G action on   (  K *  , γ  |  K *   )   and intertwines the local geodesic flow of the holomorphic geodesic vector field X with the local geodesic flow of the holomorphic vector field   ∂  ∂ z   .



Following Richens and Berry [2] we impose the condition: when a geodesic, starting at a point in   int ( cl  (  K *  )    \   O )  , meets   ∂  K *    it undergoes a reflection in the edge of   K *   that it meets. Such geodesics never meet a vertex of   cl (  K *  )  . Thus, this type of geodesic becomes a billiard motion in    K *    \   O  , which is defined for all time. Billiard motions in polygons have been extensively studied. For a nice overview see Berger ([3], chpt. XI) and references therein. An argument shows that   G ^   invariant geodesics on   (  S reg  , Γ )   correspond under the map   δ   K *    \   O    to billiard motions on   (  K *    \   O , γ  |  (  K *    \   O )   )  .



Repeatedly reflecting a billiard motion in an edge of    K *    \   O   and suitable edges of suitable  T  translations of    K *    \   O   gives a straight line motion  λ  on   C   \     V  +   . The image of the segment of a billiard motion, where  λ  intersects    K *    \   O  , in the orbit space     ( C   \     V  +  )  ∼    /   G =   S ˜  reg   , is a geodesic. Here we use the flat Riemannian metric   γ ^   on    S ˜  reg  , which is induced by the  G  invariant Euclidean metric  γ  on   C   \     V  +    restricted to    K *    \   O  . Consequently,   (   S ˜  reg  ,  γ ^  )   is an affine analogue of the affine Riemann surface   S reg   thought of as the orbit space of a discrete subgroup of   PGl ( 2 , C )   acting on  C  with the Poincaré metric, see Weyl [4].




2. A Schwarz–Christoffel Mapping


Consider the conformal Schwarz–Christoffel mapping


      F T  :   C  +      =  { ξ ∈ C  |   Im  ξ ≥ 0 }  → T =  T   n 0   n 1   n ∞    ⊆ C : ξ ↦  ∫ 0 ξ       d   w    w  1 −   n 0  n      ( 1 − w )   1 −   n 1  n      = z     



(1)




of the upper half plane    C  +   to the rational triangle   T =  T   n 0   n 1   n ∞      with interior angles     n 0  n  π  ,     n 1  n  π  , and     n ∞  n  π  , see Figure 1. Here    n 0  +  n 1  +  n ∞  = n   and    n j  ∈  Z  ≥ 1     for   j = 0 , 1   and ∞ with   1 ≤  n 0  ≤  n 1  ≤  n ∞   . Because   n ∞   is greater than or equal to either   n 0   or   n 1  , it follows that the corresponding side   O C   is the longest side of the triangle   T = △ O C D  .



In the integrand of (1) we use the following choice of complex   n th   root. Suppose that   w ∈ C   \   { 0 , 1 }  . Let   w =  r 0    e   i  θ 0      and   1 − w =  r 1    e   i  θ 1      where    r 0  ,     r 1  ∈  R  > 0     and   θ 0  ,    θ 1  ∈  [ 0 , 2 π )   . For   w ∈ ( 0 , 1 )   on the real axis we have    θ 0  =  θ 1  = 0  ,   w =  r 0  > 0  , and   1 − w =  r 1  > 0  . So      w  n −  n 0      ( 1 − w )   n −  n 1       − 2 p t    1 / n     =   (  r 0  n −  n 0     r 1  n −  n 1    )   1 / n    . In general for   w ∈ C   \   { 0 , 1 }  , we have


     w  n −  n 0      ( 1 − w )   n −  n 1       − 2 p t    1 / n     =   (  r 0  n −  n 0     r 1  n −  n 1    )   1 / n     e   i (  ( n −  n 0  )   θ 0  +  ( n −  n 1  )   θ 1  ) / n   .  











From (1) we get


   F T   ( 0 )  = 0 ,    F T   ( 1 )  = C ,   and    F T   ( ∞ )  = D ,  








where   C =  ∫ 0 1       d   w    w  1 −   n 0  n      ( 1 − w )   1 −   n 1  n        and   D =   e     n 0  n  π i   (     sin   n 1  n  π       sin   n ∞  n  π     ) C  . Consequently, the bijective holomorphic mapping   F T   sends   int (   C  +    \    { 0 , 1 }  )  , the interior of the upper half plane less 0 and 1, onto   int  T  , the interior of the rational triangle   T =  T   n 0   n 1   n ∞     , and sends the boundary of     C  +    \    { 0 , 1 }    to the edges of   ∂ T   less their end points O, C and D, see Figure 1. Thus, the image of     C  +    \    { 0 , 1 }    under   F T   is   cl ( T )   \   { O , C , D }  . Here   cl ( T )   is the closure of T in  C .



Because    F T    |   [ 0 , 1 ]     is real valued, we may use the Schwarz reflection principle to extend   F T   to the holomorphic diffeomorphism


          F Q  : C   \    { 0 , 1 }  → Q = T ∪  T ¯  ⊆ C : ξ ↦ z =       F T   ( ξ )  ,     if ξ ∈   C  +    \    { 0 , 1 }           F T   (  ξ ¯  )   ¯  ,     if ξ ∈     C  +    \    { 0 , 1 }   ¯  .          



(2)







Here   Q =  Q   n 0   n 1   n ∞      is a quadrilateral with internal angles   2 π   n 0  n   ,   π   n ∞  n   ,   2 π   n 1  n   , and   π   n ∞  n    and vertices at O, D, C, and   D ¯  , see Figure 2. The conformal mapping   F Q   sends   C   \   { 0 , 1 }   onto   cl  ( Q )    \    { O , D , C ,  D ¯  }   .




3. The Geometry of an Affine Riemann Surface


Let  ξ  and  η  be coordinate functions on    C  2  . Consider the affine Riemann surface   S =  S   n 0  ,  n 1  ,  n ∞      in    C  2  , associated to the holomorphic mapping   F Q  , defined by


  g  ( ξ , η )  =   η  n  −   ξ   n −  n 0      ( 1 − ξ )   n −  n 1    = 0 ,  



(3)




see Aurell and Itzykson [1]. We determine the singular points of  S  by solving


    0    =    d   g ( ξ , η )          = −  ( n −  n 0  )    ξ   n −  n 0  − 1     ( 1 − ξ )   n −  n 1  − 1    ( 1 −    2 n −  n 0  −  n 1      n −  n 0     ξ )     d   ξ + n   η   n − 1      d   η     



(4)







For   ( ξ , η ) ∈ S  , we have      d   g ( ξ , η ) = 0   if and only if   ( ξ , η ) = ( 0 , 0 )   or   ( 1 , 0 )  . Thus, the set   S sing   of singular points of  S  is   { ( 0 , 0 ) , ( 1 , 0 ) }  . So the affine Riemann surface    S reg  = S   \    S sing    is a complex submanifold of    C  2  . Actually,    S reg  ⊆   C  2    \    { η = 0 }   , for if   ( ξ , η ) ∈ S   and   η = 0  , then either   ξ = 0   or   ξ = 1  .



Lemma 1.

Topologically   S reg   is a compact Riemann surface    S ¯  ⊆   C P  2    of genus   g =    1   2      n + 2 − (  d 0  +  d 1  +  d ∞  )    less three points:   [ 0 : 0 : 1 ]  ,   [ 1 : 0 : 1 ]  , and   [ 0 : 1 : 0 ]  . Here    d j  = gcd  (  n j  , n )    for   j = 0 , 1 , ∞  .





Proof. 

Consider the (projective) Riemann surface    S ¯  ⊆   C P  2    specified by the condition    [ ξ : η : ζ ]  ∈  S ¯    if and only if


  G  ( ξ , η , ζ )  =   ζ   n −  n 0  −  n 1      η  n  −   ξ   n −  n 0      ( ζ − ξ )   n −  n 1    = 0 .  



(5)







Thinking of G as a polynomial in  η  with coefficients which are polynomials in  ξ  and  ζ , we may view   S ¯   as the branched covering


   π ¯  :  S ¯  ⊆   C P  2  → C P :  [ ξ : η : ζ ]  ↦  [ ξ : ζ ]  .  



(6)







When   ζ = 1   we get the affine branched covering


  π =  π ¯   | S : S =   S ¯  ∩  { ζ = 1 }  ⊆   C  2  → C = C P ∩  { ζ = 1 }  :  ( ξ , η )  ↦ ξ .  



(7)







From (3) it follows that   η =  ω k    (   ξ   n −  n 0      ( 1 − ξ )   n −  n 1    )   1 / n    , where   ω k   for   k = 0 , 1 , … , n − 1   is an nth root of unity with and    (     )   1 / n    is the complex nth root used in the definition of the mapping   F T   (1). Thus, the branched covering mapping   π ¯   (6) has n “sheets” except at its branch points. Since


    η    =   ξ   1 −   n 0  n      ( 1 − ξ )   1 −   n 1  n    =   ξ   1 −   n 0  n     1 − ( 1 −    n 1    n   ) ξ + ⋯      



(8a)




and


    η    =   ( 1 − ξ )   1 −   n 1  n      1 − ( 1 − ξ )   1 −   n 0  n             =   ( 1 − ξ )   1 −   n 1  n     1 −  ( 1 −    n 0    n   )   ( 1 − ξ )  + ⋯  ,     



(8b)




it follows that   ξ = 0   and   ξ = 1   are branch points of the mapping   π ¯   of degree   n  d 0    and   n  d 1   , since    d j  = gcd  ( n ,  n j  )  = gcd  ( n −  n j  ,  n j  )    for   j = 0 , 1  , see McKean and Moll ([5], p. 39). Because


    η    =   (   1   ξ   )   − ( 1 −   n 0  n  )     ( 1 −  1  1 ξ   )   1 −   n 1  n    =   ( − 1 )   1 −   n 1  n      ξ   2 −    n 0  +  n 1   n      ( 1 −   1   ξ   )   1 −   n 1  n             =   ( − 1 )   1 −   n 1  n      ξ   1 +   n ∞  n     ( 1 −  ( 1 −    n 1    n   )    1   ξ   + ⋯ )  ,     



(8c)




∞ is a branch point of the mapping   π ¯   of degree   n  d ∞   , where    d ∞  = gcd  ( n ,  n ∞  )   . Hence the ramification index of 0, 1, ∞ is    d 0   (  n  d 0   − 1 )  = n −  d 0   ,   n −  d 1   , and   n −  d ∞   , respectively. Thus, the map   π ¯   has   d 0   fewer sheets at 0,   d 1   fewer at 1, and   d ∞   fewer at ∞ than an n-fold covering of   C P  . Thus, the total ramification index r of the mapping   π ¯   is   r =  ( n −  d 0  )  +  ( n −  d 1  )  +  ( n −  d ∞  )   . By the Riemann–Hurwitz formula, the genus g of   S ¯   is   r = 2 n + 2 g − 2  . In other words,


     g =    1   2      n + 2 − (  d 0  +  d 1  +  d ∞  )  .     



(9)




Consequently, the affine Riemann surface  S  is the compact connected surface   S ¯   less the point at ∞, namely,   S =  S ¯    \    {  [ 0 : 1 : 0 ]  }   . So   S reg   is the compact connected surface   S ¯   less three points:   [ 0 : 0 : 1 ]  ,   [ 1 : 0 : 1 ]  , and   [ 0 : 1 : 0 ]  . □





Examples of    S ¯  =   S ¯    n 0  ,  n 1  ,  n ∞     



	
   n 0  = 1  ,    n 0  = 1  ,    n ∞  = 4  ;   n = 6  . So    d 0  = 1  ,    d 1  = 1  ,    d ∞  = 2  . Hence   2 g = 8 − 4 = 4  . So   g = 2  .



	
   n 0  = 2  ,    n 1  = 2  ,    n ∞  = 3  ;   n = 7  . So    d 0  =  d 1  =  d ∞  = 1  . Hence   2 g = 9 − 3 = 6  . So   g = 3  .






Table 1 below lists all the partitions   {  n 1  ,  n 0  ,  n ∞  }   of n, which give a low genus Riemann surface    S ¯  =   S ¯    n 0  ,  n 1  ,  n ∞     



Corollary 1.

If n is an odd prime number and   {  n 1  ,  n 0  ,  n ∞  }   is a partition of n into three parts, then the genus of   S ¯   is      1   2      ( n − 1 )   .





Proof. 

Because n is prime, we get    d 0  =  d 1  =  d ∞  = 1  . Using the formula   g =    1   2      n + 2 − (  d 0  +  d 1  +  d ∞  )    we obtain   g =    1   2      ( n − 1 )   . □





Corollary 2.

The singular points of the Riemann surface   S ¯   are   [ 0 : 0 : 1 ]  ,   [ 1 : 0 : 1 ]  , and if    n ∞  > 1   then also   [ 0 : 1 : 0 ]  .





Proof. 

A point    [ ξ : η : ζ ]  ∈   S ¯  sing    if and only if    [ ξ : η : ζ ]  ∈  S ¯   , that is,


  0 = G  ( ξ , η , ζ )  =   ζ   n − (  n 0  +  n 1  )     η  n  −   ξ   n −  n 0      ( ζ − ξ )   n −  n 1     



(10a)




and


     ( 0 , 0 , 0 )     = D G ( ξ , η , ζ )          = ( −   ξ   n −  n 0  − 1     ( ζ − ξ )   n −  n 1  − 1     ( n −  n 0  )   ( ζ − ξ )  −  ( n −  n 1  )  ξ  ,           n   η   n − 1     ζ   n − (  n 0  +  n 1  )   ,  ( n −  (  n 0  +  n 1  )  )    η  n    ζ   n −  n 0  −  n 1  − 1             −  ( n −  n 1  )    ξ   n −  n 0      ( ζ − ξ )   n −  n 1  − 1   )     



(10b)







We need only check the points   [ 0 : 0 : 1 ]  ,   [ 1 : 0 : 1 ]   and   [ 0 : 1 : 0 ]  . Since the first two points are singular points of   S =  S ¯    \    {  [ 0 : 1 : 0 ]  }   , they are singular points of   S ¯  . Thus, we need to see if   [ 0 : 1 : 0 ]   is a singular point of   S ¯  . Substituting   ( 0 , 1 , 0 )   into the right hand side of (10b) we get            ( 0 , 0 , 1 )  ,   if  n ∞  = n −  (  n 0  +  n 1  )  = 1         ( 0 , 0 , 0 )  ,   if  n ∞  > 1 .        Thus,   [ 0 : 1 : 0 ]   is a singular point of   S ¯   only if    n ∞  > 1  . □





Lemma 2.

The mapping


    π ^   = π |   S reg  :  S reg  ⊆   C  2  → C   \    { 0 , 1 }  :  ( ξ , η )  ↦ ξ   



(11)




is a surjective holomorphic local diffeomorphism.





Proof. 

Let    ( ξ , η )  ∈  S reg    and let


  X  ( ξ , η )  = η  ∂  ∂ ξ   +    n −  n 0     n       ξ   n −  n 0  − 1     ( 1 − ξ )   n −  n 1  − 1    ( 1 −    2 n −  n 0  −  n 1      n −  n 0     ξ )     η   n − 2     ∂  ∂ η   .  



(12)







By hypothesis    ( ξ , η )  ∈  S reg    implies that   η ≠ 0  . The vector   X ( ξ , η )   is defined and is nonzero. From   ( X   ⌟       d   g ) ( ξ , η ) = 0   and    T  ( ξ , η )    S reg  = ker    d   g  ( ξ , η )   , it follows that   X  ( ξ , η )  ∈  T  ( ξ , η )    S reg   . Using the definition of   X ( ξ , η )   (12) and the definition of the mapping  π  (7), we see that the tangent of the mapping   π ^   (11) at    ( ξ , η )  ∈  S reg    is given by


   T  ( ξ , η )    π ^  :  T  ( ξ , η )    S reg  →  T ξ   ( C   \    { 0 , 1 }  )  = C : X  ( ξ , η )  ↦ η  ∂  ∂ ξ   .  



(13)







Since   X ( ξ , η )   and   η  ∂  ∂ ξ     are nonzero vectors, they form a complex basis for    T  ( ξ , η )    S reg    and    T ξ   ( C   \    { 0 , 1 }  )   , respectively. Thus, the complex linear mapping    T  ( ξ , η )    π ^    is an isomorphism. Hence   π ^   is a local holomorphic diffeomorphism. □





Corollary 3.

  π ^   (11) is a surjective holomorphic n to 1 covering map.





Proof. 

We only need to show that   π ^   is a covering map. First we note that every fiber of   π ^   is a finite set with n elements, since for each fixed   ξ ∈ C   \   { 0 , 1 }   we have      π ^    − 1    ( ξ )  =  {  ( ξ , η )  ∈  S reg   |  η =  ω k    (   ξ   n −  n 0      ( 1 − ξ )   n −  n 1    )   1 / n   }   . Here   ω k   for   k = 0 , 1 , … , n − 1  , is an   n th   root of 1 and    (     )   1 / n    is the complex   n th   root used in the definition of the Schwarz–Christoffel map   F Q   (2). Hence the map   π ^   is a proper surjective holomorphic submersion, because each fiber is compact. Thus, the mapping   π ^   is a presentation of a locally trivial fiber bundle with fiber consisting of n distinct points. In other words, the map   π ^   is a n to 1 covering mapping. □





Consider the group   G ^   of linear transformations of    C  2   generated by


  R :   C  2  →   C  2  :  ( ξ , η )  ↦  ( ξ ,   e   2 π i / n   η )  .  











Clearly     R  n  =  id   C  2   = e  , the identity element of   G ^   and    G ^  =  { e , R , … ,   R   n − 1   }   . For each   ( ξ , η ) ∈ S   we have


       (   e   2 π i / n   η )  n  −   ξ   n −  n 0      ( 1 − ξ )   n −  n 1        =   η  n  −   ξ   n −  n 0      ( 1 − ξ )   n −  n 1    = 0 .     











So   R ( ξ , η ) ∈ S  . Thus, we have an action of   G ^   on the affine Riemann surface  S  given by


  Φ :  G ^  × S → S :  g , ( ξ , η )  ↦ g  ( ξ , η )  .  



(14)







Since   G ^   is finite, and hence is compact, the action  Φ  is proper. For every   g ∈  G ^    we have    Φ g   ( 0 , 0 )  =  ( 0 , 0 )    and    Φ g   ( 1 , 0 )  =  ( 1 , 0 )   . So   Φ g   maps   S reg   into itself. At    ( ξ , η )  ∈  S reg    the isotropy group    G ^   ( ξ , η )    is   { e }  , that is, the   G ^  -action  Φ  on   S reg   is free. Thus, the orbit space    S reg  /  G ^    is a complex manifold.



Corollary 4.

Consider the holomorphic mapping


   ρ :  S reg  ⊆   C  2  →  S reg  /  G ^  ⊆   C  2  :  ( ξ , η )  ↦  [  ( ξ , η )  ]  ,   








where   [ ( ξ , η ) ]   is the   G ^  -orbit   {  Φ g   ( ξ , η )  ∈  S reg   |  g ∈  G ^  }   of   ( ξ , η )   in   S reg  . The   G ^   principal bundle presented by the mapping ρ is isomorphic to the bundle presented by the mapping   π ^   (11).





Proof. 

We use invariant theory to determine the orbit space   S /  G ^   . The algebra of polynomials on    C  2  , which are invariant under the   G ^  -action  Φ , is generated by    π 1  = ξ    and     π 2  =   η  n   . Since   ( ξ , η ) ∈ S  , these polynomials are subject to the relation


   π 2  −   π  1  n −  n 0      ( 1 −  π 1  )   n −  n 1    =   η  n  −   ξ   n −  n 0      ( 1 − ξ )   n −  n 1    = 0 .  



(15)







Equation (15) defines the orbit space   S /  G ^    as a complex subvariety of    C  2  . This subvariety is homeomorphic to  C , because it is the graph of the function    π 1  ↦   π  1  n −  n 0      ( 1 −  π 1  )   n −  n 1     . Consequently, the orbit space    S reg  /  G ^    is holomorphically diffeomorphic to   C   \   { 0 , 1 }  .



It remains to show that   G ^   is the group of covering transformations of the bundle presented by the mapping   π ^   (11). For each   ξ ∈ C   \   { 0 , 1 }   look at the fiber      π ^    − 1    ( ξ )   . If    ( ξ , η )  ∈    π ^    − 1    ( ξ )   , then     R   ± 1    ( ξ , η )  =  ( ξ ,   e   ± 2 π i / n   η )  ∈  S reg   , since    ( ξ ,   e   ± 2 π i / n   η )  ≠  ( 0 , 0 )    or   ( 1 , 0 )   and   ( ξ ,   e   ± 2 π i / n   η ) ∈ S  . Thus,    Φ   R   ± 1        π ^    − 1    ( ξ )   ⊆    π ^    − 1    ( ξ )   . So      π ^    − 1    ( ξ )  ⊆  Φ R      π ^    − 1    ( ξ )   ⊆    π ^    − 1    ( ξ )   . Hence    Φ R      π ^    − 1    ( ξ )   =    π ^    − 1    ( ξ )   . Thus,   Φ R   is a covering transformation for the bundle presented by the mapping   π ^  . So   G ^   is a subgroup of the group of covering transformations. These groups are equal because   G ^   acts transitively on each fiber of the mapping   π ^  . □






4. Another Model for   S reg  


We construct another model    S ˜  reg   for the smooth part   S reg   of the affine Riemann surface  S  (3) as follows. Let   D ⊆  S reg    be a fundamental domain for the   G ^   action  Φ  (14) on   S reg  . So   ( ξ , η ) ∈ D   if and only if for   ξ ∈ C   \   { 0 , 1 }   we have   η =     ξ   n −  n 0      ( 1 − ξ )   n −  n 1       − 2 p t    1 / n      . Here    (     )   1 / n    is the   n th   root used in the definition of the mapping   F Q   (2). The domain  D  is a connected subset of   S reg   with nonempty interior. Its image under the map   π ^   (11) is   C   \   { 0 , 1 }  . Thus,  D  is one “sheet” of the covering map   π ^  . So    π ^    |  D    is one to one.



Using the extended Schwarz–Christoffel mapping   F Q   (2), we give a more geometric description of the fundamental domain  D . Consider the mapping


  δ : D ⊆  S reg  → Q ⊆ C :  ( ξ , η )  ↦  F Q    π ^   ( ξ , η )   ,  



(16)




where the map   π ^   is given by Equation (11). The map  δ  is a holomorphic diffeomorphism of   int  D   onto   int  Q  , which sends   ∂ D   homeomorphically onto   ∂ Q  . Look at   cl ( Q )  , which is a closed quadrilateral with vertices O, D, C, and   D ¯  . The set   δ ( D )   contains the open edges   O D  ,   D C  , and   C  D ¯    but not the open edge   O  D ¯    of   cl ( Q )  , see Figure 3 above.



Let    K *  =  K   n 0  ,  n 1  ,  n ∞   *  =  ⨿  0 ≤ j ≤ n − 1    R j   δ ( D )    be the region in  C  formed by repeatedly rotating   Q = δ ( D )   through an angle   2 π / n  . Here R is the rotation   C → C : z ↦   e   2 π i / n   z  . We say that the quadrilateral   Q =  Q  2  n 0  ,  n ∞  , 2  n 1  ,  n ∞     forms  K *  , see Figure 4 above.



Theorem 1.

The connected set   K *   is a regular stellated n-gon with its   2 n   vertices omitted, which is formed from the quadrilateral    Q ′  = O  D ′  C   D ′  ¯   , see Figure 5.





Proof. 

By construction the quadrilateral    Q ′  = O  D ′  C   D ′  ¯    is contained in the quadrilateral   Q = O D C  D ¯   . Note that   Q ⊆  ⋃  j = [ −    n 1  + 1  2  ]   [    n 1  + 1  2  ]    R j   (  Q ′  )   . Thus,


   K *  =  ⋃  j = 0  n   R j   ( Q )  ⊆  ⋃  j = 0  n   R j   (  Q ′  )  ⊆  ⋃  j = 0  n   R j   ( Q )  =  K *  .  











So    K *  =  ⋃  j = 0  n   R j   (  Q ′  )   . Thus,   K *   is the regular stellated n-gon less its vertices, one of whose open sides is the diagonal    D ′    D ′  ¯    of   Q ′  . □





We would like to extend the mapping  δ  (16) to a mapping of   S reg   onto   K *  . Let


   δ   Φ   R  j    ( D )    :  Φ   R  j    ( D )  ⊆  S reg  →  R j   δ ( D )  ⊆  K *  :  ( ξ , η )  ↦  R j  δ   Φ   R   − j     ( ξ , η )   ,  








where  Φ  is the   G ^   action defined in Equation (14). So we have a mapping


   δ  K *   :  S reg  ⊆   C  2  →  K *  ⊆ C  



(17)




defined by    (  δ  K *   )     |   Φ   R  j    ( D )    = δ |    Φ   R  j    ( D )     . The mapping   δ  K *    is defined on   S reg  , because    S reg  =  ⨿  0 ≤ j ≤ n − 1    Φ   R  j    ( D )   , since  D  is a fundamental domain for the   G ^  -action  Φ  (14) on   S reg  . Because    K *  =  ⨿  0 ≤ j ≤ n − 1    R j   δ ( D )   , the mapping   δ  K *    is surjective. Hence   δ  K *    is holomorphic, since it is continuous on   S reg   and is holomorphic on the dense open subset    ⨿  0 ≤ j ≤ n − 1     R  j   ( int  D )    of   S reg  . Let   U : C → C : z ↦  z ¯    and let G be the group generated by the rotation R and the reflection U subject to the relations    R n  =  U 2  = e   and   R U = U  R  − 1    . Shorthand   G = 〈 U , R  |    U 2  = e =  R n    &   R U = U  R  − 1   〉  . Then   G = { e ;  R p   U ℓ  ,  ℓ = 0 , 1   &   p = 0 , 1 , … , n − 1 }  . The group G is the dihedral group   D  2 n   . The closure   cl (  K *  )   of    K *  =  ⨿  0 ≤ j ≤ n − 1    R j   ( Q )    in  C  is invariant under   G ^  , the subgroup of G generated by the rotation R. Because the quadrilateral Q is invariant under the reflection   U : z ↦  z ¯   , and   U  R j  =  R  − j   U  , it follows that   cl (  K *  )   is invariant under the reflection U. So   cl (  K *  )   is invariant under the group G.



We now look at some group theoretic properties of   K *  .



Lemma 3.

If F is a closed edge of the polygon   cl (  K *  )   and     g |  F    = id |  F    for some   g ∈ G  , then   g = e  .





Proof. 

Suppose that   g ≠ e  . Then   g =  R p   U ℓ    for some   ℓ ∈ { 0 , 1 }   and some   p ∈ { 0 , 1 , …  ,   n − 1 }  . Let   g =  R p  U   and suppose that F is an edge of   cl (  K *  )   such that   int ( F ) ∩ R ≠ ⌀  , where   R = { Re  z  |   z ∈ C }  . Then   U ( F ) = F  , but     U |  F  ≠  id F   . So     g |  F  =  R p    U |  F  ≠  id F   . Now suppose that   int ( F ) ∩ R = ⌀  . Then   U ( F ) ≠ F  . So     U |  F  ≠  id F   . Hence     g |  F  ≠  id F   . Finally, suppose that   g =  R p    with   p ≠ 0  . Then   g ( F ) ≠ F  . So     g |  F    ≠ id |  F   . □





Lemma 4.

For   j = 0 , 1 , ∞   put    S  ( j )   =  R  n j   U  . Then   S  ( j )    is a reflection in the closed ray     ℓ  j  =  { t   e   i  π  n j  / n   ∈ C  |   t ∈ O D }   . The ray    ℓ  0   is the closure of the side   O D   of the quadrilateral   Q = O D C  D ¯    in Figure 5.





Proof. 

  S  ( j )    fixes every point on the closed ray    ℓ  j  , because


      S  ( j )    (  { t   e   i  π  n j  / n    |   t ∈ O D }  )      =  R  n j    (  { t   e   − i  π  n j  / n    |   t ∈ O D }  )  =  { t   e   i  π  n j  / n    |   t ∈ O D }  .     











Since     (  S  ( j )   )  2  =  (  R  n j   U )   (  R  n j   U )  =  R  n j    ( U U )   R  −  n j    = e  , it follows that   S  ( j )    is a reflection in the closed ray    ℓ  j  . □





Corollary 5.

For every   j = 0 , 1 , ∞   and every   k ∈ { 0 , 1 , … , n − 1 }   let    S k  ( j )   =  R k   S  ( j )    R  − k    . Here    S n  ( j )   =  S 0  ( j )   =  S  ( j )    , because    R n  = e  . Then   S k  ( j )    is a reflection in the closed ray    R k    ℓ  j   .





Proof. 

This follows because     (  S k  ( j )   )  2  =  R k    (  S  ( j )   )  2   R  − k   = e   and   S k  ( j )    fixes every point on the closed ray    R k    ℓ  j   , for


      S k  ( j )     R k   (  { t   e   i  π  n j  / n    |   t ∈ O D }  )       =  R k   S  ( j )    (  { t   e   i  π  n j  / n    |   t ∈ O D }  )  )           =  R k   (  { t   e   i  π  n j  / n    |   t ∈ O D }  )  .     











□





Corollary 6.

For every   j = 0 , 1 , ∞  , every   S k  ( j )    with   k = 0 , 1 , … , n − 1  , and every   g ∈ G  , we have   g  S k  ( j )    g  − 1   =  S r  ( j )     for a unique   r ∈ { 0 , 1 , … , n − 1 }  .





Proof. 

We compute. For every   k = 0 , 1 , … , n − 1   we have


  R  S k  ( j )    R  − 1   = R  (  R k   S  ( j )    R  − k   )   R  − 1   =  R  ( k + 1 )    S  ( j )    R  − ( k + 1 )   =  S  k + 1   ( j )    



(18)




and


     U  S k  ( j )    U  − 1       = U  (  R  ( k +  n j  )   U  R  − ( k +  n j  )   )  U =  R  − ( k +  n j  )   U  R  ( k +  n j  )            =  S  − ( k + 2  n j  )   ( j )   =  S t  ( j )   ,     



(19)




where   t = − ( k + 2  n j  )  mod  n  . Since R and U generate the group G, the corollary follows. □





Corollary 7.

For   j = 0 , 1 , ∞   let   G j   be the group generated by the reflections   S k  ( j )    for   k = 0 , 1 , … , n − 1  . Then   G j   is a normal subgroup of G.





Proof. 

Clearly   G j   is a subgroup of G. From Equations (18) and (19) it follows that   g  S k  ( j )    g  − 1   ∈  G j    for every   g ∈ G   and every   k = 0 , 1 … , n − 1  , since G is generated by R and U. However,   G j   is generated by the reflections   S k  ( j )    for   k = 0 , 1 , … , n − 1  , that is, every    g ′  ∈  G j    may be written as    S  i 1   ( j )   ⋯  S  i p   ( j )    , where for   ℓ ∈ { 1 , … p }   we have    i ℓ  ∈  { 0 , 1 , … , n − 1 }   . So   g  g ′   g  − 1   = g  (  S  i 1   ( j )   ⋯  S  i p   ( j )   )   g  − 1   =  ( g  S  i 1   ( j )    g  − 1   )  ⋯  ( g  S  i p   ( j )    g  − 1   )  ∈  G j    for every   g ∈ G  , that is,   G j   is a normal subgroup of G. □





As a first step in constructing the model    S ˜  reg   of   S reg   from the regular stellated n-gon   K *   we look at certain pairs of edges of   cl (  K *  )  . For each   j = 0 , 1 , ∞   we say two distinct closed edges E and   E ′   of   cl (  K *  )   are adjacent if and only if they intersect at a vertex of   cl (  K *  )  . For   j = 0 , 1 , ∞   let    E  j   be the set of unordered pairs of equivalent closed edges E and   E ′   of   cl (  K *  )  , that is, the edges E and   E ′   are not adjacent and    E ′  =  S m  ( j )    ( E )    for some generator   S m  ( j )    of   G j  . Recall that for x and y in some set, the unordered pair   [ x , y ]   is precisely one of the ordered pairs   ( x , y )   or   ( y , x )  . Note that    ⋃  j = 0 , 1 , ∞     E  j    is the set of all unordered pairs of nonadjacent edges of   cl (  K *  )  . Geometrically, two nonadjacent closed edges   E ′   and E of   cl (  K *  )   are equivalent if and only if   E ′   is obtained from E by reflection in the line    R m    ℓ  j    for some   m ∈ { 0 , 1 , … , n − 1 }   and some   j = 0 , 1 , ∞  . In Figure 6, where    K *  , =  K  1 , 1 , 4  *   , parallel edges of   K *  , which are labeled with the same letter, are   G 0  -equivalent. This is no coincidence.



Lemma 5.

Let   K *   be formed from the quadrilateral   Q = T ∪  T ¯   , where T is the isosceles rational triangle   T   n 0   n 0   n ∞     less its vertices. Then nonadjacent edges of   ∂  cl (  K *  )   are   G 0  -equivalent if and only if they are parallel, see Figure 7.





Proof. 

In Figure 7, let   O A B   be the triangle T with   ∠ A O B = α  ,   ∠ O A B = β  , and   ∠ A B O = γ  . Let   O A B  A  ″     be the quadrilateral formed by reflecting the triangle   O A B   in its edge   O B  . The quadrilateral   O A B  A  ″     reflected it its edge   O A   is the quadrilateral   O A  B ′   A ′   . Let   A  C ′    be perpendicular to    A ′   B ′    and   A C   be perpendicular to    A  ″   B  , see Figure 7. Then   C A  C ′    is a straight line if and only if   ∠  C ′  A  B ′  + ∠  B ′  A B + ∠ B A C = π  . By construction   ∠  C ′  A  B ′  = ∠ B A C = π / 2 − 2 γ   and   ∠  B ′  A B = 2 π − 2 β  . So


    π    = 2  (   π   2   − 2 γ )  + 2  ( π − β )  = 3 π − 2  ( β + γ )  − 2 γ          = 3 π − 2 ( α + β + γ ) + 2 ( α − γ ) = π + 2 ( α − γ ) ,     








if and only if   α = γ  . Hence the edges    A  ″   B   and    A ′   B ′    are parallel if and only if the triangle   O A B   is isosceles. □





Theorem 2.

Let   K *   be the regular stellated n-gon formed from the rational quadrilateral   Q   n 0   n 1   n ∞     with    d j  = gcd  (  n j  , n )    for   j = 0 , 1 , ∞  . The G orbit space formed by first identifiying equivalent edges of the regular stellated n-gon   K *   formed from Q less O and then acting on the identification space by the group G is    S ˜  reg  , which is a smooth 2-sphere with g handles, where   g =    1   2      n + 2 − (  d 0  +  d 1  +  d ∞  )   , less some points corresponding to the image of the vertices of   cl (  K *  )  .





Example 1.

Before we begin proving Theorem 2 we consider the following special case. Let    K *  =  K  1 , 1 , 4  *    be a regular stellated hexagon formed by repeatedly rotating the quadrilateral    Q ′  = O  D ′  C   D ′  ¯    by R through an angle   2 π / 6  , see Figure 6.





Let   G 0   be the group generated by the reflections    S k  ( 0 )   =  R k   S  ( 0 )    R  − k   =  R  2 k + 1   U   for   k = 0 , 1 , … , 5  . Here    S  ( 0 )   = R U   is the reflection which leaves the closed ray     ℓ  0  =  { t   e   i ρ / 6    |   t ∈ O  D ′  }    fixed. Define an equivalence relation on   cl (  K *  )   by saying that two points x and y in   cl (  K *  )   are equivalent,   x ∼ y  , if and only if 1) x and y lie on   ∂  cl (  K *  )   with x on the closed edge E and   y =  S m  ( 0 )    ( x )  ∈  S m  ( 0 )    ( E )    for some reflection    S m  ( 0 )   ∈  G 0    or 2) if x and y lie in the interior of   cl (  K *  )   and   x = y  . Let   cl   (  K *  )  ∼    be the space of equivalence classes and let


  ρ : cl  (  K *  )  → cl   (  K *  )  ∼  : p ↦  [ p ]   



(20)




be the identification map which sends a point   p ∈ cl (  K *  )   to the equivalence class   [ p ]  , which contains p. Give   cl (  K *  )   the topology induced from  C . Placing the quotient topology on   cl   (  K *  )  ∼    turns it into a connected topological manifold without boundary, whose closure is compact. Let   K *   be   cl (  K *  )   less its vertices. The identification space     (  K *    \   O )  ∼  = ρ  (  K *    \   O )    is a connected 2-dimensional smooth manifold without boundary.



Let   G = 〈 R , U  |    R 6  = e =  U 2    &   R U = U  R  − 1   〉  . The usual G-action


  G × cl  (  K *  )  ⊆ G × C → cl  (  K *  )  ⊆ C :  ( g , z )  ↦ g  ( z )   








preserves equivalent edges of   cl (  K *  )   and is free on    K *    \   O  . Hence it induces a G action on    (  K *    \   O )  ∼  , which is free and proper. Thus, its orbit map


  σ :   (  K *    \   O )  ∼  →   (  K *    \   O )  ∼  / G =   S ˜  reg  : z ↦ z G  








is surjective, smooth, and open. The orbit space     S ˜  reg  = σ  (   (  K *    \   O )  ∼  )    is a connected 2-dimensional smooth manifold. The identification space    (  K *    \   O )  ∼   has the orientation induced from an orientation of    K *    \   O  , which comes from  C . So    S ˜  reg   has a complex structure, since each element of G is a conformal mapping of  C  into itself.



Our aim is to specify the topology of    S ˜  reg  . The regular stellated hexagon    K *    \   O   less the origin has a triangulation   T   K *    \   O    made up of 12 open triangles    R j   ( △ O C  D ′  )    and    R j   ( △ O C    D ¯   ′  )    for   j = 0 , 1 , … , 5  ; 24 open edges    R j   ( O C )   ,    R j   ( O    D ¯   ′  )   ,    R j   ( C    D ¯   ′  )   , and    R j   ( C  D ′  )    for   j = 0 , 1 , … , 5  ; and 12 vertices    R j   (  D ′  )    and    R j   ( C )    for   j = 0 , 1 , … , 5  , see Figure 6.



Consider the set    E  0   of unordered pairs of equivalent closed edges of   cl (  K *  )  , that is,    E  0   is the set   [ E ,  S k  ( 0 )    ( E )  ]   for   k = 0 , 1 , … , 5  , where E is a closed edge of   cl (  K *  )  . Table 2 lists the elements of    E  0  . G acts on    E  0  , namely,   g ·  [ E ,  S k  ( 0 )    ( E )  ]  =  [ g  ( E )  , g  S k  ( 0 )    g  − 1    g ( E )  ]   , for   g ∈ G  . Since   G 0   is the group generated by the reflections   S k  ( 0 )   ,   k = 0 , 1 , … , 5  , it is a normal subgroup of G. Hence the action of G on    E  0   restricts to an action of   G 0   on    E  0   and the G action permutes   G 0  -orbits in    E  0  . Thus, the set of   G 0  -orbits in    E  0   is G-invariant.



We now look at the   G 0  -orbits on    E  0  . We compute the   G 0  -orbit of   d ∈   E  0    as follows. We have


     ( U R ) · d     =  U R  (   D 2 ′  ¯   C 2  )  , U R  (  S 2  ( 0 )    (   D 2 ′  ¯   C 2  )  )   =  U R  (   D 2 ′  ¯   C 2  )  , U R  (   D 4 ′  ¯   C 3  )   )            =  U  (  D 2 ′   C 3  )  , U  (  D 4 ′   C 4  )   =    D 4 ′  ¯   C 5  ,   D 2 ′  ¯   C 2   = d .     











Since


      R 2  · d     =  R 2  ·    D 2 ′  ¯   C 2  ,  S 2  ( 0 )    (   D 2 ′  ¯   C 2  )   =   R 2   (   D 2 ′  ¯   C 2  )  ,  R 2   S 2  ( 0 )    R  − 2    (  R 2   (   D 2 ′  ¯   C 2  )  )            =    D 4 ′  ¯   C 4  ,  S 4  ( 0 )    (   D 4 ′  ¯   C 4  )   =    D 4 ′  ¯   C 4  ,   D ′  ¯   C 5   = e     








and


      R 4  · d     =   R 4   (   D 4 ′  ¯   C 2  )  ,  R 4   S 2  ( 0 )    R  − 4    (  R 4   (   D 2 ′  ¯   C 2  )  )            =    D ′  ¯  C ,  S 6  ( 0 )    (   D ′  ¯  C )   =    D ′  ¯  C ,  S 0  ( 0 )    (   D ′  ¯  C )   =    D ′  ¯  C ,   D 2 ′  ¯   C 1   = a ,     








the   G 0   orbit    G 0  · d   of   d ∈   E  0    is    (  G 0  /  〈 U R |    ( U R )  2  = e 〉  )  · d =  H 0  · d =  { a , d , e }   . Here    H 0  =  〈 V =  R 2   |    V 3  = e 〉   , since    G 0  =  〈 V =  R 2  , U R  |    V 3  = e =   ( U R )  2    &   V  ( U R )  =  ( U R )   V  − 1   〉   . Similarly, the   G 0  -orbit    G 0  · f   of   f ∈   E  0    is    H 0  · f =  { b , c , f }   . Since    G 0  · d  ∪   G 0  · f =   E  0   , we have found all   G 0  -orbits on    E  0  . The G-orbit of   O C   is    R j   ( O C )    for   j = 0 , 1 , … , 5  , since   U ( O C ) = O C  ; while the G-orbit of   O  D ′    is    R j   ( O  D ′  )   ,    R j   ( O   D ′  ¯  )    for   j = 0 , 1 , … , 5  , since   U  ( O  D ′  )  = O   D ′  ¯   .



Suppose that B is an end point of the closed edge E of   cl (  K *  )  . Then E lies in a unique   [ E ,  S m  ( 0 )    ( E )  ]   of    E  0  . Let    G 0  ·  [ E ,  S m  ( 0 )    ( E )  ]    be the   G 0  -orbit of   [ E ,  S m  ( 0 )    ( E )  ]  . Then    g ′  · B   is an end point of the closed edge    g ′   ( E )    of    g ′  ·  [ E ,  S m  ( 0 )    ( E )  ]  ∈   E  0    for every    g ′  ∈  G 0   . So   O  ( B )  = {  g ′  · B  |    g ′  ∈  G 0  }   the   G 0  -orbit of the vertex B. It follows from the classification of   G 0  -orbits on    E  0   that   O  (  D ′  )  =  {  D ′  ,  D 2 ′  ,  D 4 ′  }    and   O  (   D ′  ¯  )  =  {   D ′  ¯  ,    D ′  ¯  2  ,    D ′  ¯  4  }    are   G 0  -orbits of the vertices of   cl (  K *  )  , which are permuted by the action of G on    E  0  . Furthermore,   O  ( C )  =  { C ,  C 1  , … ,  C 5  }    and   O  (  D ′  &   D ′  ¯  )  =  {  D ′  ,   D ′  ¯  ,  D 2 ′  ,    D ′  ¯  2  ,  D 4 ′  ,    D ′  ¯  4  }    are G-orbits of vertices of   cl (  K *  )  , which are end points of the G-orbit of the rays   O C   and   O  D ′   , respectively.



To determine the topology of the G orbit space    S ˜  reg   we find a triangulation of    S ˜  reg  . Note that the triangulation   T   K *    \   O    of    K *    \   O  , illustrated in Figure 6, is G-invariant. Its image under the identification map  ρ  is a G-invariant triangulation   T   (  K *    \   O )  ∼    of    (  K *    \   O )  ∼  . After identification of equivalent edges, each vertex   ρ ( v )  , each open edge   ρ ( E )  , having   ρ ( O )   as an end point, or each open edge   ρ (  [ F ,  F ′  ]  )  , where   [ F ,  F ′  ]   is a pair of equivalent edges of   cl (  K *  )  , and each open triangle   ρ ( T )   in   T   (  K *    \   O )  ∼    lies in a unique G orbit. It follows that   σ ( ρ ( v ) )  ,   σ ( ρ ( E ) )   or   σ ( ρ  (  [ F ,  F ′  ]  )  )  , and   σ ( ρ ( T ) )   is a vertex, an open edge, and an open triangle, respectively, of a triangulation    T   S ˜  reg   = σ  (  T   (  K *    \   O )  ∼   )    of    S ˜  reg  . The triangulation   T   S ˜  reg    has 4 vertices, corresponding to the G orbits   σ ( ρ  ( O  (  D ′  )  )  )  ,   σ ( ρ  ( O  (   D ′  ¯  )  )  )  ,   σ ( ρ ( O ( C ) ) )  , and   σ ( ρ  ( O  (  D ′  &   D ′  ¯  )  )  )  ; 18 open edges corresponding to   σ ( ρ  (  R j   ( O C )  )  )  ,   σ ( ρ  (  R j   ( O  D ′  )  )  )  , and   σ ( ρ  (  R j   ( C  D ′  )  )  )   for   j = 0 , 1 , … , 5  ; and 12 open triangles   σ ( ρ  (  R j   ( △ O C  D ′  )  )  )   and   σ ( ρ  (  R j   ( △ O C   D ′  ¯  )  )  )   for   j = 0 , 1 , … , 5  . Thus, the Euler characteristic   χ (   S ˜  reg  )   of    S ˜  reg   is   4 − 18 + 12 = − 2  . Since    S ˜  reg   is a 2-dimensional smooth real manifold,   χ (   S ˜  reg  ) = 2 − 2 g  , where g is the genus of    S ˜  reg  . Hence   g = 2  . So    S ˜  reg   is a smooth 2-sphere with 2 handles, less a finite number of points, which lies in a compact topological space    S ˜  = cl   (  K *  )  ∼  / G  , that is its closure, see Figure 8. This completes the example.



Proof of Theorem 2.

We now begin the construction of    S ˜  reg   by identifying equivalent edges of   cl (  K *  )  . For each   j = 0 , 1 , ∞   let   [ E ,  S m  ( j )    ( E )  ]   be an unordered pair of equivalent closed edges of   cl (  K *  )  . We say that x and y in   cl (  K *  )   are equivalent,   x ∼ y  , if 1) x and y lie in   ∂  cl (  K *  )   with   x ∈ E   and   y =  S m  ( j )    ( x )  ∈  S m  ( 0 )    ( E )    for some   m ∈ { 0 , 1 , … , n − 1 }   and some   j = 0 , 1 , ∞   or 2) x and y lie in   int  cl (  K *  )   and   x = y  . The relation ∼ is an equivalence relation on   cl (  K *  )  . Let   cl   (  K *  )  ∼    be the set of equivalence classes and let


  ρ : cl  (  K *  )  → cl   (  K *  )  ∼  : p ↦  [ p ]   



(21)




be the map which sends p to the equivalence class   [ p ]  , that contains p. Compare this argument with that of Richens and Berry [2]. Give   cl (  K *  )   the topology induced from  C  and put the quotient topology on   cl   (  K *  )  ∼   . □





Theorem 3.

Let   K *   be   cl (  K *  )   less its vertices. Then     (  K *    \   O )  ∼  = ρ  (  K *    \   O )    is a smooth manifold. Furthermore,   cl   (  K *  )  ∼    is a topological manifold.





Proof. 

To show that    (  K *    \   O )  ∼   is a smooth manifold, let   E +   be an open edge of   K *  . For    p +  ∈  E +    let   D  p +    be a disk in  C  with center at   p +  , which does not contain a vertex of   cl (  K *  )  . Set    D  p +  +  =  K *  ∩  D  p +    . For each   j = 0 , 1 , ∞   let   E −   be an open edge of   K *  , which is equivalent to   E +   via the reflection   S m  ( j )   , that is,    [ cl  (  E +  )  , cl  (  E −  )  =  S m  ( j )    ( cl  (  E +  )  )  ]  ∈   E  j    is an unordered pair of   S m  ( j )    equivalent edges. Let    p −  =  S m  ( j )    (  p +  )    and set    D  p −  −  =  S m  ( j )    (  D  p +  +  )   . Then    V  [ p ]   = ρ  (  D  p +  +  ∪  D  p −  −  )    is an open neighborhood of    [ p ]  =  [  p +  ]  =  [  p −  ]    in    (  K *    \   O )  ∼  , which is a smooth 2-disk, since the identification mapping  ρ  is the identity on   int   K *   . It follows that    (  K *    \   O )  ∼   is a smooth 2-dimensional manifold without boundary.



We now handle the vertices of   cl (  K *  )  . Let   v +   be a vertex of   cl (  K *  )   and set    D  v +   =  D ˜  ∩ cl  (  K *  )   , where   D ˜   is a disk in  C  with center at the vertex    v +  =  r 0    e   i π  θ 0     . The map


   W  v +   :  D +  ⊆ C →  D  v +   ⊆ C : r   e   i π θ   ↦  | r −  r 0  |    e   i π s ( θ −  θ 0  )    








with   r ≥ 0   and   0 ≤ θ ≤ 1   is a homeomorphism, which sends the wedge with angle  π  to the wedge with angle   π s  . The latter wedge is formed by the closed edges   E + ′   and   E +   of   cl (  K *  )  , which are adjacent at the vertex   v +   such that     e   i π s    E + ′  =  E +    with the edge   E + ′   being swept out through   int  cl (  K *  )   during its rotation to the edge   E +  . Because   cl (  K *  )   is a rational regular stellated n-gon, the value of s is a rational number for each vertex of   cl (  K *  )  . For each   j = 0 , 1 , ∞   let    E −  =  S m  ( j )    (  E +  )    be an edge of   cl (  K *  )  , which is equivalent to   E +   and set    v −  =  S m  ( j )    (  v +  )   . Then   v −   is a vertex of   cl (  K *  )  , which is the center of the disk    D  v −   =  S m  ( j )    (  D  v +   )   . Set    D −  =   D ¯  +   . Then   D =  D +  ∪  D −    is a disk in  C . The map   W : D → ρ (  D  v +   ∪  D  v −   )  , where     W |   D +   = ρ   ∘     W  v +     and     W |   D −   = ρ   ∘     S m  ( 0 )     ∘     W  v +     ∘           5 p t   0 p t   ¯    , is a homeomorphism of D into a neighborhood   ρ (  D  v +   ∪  D  v −   )   of    [ v ]  =  [  v +  ]  =  [  v −  ]    in   cl   (  K *  )  ∼   . Consequently, the identification space   cl   (  K *  )  ∼    is a topological manifold. □





We now describe a triangulation of    K *    \   O  . Let    T ′  =  T  1 ,  n 1  , n −  ( 1 +  n 1  )      be the open rational triangle   △ O C  D ′    with vertex at the origin O, longest side   O C   on the real axis, and interior angles    1 n  π  ,     n 1  n  π  , and     n − 1 −  n 1   n  π  . Let   Q ′   be the quadrilateral    T ′  ∪   T ′  ¯   . Then   Q ′   is a subset of the quadrilateral   Q = O D C  D ¯   , see Figure 5. Moreover    K *  =  ⋃  ℓ = 0   n − 1    R ℓ   (  Q ′  )   . The   2 n   triangles   cl  (  R j   (  T ′  )  )    \    { O }    and   cl (  R k   (   T ′  ¯  )  )   \   O   with   k = 0 , 1 , … , n − 1   form a triangulation   T   K *    \   O    of    K *    \   O   with   2 n   vertices    R k   ( C )    and    R k   (  D ′  )    for   k = 0 , 1 , … , n − 1  ;   4 n   open edges    R k   ( O C )   ,    R k   ( O  D ′  )   ,    R k   ( C  D ′  )   , and    R k   ( C   D ′  ¯  )    for   k = 0 , 1 , … , n − 1  ; and   2 n   open triangles    R k   (  T ′  )   ,    R k   (   T ′  ¯  )    with   k = 0 , 1 , … , n − 1  . The image of the triangulation   T   K *    \   O    under the identification map  ρ  (21) is a triangulation   T   (  K *    \   O )  ∼    of the identification space    (  K *    \   O )  ∼  .



The action of G on   cl (  K *  )   preserves the set of unordered pairs of   S m  ( j )    equivalent edges of   cl (  K *  )   for each   j = 0 , 1 , ∞  . Hence G induces an action on   cl   (  K *  )  ∼   , which is proper, since G is finite. The G action is free on    K *    \   O   and thus on    (  K *    \   O )  ∼   by Lemma A2. We have proved



Lemma 6.

The G-orbit space    S ˜  = cl   (  K *  )  ∼  / G   is a compact connected topological manifold with     S ˜  reg  =   (  K *    \   O )  ∼  / G   being a smooth manifold. Let


   σ : cl   (  K *  )  ∼  →  S ˜  = cl   (  K *  )  ∼  / G : z ↦ z G .   








Then σ is the G orbit map, which is surjective, continuous, and open. The restriction of σ to    K *    \   O   has image    S ˜  reg   and is a smooth open mapping.





We now determine the topology of the orbit space    S ˜  reg  . For each   j = 0 , 1 , ∞   and    ℓ j  = 0 , 1 , … ,  d j  − 1   let   A  ℓ j  j   be an end point of a closed edge E of   cl (  K *  )  , which lies on the unordered pair    [ E ,  S  ℓ j   ( j )    ( E )  ]  ∈   E  j   . Then    H j  ·  A  ℓ j   ( j )     is an end point of the edge    H j  · E   of the unordered pair    H j  ·  [ E ,  S  ℓ j   ( j )    ( E )  ]    of    E  j  . See Appendix A for the definition of the group   H j  . The sets   O  (  A ℓ  ( j )   )  =  {  H j  ·  A  ℓ j   ( j )   }    with    ℓ j  = 0 , 1 , … ,  d j  − 1   are permuted by G. The action of G on    K *    \   O   preserves the set of open edges of the triangulation   T   K *    \   O   . There are   3 n  -orbits:    R k   ( O C )   ;    R k   ( O   D ′  ¯  )   , since   O  D ′  = R  ( O   D ′  ¯  )   ; and    R k   ( C D )   , since   C   D ′  ¯  = U  ( C D )    for   k = 0 , 1 , … , n − 1  . So the image of the triangulation   T   K *    \   O    under the continuous open map


    μ = σ   ∘    π |    K *    \   O   :  K *    \   O →   S ˜  reg   



(22)




is a triangulation   T   S ˜  reg    of the G-orbit space    S ˜  reg   with    d 0  +  d 1  +  d ∞    vertices   μ ( O  (  A  ℓ j   ( j )   )  )  , where   j = 0 , 1 , ∞   and    ℓ j  = 0 , 1 , … ,  d j  − 1  ;   3 n   open edges   μ (  R k   ( O C )  )  ,   μ (  R j   ( O   D ′  ¯  )  )  , and   μ (  R k   ( C D )  )   for   k = 0 , 1 , … , n − 1  ; and   2 n   open triangles   μ (  R k   (  T ′  )  )   and   μ (  R k   (   T ′  ¯  )  )   for   k = 0 , 1 , … n − 1  . Thus, the Euler characteristic   χ (   S ˜  reg  )   of    S ˜  reg   is    d 0  +  d 1  +  d ∞  − 3 n + 2 n =  d 0  +  d 1  +  d ∞  − n  . However,    S ˜  reg   is a smooth manifold. So   χ (   S ˜  reg  ) = 2 − 2 g  , where g is the genus of    S ˜  reg  . Hence   g =    1   2      n + 2 − (  d 0  +  d 1  +  d ∞  )   . Compare this argument with that of Weyl ([4], p. 174). This proves Theorem 2.



Since the quadrilateral Q is a fundamental domain for the action of G on   K *  , the G orbit map    μ ¯  = σ     ∘    π :  K *  ⊆ C →  S ˜    restricted to Q is a bijective continuous open mapping. However,    δ Q  : D ⊆ S → Q ⊆ C   is a bijective continous open mapping of the fundamental domain  D  of the  G  action on  S . Consequently, the  G  orbit space is homeomorphic to the G orbit space   S ˜  . The mapping   μ ¯   is holomorphic except possibly at 0 and the vertices of   cl (  K *  )  . So the mapping    μ ¯      ∘     δ  K *   :  S reg  →   S ˜  reg    is a holomorphic diffeomorphism.




5. An Affine Model of   S reg  


We construct an affine model of the affine Riemann surface   S reg   as follows. Return to the regular stellated n-gon    K *  =  K   n 0   n 1   n ∞   *   , which is formed from the quadrilateral   Q =  Q   n 0   n 1   n ∞      less its vertices. Repeatedly reflecting in the edges of   K *   and then in the edges of the resulting reflections of   K *   et cetera, we obtain a covering of   C   \     V  +    by certain translations of   K *  . Here    V  +   is the union of the translates of the vertices of   cl (  K *  )   and its center O. Let  T  be the group generated by these translations. The semidirect product   G = G ⋉ T   acts freely, properly and transitively on   C   \     V  +   . It preserves equivalent edges of   C   \     V  +    and it acts freely and properly on    ( C   \     V  +  )  ∼  , the space formed by identifying equivalent edges in   C   \     V  +   . The orbit space     ( C   \     V  +  )  ∼  / G   is holomorphically diffeomorphic to    S ˜  reg   and is the desired affine model of   S reg  . We now justify these assertions.



First we determine the group  T  of translations.



Lemma 7.

Each of the   2 n   sides of the regular stellated n-gon   K *   is perpendicular to exactly one of the directions


     e   [  1 2  −   n 1  n  + 2 k  1 n  ] π i      or      e   [ −  1 2  −  1 n  +   n 1  n  +  ( 2 k + 1 )   1 n  ] π i   ,   



(23)




for   k = 0 , 1 , … , n − 1  .





Proof. 

From Figure 9 we have   ∠  D ′  C O =   n 1  n  π  . So   ∠ C O H =  1 2  π −   n 1  n  π  . Hence the line   ℓ 0  , containing the edge   C  D ′    of   K *  , is perpendicular to the direction    e   [  1 2  −   n 1  n  ] π   . Since   △ C O   D ′  ¯    is the reflection of   △ C O  D ′    in the line segment   O C  , the line   ℓ 1  , containing the edge   C   D ′  ¯    of   K *  , is perpendicular to the direction    e   [ −  1 2  +   n 1  n  ] π   . Because the regular stellated n-gon   K *   is formed by repeatedly rotating the quadrilateral    Q ′  = O  D ′  C   D ′  ¯    through an angle    2 π  n  , we find that Equation (23) holds. □





Since   ∠ C O H =  1 2  π −   n 1  n  π  , it follows that    | H |  =  | C | sin π    n 1  n    is the distance from the center O of   K *   to the line   ℓ 0   containing the side   C  D ′   , or to the line   ℓ 1   containing the side   C   D ′  ¯   . So    u 0  =  ( | C | sin π    n 1  n   )    e   [  1 2  −   n 1  n  ] π i     is the closest point H on   ℓ 0   to O and    u 1  =  ( | C | sin π    n 1  n   )    e   [ −  1 2  +   n 1  n  ] π i     is the closest point   H ¯   on   ℓ 1   to O. Since the regular stellated n-gon   K *   is formed by repeatedly rotating the quadrilateral    Q ′  = O  D ′  C   D ′  ¯    through an angle    2 π  n  , the point


   u  2 k   =  R k   u 0  =  ( | C | sin π    n 1  n   )    e   [  1 2  −   n 1  n  + 2 k  1 n  ] π i    



(24)




lies on the line    ℓ  2 k   =  R k   ℓ 0   , which contains the edge    R k   ( C  D ′  )    of   K *  ; while


   u  2 k + 1   =  R k   u 1  =  ( | C | sin π    n 1  n   )    e   [ −  1 2  +   n 1  n  −  1 n  +  ( 2 k + 1 )   1 n  ] π i    



(25)




lies on the line    ℓ  2 k + 1   =  R k   ℓ 1   , which contains the edge    R k   ( C   D ′  ¯  )    of   K *   for every   k ∈ { 0 , 1 , … , n − 1 }  . Furthermore, the line segments   O  u  2 k     and   O  u  2 k + 1     are perpendicular to the line   ℓ  2 k    and   ℓ  2 k + 1   , respectively, for   k ∈ { 0 , 1 , … , n − 1 }  .



Corollary 8.

For   k = 0 , 1 , … , n − 1   we have


     u  2 k   ¯  =  u  2 ( n − k ) + 1      and      u  2 k + 1   ¯  =  u  2 ( n − k )   .   



(26)









Proof. 

We compute. From (24) it follows that


      u  2 k   ¯     = U  (  u  2 k   )  = U  R k   (  u 0  )  =  R  − k    ( U  (  u 0  )  )           =  R  − k    (  u 1  )  =  R  n − k    (  u 1  )  =  u  2 ( n − k ) + 1   ,   using   ( 25 ) ;      








while from (25) we get


      u  2 k + 1   ¯     = U  (  u  2 k + 1   )  = U  R k   (  u 1  )  =  R  − k    ( U  (  u 1  )  )  =  R  n − k    (  u 0  )  =  u  2 ( n − k )   .     











□





Corollary 9.

For k,   ℓ ∈ { 0 , 1 , … , 2 n − 1 }   we have


    u  ( k + 2 ℓ )  mod  2 n   =  R ℓ   u k  .   



(27)









Proof. 

If   k = 2 i  , then    u k  =  R i   u 0   , by definition. So


   R ℓ   u k  =  R  ℓ + i    u 0  =  u  ( 2 i + 2 ℓ )  mod  2 n   =  u  ( k + 2 ℓ )  mod  2 n   .  











If   k = 2 i + 1  , then    u ℓ  =  R i   u 1   , by definition. So


      R ℓ   u k  =  R  ℓ + i    u 1  =  u  ( 2 ( i + ℓ ) + 1 )  mod  2 n   =  u  ( k + 2 ℓ )  mod  2 n   .     











□





For   k = 0 , 1 , … , 2 n − 1   let   τ k   be the translation


   τ k  : C → C : z ↦ z + 2  u k  .  



(28)







Corollary 10.

For k,   ℓ ∈ { 0 , 1 , … , 2 n − 1 }   we have


    τ  ( k + 2 ℓ )  mod  2 n     ∘     R ℓ  =  R ℓ    ∘     τ k  .   



(29)









Proof. 

For every   z ∈ C  , we have


      τ  ( k + 2 ℓ )  mod  2 n    ( z )      = z + 2  u  ( k + 2 ℓ )  mod  2 n   ,   using ( 28 )           = z + 2  R ℓ   u k    by ( 27 )           =  R ℓ   (  R  − ℓ   z + 2  u k  )  =  R ℓ    ∘     τ k   (  R  − ℓ   z )  .     











□





Reflecting the regular stellated n-gon   K *   in its edge   C  D ′    contained in   ℓ 0   gives a congruent regular stellated n-gon   K 0 *   with the center O of   K *   becoming the center   2  u 0    of   K 0 *  .



Lemma 8.

The collection of all the centers of the regular stellated n-gons, formed by reflecting   K *   in its edges and then reflecting in the edges of the reflected regular stellated n-gons et cetera, is


      {   τ  0  ℓ 0     ∘    ⋯   ∘      τ   2 n − 1   ℓ  2 n − 1     ( 0 )  ∈ C  |   (  ℓ 0  , … ,  ℓ  2 n − 1   )  ∈   (  Z  ≥ 0   )   2 n   }     =          =  2    ∑    ℓ 0  , … ,  ℓ  2 n − 1   = 0  ∞     ℓ 0   u 0  + ⋯  ℓ  2 n − 1    u  2 n − 1     ,      








where for   k = 0 , 1 , … , 2 n − 1   we have


     τ  k  ℓ k   =     τ k    ∘    ⋯   ∘     τ k   ︷   ℓ k   : C → C : z ↦ z + 2  ℓ j   u k  .   













Proof. 

For each    k 0  = 0 , 1 , … , 2 n − 1   the center of the   2 n   regular stellated congruent n-gon   K  k 0  *   formed by reflecting in an edge of   K *   contained in the line   ℓ  k 0    is    τ  k 0    ( 0 )  = 2  u  k 0    . Repeating the reflecting process in each edge of   K  k 0  *   gives   2 n   congruent regular stellated n-gons   K   k 0   k 1   *   with center at    τ  k 1     τ  k 0    ( 0 )   = 2  (  u  k 1   +  u  k 0   )   , where    k 1  = 0 , 1 , … 2 n − 1  . Repeating this construction proves the lemma. □





The set  V  of vertices of the regular stellated n-gon   K *   is


  {  V  2 k   = C   e   2 k (  1 n  π  i )   ,   V  2 k + 1   =  D ′    e    ( 2 k + 1 )   (  1 n  π  i )       f o r 0 ≤ k ≤ n − 1  } ,  








see Figure 5. Clearly the set  V  is G invariant.



Corollary 11.

The set


       V  +     = {  v   ℓ 0  ⋯  ℓ  2 n − 1     =   τ  0  ℓ 0     ∘    ⋯   ∘      τ   2 n − 1   ℓ  2 n − 1     ( V )   |            V ∈ V ∪  { O }    &    (  ℓ 0  , … ,  ℓ  2 n − 1   )  ∈   (  Z  ≥ 0   )   2 n    }       



(30)




is the collection of vertices and centers of the congruent regular stellated n-gons   K *  ,   K  k 1  *  ,    K   k 0   k 1   *  , …  .





Proof. 

This follows immediately from Lemma 8. □





Corollary 12.

The union of    K *  ,  K  k 0  *  ,  K   k 0   k 1   *  , …  K   k 0   k 1  ⋯  k ℓ   *  , …  , where   ℓ ≥ 0  ,   0 ≤ j ≤ ℓ  , and   0 ≤  k j  ≤ 2 n − 1  , covers   C   \     V  +   , that is,


    K *  ∪  ⋃  ℓ ≥ 0     ⋃  0 ≤ j ≤ ℓ       ⋃  0 ≤  k j  ≤ 2 n − 1    K   k 0   k 1  ⋯  k ℓ   *  = C   \     V  +  .   













Proof. 

This follows immediately from    K   k 0   k 1  ⋯  k ℓ   *  =  τ  k ℓ     ∘    ⋯   ∘     τ  k 0    (  K *  )   . □





Let  T  be the abelian subgroup of the 2-dimensional Euclidean group   E ( 2 )   generated by the translations   τ k   (28) for   k = 0 , 1 , … 2 n − 1  . It follows from Corollary 12 that the regular stellated n-gon   K *   with its vertices and center removed is the fundamental domain for the action of the abelian group  T  on   C   \     V  +   . The group  T  is isomorphic to the abelian subgroup  T  of   ( C , + )   generated by    { 2  u k  }   k = 0   2 n − 1   .



Next we define the group  G  and show that it acts freely, properly, and transitively on   C   \     V  +   . Consider the group   G = G ⋉ T ⊆ G × T  , which is the semidirect product of the dihedral group G, generated by the rotation R through   2 π / n   and the reflection U subject to the relations    R n  = e =  U 2    and   R U = U  R  − 1    , and the abelian group  T . An element   (  R j   U ℓ  , 2  u k  )   of  G  is the affine linear map


   (  R j   U ℓ  , 2  u k  )  : C → C : z ↦  R j   U ℓ  z + 2  u k  .  











Multiplication in  G  is defined by


   (  R j   U ℓ  , 2  u k  )  ·  (  R  j ′    U   ℓ  ′   , 2  u  k ′   )  =   R  j +  j ′     U  ℓ +   ℓ  ′    ,  (  R j   U ℓ  )   ( 2  u  k ′   )  + 2  u k   ,  



(31)




which is the composition of the affine linear map   (  R  j ′    U   ℓ  ′   , 2  u  k ′   )   followed by   (  R j   U ℓ  , 2  u k  )  . The mappings   G → G :  R j  ↦  (  R j   U ℓ  , 0 )    and   T → G : 2  u k  ↦  ( e , 2  u k  )    are injective, which allows us to identify the groups G and  T  with their image in  G . Using (31) we may write an element   (  R j   U ℓ  , 2  u k  )   of  G  as    ( e , 2  u k  )  ·  (  R j   U ℓ  , 0 )   . So


   ( e , 2  u  ( j + 2 k )  mod  2 n   )  ·  (  R k   U ℓ  , 0 )  =  (  R k   U ℓ  , 2  u  ( j + 2 k )  mod  2 n   )  ,  











For every   z ∈ C   we have


      R k   U ℓ  z + 2  u  ( j + 2 k )  mod  2 n       =  R k   U ℓ  z +  R k   U ℓ   ( 2  u j  )  ,   using ( 27 ) ,      








that is,


   (  R k   U ℓ  , 2  u  ( j + 2 k )  mod  2 n   )  =  (  R k   U ℓ  ,  R k   U ℓ   ( 2  u j  )  )  =  (  R k   U ℓ  , 0 )  ·  ( e , 2  u j  )  .  











Hence


   ( e , 2  u  ( j + 2 k )  mod  2 n   )  ·  (  R k   U ℓ  , 0 )  =  (  R k   U ℓ  , 0 )  ·  ( e , 2  u j  )  ,  



(32)




which is just Equation (29). The group  G  acts on  C  as   E ( 2 )   does, namely, by affine linear orthogonal mappings. Denote this action by


  ψ : G × C → C : ( ( g , τ ) , z ) ↦ τ ( g ( z ) ) .  











Lemma 9.

The set    V  +   (30) is invariant under the  G  action.





Proof. 

Let   v ∈   V  +   . Then for some    (   ℓ  0 ′  , … ,   ℓ   2 n − 1  ′  )  ∈   Z   ≥ 0   2 n     and some   w ∈ V ∪ { O }  


  v =   τ  0   ℓ  0 ′     ∘    ⋯   ∘      τ   2 n − 1    ℓ   2 n − 1  ′    ( w )  =  ψ  ( e , 2  u ′  )    ( w )  ,  








where    u ′  =  ∑  k = 0   2 n − 1     ℓ  k ′   u k   . For   (  R j   U ℓ  , 2 u ) ∈ G   with   j = 0 , 1 , … , n − 1   and   ℓ = 0 , 1   we have


      ψ  (  R j   U ℓ  , 2 u )   v     =  ψ  (  R j   U ℓ  , 2 u )     ∘     ψ  ( e , 2  u ′  )    ( w )  =  ψ   (  R j   U ℓ  , 2 u )  ·  ( e , 2  u ′  )     ( w )           =  ψ  (  R j   U ℓ  ,  R j   U ℓ   ( 2  u ′  )  + 2 u )    ( w )  =  ψ   ( e , 2  (  R j   U ℓ   u ′  + u )  )  ·  (  R j   U ℓ  , 0 )     ( w )           =  ψ  ( e , 2  (  R j   U ℓ   u ′  + u )  )     ψ  (  R j   U ℓ  , 0 )    ( w )   =  ψ  ( e , 2  (  R j   U ℓ   u ′  + u )  )    (  w ′  )  ,     



(33)




where    w ′  =  ψ  (  R j   U ℓ  , 0 )    ( w )  =  R j   U ℓ   ( w )  ∈ V ∪  { O }   . If   ℓ = 0  , then


      R j   u ′      =  R j   (  ∑  k = 0   2 n − 1     ℓ  k ′   u k  )  =  ∑  k = 0   2 n − 1     ℓ  k ′   R j   (  u k  )  =  ∑  k = 0   2 n − 1     ℓ  k ′   u  ( k + 2 j )  mod  2 n   ;     








while if   ℓ = 1  , then


      R j  U  (  u ′  )      =  ∑  k = 0   2 n − 1     ℓ  k ′   R j   ( U  (  u k  )  )  =  ∑  k = 0   2 n − 1     ℓ  k ′   R j   (  u   k ′   ( k )    )  =  ∑  k = 0   2 n − 1     ℓ  k ′   u  (  k ′   ( k )  + 2 j )  mod  2 n   .     











Here    k ′   ( k )  =         2 n − k + 1 ,         if   k   is   even         2 n − k − 1 ,         if   k   is   odd  ,       see Corollary 8. So   ( e , 2  (  R j   U ℓ   u ′  + u )  ) ∈ T  , which implies    ψ  ( e , 2  (  R j   U ℓ   u ′  + u )  )    (  w ′  )  ∈   V  +   , as desired. □





Lemma 10.

The action of  G  on   C   \     V  +    is free.





Proof. 

Suppose that for some   v ∈ C   \     V  +    and some   (  R j   U ℓ  , 2 u ) ∈ G   we have   v =  ψ  (  R j   U ℓ  , 2 u )    ( v )   . Then v lies in some   K   k 0   k 1  ⋯  k ℓ   *  . So for some    v ′  ∈  K *    we have


    v    =   τ  0   ℓ  0 ′     ∘    ⋯   τ   2 n − 1    ℓ   2 n − 1  ′    (  v ′  )  =  ψ  ( e , 2  u ′  )    (  v ′  )  ,     








where    u ′  =  ∑  j = 0   2 n − 1     ℓ  j ′   u j    for some    (   ℓ  0 ′  , … ,   ℓ   2 n − 1  ′  )  ∈   (  Z  ≥ 0   )   2 n    . Thus,


   ψ  ( e , 2  u ′  )    (  v ′  )  =  ψ   (  R j   U ℓ  , 2 u )  ·  ( e , 2  u ′  )     (  v ′  )  =  ψ  (  R j   U ℓ  , 2  R j   U ℓ   u ′  + 2 u )    (  v ′  )  .  











This implies    R j   U ℓ  = e  , that is,   j = ℓ = 0  . So   2  u ′  = 2  R j   U ℓ   u ′  + 2 u = 2  u ′  + 2 u  , that is,   u = 0  . Hence    (  R j   U ℓ  , u )  =  ( e , 0 )   , which is the identity element of  G . □





Lemma 11.

The action of  T  (and hence  G ) on   C   \     V  +    is transitive.





Proof. 

Let   K   k 0  ⋯  k ℓ   *   and   K   k 0 ′  ⋯  k   ℓ  ′  ′   *   lie in


  C   \     V  +  =  K *  ∪  ⋃  ℓ ≥ 0     ⋃  0 ≤ j ≤ ℓ      ⋃  0 ≤  k j  ≤ 2 n − 1    K   k 0   k 1  ⋯  k ℓ   *  .  











Since    K   k 0  ⋯  k ℓ   *  =  τ  k ℓ     ∘    ⋯   ∘     τ  k 0    (  K *  )    and    K   k 0 ′  ⋯  k   ℓ  ′  ′   *  =  τ  k   ℓ  ′  ′     ∘    ⋯   ∘     τ  k 0 ′    (  K *  )   , it follows that    (  τ  k   ℓ  ′  ′     ∘    ⋯   ∘     τ  k 0 ′   )    ∘      (  τ  k ℓ     ∘    ⋯   ∘     τ  k 0   )   − 1    (  K   k 0  ⋯  k ℓ   *  )  =  K   k 0 ′  ⋯  k   ℓ  ′  ′   *   . □





The action of  G  on   C   \     V  +    is proper because  G  is a discrete subgroup of   E ( 2 )   with no accumulation points.



We now define an edge of   C   \     V  +    and what it means for an unordered pair of edges to be equivalent. We show that the group  G  acts freely and properly on the identification space of equivalent edges.



Let E be an open edge of   K *  . Since    E   k 0  ⋯  k ℓ    =  τ  k 0   ⋯  τ  k ℓ    ( E )  ∈  K   k 0  ⋯  k ℓ   *   , it follows that   E   k 0  ⋯  k ℓ     is an open edge of   K   k 0  ⋯  k ℓ   *  . Let


  E = {  E   k 0  ⋯  k ℓ     |  ℓ ≥ 0 ,   0 ≤ j ≤ ℓ   &   0 ≤  k j  ≤ 2 n − 1 } .  











Then  E  is the set of open edges of   C   \     V  +    by 12. Since    τ  k ℓ       ∘    ⋯     ∘     τ  k 0    ( 0 )    is the center of   K   k 0  ⋯  k ℓ   *  , the element    ( e ,  τ  k ℓ     ∘    ⋯   ∘     τ  k 0   )  ·  ( g ,   (  τ  k ℓ     ∘    ⋯   ∘     τ  k 0   )   − 1   )    of  G  is a rotation-reflection of   K   k 0  ⋯  k ℓ   *  , which sends an edge of   K   k 0  ⋯  k ℓ   *   to another edge of   g *  K   k 0  ⋯  k ℓ   *   . Thus,  G  sends  E  into itself. For   j = 0 , 1 , ∞   let    E    k 0  ⋯  k ℓ   j   be the set of unordered pairs   [  E   k 0  ⋯  k ℓ    ,  E   k 0  ⋯  k ℓ   ′  ]   of equivalent open edges of   K   k 0  ⋯  k ℓ   *  , that is,    E   k 0  ⋯  k ℓ    ∩  E   k 0  ⋯  k ℓ   ′  = ⌀  , so the open edges    E   k 0  ⋯  k ℓ    =  τ  k 0   ⋯  τ  k ℓ    ( E )    and    E   k 0  ⋯  k ℓ   ′  =  τ  k 0   ⋯  τ  k ℓ    (  E ′  )    of   cl (  K   k 0  ⋯  k ℓ   *  )   are not adjacent, which implies that the open edges E and   E ′   of   K *   are not adjacent, and for some generator   S m  ( j )    of the group   G j   of reflections with   j = 0 , 1 , ∞   we have


   E   k 0  ⋯  k ℓ   ′  =  (  τ  k 0     ∘    ⋯   ∘     τ  k 0   )    S m  ( j )    (   (  τ  k ℓ     ∘    ⋯   ∘     τ  k 0   )   − 1    (  E   k 0  ⋯  k ℓ    )  )   .  











Let     E  j  =  ∪  ℓ ≥ 0    ∪  0 ≤ j ≤ ℓ     ∪  0 ≤  k j  ≤ 2 n − 1     E    k 0  ⋯  k ℓ   j   . So    ⋃  j = 0 , 1 , ∞     E  j    is the set of unordered pairs of equivalent edges of   C   \     V  +   . Define an action * of  G  on    ⋃  j = 0 , 1 , ∞     E  j    by


      ( g , τ )  *  [  E   k 0  ⋯  k ℓ    ,  E   k 0  ⋯  k ℓ   ′  ]      =  [  (   τ  ′    ∘    τ )   ( g   (   τ  ′  )   − 1    (  E   k 0  ⋯  k ℓ    )  )  ,  (   τ  ′    ∘    τ )   ( g  (   (   τ  ′  )   − 1    (  E   k 0  ⋯  k ℓ   ′  )  )  ]            = [  ( g , τ )  *  E   k 0  ⋯  k ℓ    ,  ( g , τ )  *  E   k 0  ⋯  k ℓ   ′  ] ,     








where     τ  ′  =  τ  k ℓ       ∘    ⋯  τ  k 0    .



Define a relation ∼ on   C   \     V  +    as follows. We say that x and   y ∈ C   \     V  +    are related,   x ∼ y  , if 1)   x ∈ F = τ  ( E )  ∈   E  j    and   y ∈  F ′  = τ  (  E ′  )  ∈   E  j    such that    [ F ,  F ′  ]  =  [ τ  ( E )  , τ  (  E ′  )  ]  ∈   E  0   , where    [ E ,  E ′  ]  ∈   E  j    with    E ′  =  S m  ( j )    ( E )    for some    S m  ( j )   ∈  G j    and   y = τ   S m  ( j )    (   τ   − 1    ( x )  )     for some   j = 0 , 1 , ∞  , or 2) x,   y ∈  C   \     V  +     \   E   and   x = y  . Then ∼ is an equivalence relation on   C   \     V  +   . Let    ( C   \     V  +  )  ∼   be the set of equivalence classes and let  Π  be the map


  Π : C   \     V  +  →   ( C   \     V  +  )  ∼  : p ↦  [ p ]  ,  



(34)




which assigns to every   p ∈ C   \     V  +    the equivalence class   [ p ]   containing p.



Lemma 12.

   Π |   K *    is the map ρ (20).





Proof. 

This follows immediately from the definition of the maps  Π  and  ρ . □





Lemma 13.

The usual action of  G  on  C , restricted to   C   \     V  +   , is compatible with the equivalence relation ∼, that is, if x,   y ∈ C   \   V   and   x ∼ y  , then   ( g , τ ) ( x ) ∼ ( g , τ ) ( y )   for every   ( g , τ ) ∈ G  .





Proof. 

Suppose that   x ∈ F =   τ  ′   ( E )   , where     τ  ′  ∈ T  . Then   y ∈  F ′  =   τ  ′   (  E ′  )   , since   x ∼ y  . So for some    S m  ( j )   ∈  G   j     with   j = 0 , 1 , ∞  , we have     (   τ  ′  )   − 1    ( y )  =  S m  ( j )    (   τ   − 1    ( x )  )   . Let   ( g , τ ) ∈ G  . Then


   ( g , τ )     (   τ  ′  )   − 1    ( y )   = g  (   (   τ  ′  )   − 1    ( y )  )  +  u τ  = g   S m  ( j )    (   τ   − 1    ( x )  )   +  u τ  .  








So    ( g , τ )   ( y )  ∈  ( g , τ )  *  F ′   . However,   ( g , τ ) ( x ) ∈ ( g , τ ) * F   and    [  ( g , τ )  * F ,  ( g , τ )  *  F ′  ]  =  ( g , τ )  *  [ F ,  F ′  ]   . Hence   ( g , τ ) ( x ) ∼ ( g , τ ) ( y )  . □





Because of Lemma 13, the usual  G -action on   C   \     V  +    induces an action of  G  on    ( C   \     V  +  )  ∼  .



Lemma 14.

The action of  G  on    ( C   \     V  +  )  ∼   is free and proper.





Proof. 

The following argument shows that it is free. Using Lemma A2 we see that an element of  G , which lies in the isotropy group   G  [ F ,  F ′  ]    for    [ F ,  F ′  ]  ∈   E  0   , interchanges the edge F with the equivalent edge   F ′   and thus fixes the equivalence class   [ p ]   for every   p ∈ F  . Hence the  G  action on    ( C   \     V  +  )  ∼   is free. It is proper because  G  is a discrete subgroup of the Euclidean group   E ( 2 )   with no accumulation points. □





Theorem 4.

The  G -orbit space     ( C   \     V  +  )  ∼  / G   is holomorphically diffeomorphic to the G-orbit space     (  K *    \   O )  ∼  / G =   S ˜  reg   .





Proof. 

The claim follows because the fundamental domain of the  G -action on   C   \     V  +    is    K *    \   O   is the fundamental domain of the G-action on    K *    \   O  . Thus,   Π ( C   \     V  +  )   is a fundamental domain of the  G -action on    ( C   \     V  +  )  ∼  , which is equal to   ρ (  K *    \   O )   =    (  K *    \   O )  ∼   by Lemma 12. Hence the  G -orbit space     ( C   \     V  +  )  ∼  / G   is equal to the G-orbit space    S ˜  reg  . So the identity map from   Π ( C   \     V  +  )   to    (  K *    \   O )  ∼   induces a holomorphic diffeomorphism of orbit spaces. □





Because the group  G  is a discrete subgroup of the 2-dimensional Euclidean group   E ( 2 )  , the Riemann surface     ( C   \     V  +  )  ∼  / G   is an affine model of the affine Riemann surface   S reg  .




6. The Developing Map and Geodesics


In this section, we show that the mapping


  δ : D ⊆  S reg  → Q ⊆ C :  ( ξ , η )  →  (  F Q    ∘     π ^  )   ( ξ , η )  )  



(35)




straightens the holomorphic vector field X (12) on the fundamental domain   D ⊆  S reg   , see [6] and Flaschka [7]. We also verify that X is the geodesic vector field for a flat Riemannian metric  Γ  on  D .



First we rewrite Equation (13) as


   T  ( ξ , η )    π ^   X ( ξ , η )  = η  ∂  ∂ ξ   ,   for   ( ξ , η ) ∈ D .   



(36)







From the definition of the mapping   F Q   (2) we get


     d   z =    d    F Q  =  1     ξ   n −  n 0      ( 1 − ξ )   n −  n 1       − 2 p t    1 / n         d   ξ =  1 η     d   ξ ,  








where we use the same complex nth root as in the definition of   F Q  . This implies


   ∂  ∂ z   =  T ξ   F Q   η  ∂  ∂ ξ    ,   for ( ξ , η ) ∈ D   



(37)







For each   ( ξ , η ) ∈ D   using (36) and (37) we get


          T  ( ξ , η )   δ  X ( ξ , η )  =   T ξ   F Q    ∘     T  ( ξ , η )    π ^    X ( ξ , η )  =  T ξ   F Q   ( η  ∂  ∂ ξ   )  =  ∂  ∂ z    |   z = δ ( ξ , η )    .     











So the holomorphic vector field X (12) on  D  and the holomorphic vector field   ∂  ∂ z    on Q are  δ -related. Hence  δ  sends an integral curve of the vector field X starting at   ( ξ , η ) ∈ D   onto an integral curve of the vector field   ∂  ∂ z    starting at   z = δ ( ξ , η ) ∈ Q  . Since an integral curve of   ∂  ∂ z    is a horizontal line segment in Q, we have proved



Theorem 5.

The holomorphic mapping δ (35) straightens the holomorphic vector field X (12) on the fundamental domain   D ⊆  S reg   .





We can say more. Let   u = Re  z   and   v = Im  z  . Then


  γ =    d   u   ⨀     d   u +    d   v   ⨀     d   v =    d   z   ⨀        d   z  ¯   



(38)




is the flat Euclidean metric on  C . Its restriction    γ |   C   \     V  +     to   C   \     V  +    is invariant under the group  G , which is a subgroup of the Euclidean group   E ( 2 )  .



Consider the flat Riemannian metric    γ |  Q   on Q, where  γ  is the metric (38) on  C . Pulling back    γ |  Q   by the mapping   F Q   (2) gives a metric


   γ ˜  =  F Q *   ( γ  | Q  )  =    |    ξ   n −  n 0      ( 1 − ξ )   n −  n 1     |    − 2 / n      d   ξ   ⨀        d   ξ  ¯   








on   C   \   { 0 , 1 }  . Pulling the metric   γ ˜   back by the projection mapping    π ˜  :   C  2  → C :  ( ξ , η )  ↦ ξ   gives


   Γ ˜  =    π ˜   *   γ ˜  =    |    ξ   n −  n 0      ( 1 − ξ )   n −  n 1     |    − 2 / n      d   ξ   ⨀        d   ξ  ¯   








on    C  2  . Restricting   Γ ˜   to the affine Riemann surface   S reg   gives   Γ =  1 η     d   ξ    ⨀    1  η ¯        d   ξ  ¯   .



Lemma 15.

Γ is a flat Riemannian metric on   S reg  .





Proof. 

We compute. For every    ( ξ , η )  ∈  S reg    we have


     Γ  ( ξ , η )  ( X ( ξ , η ) , X ( ξ , η ) )    =          =   1 η     d   ξ ( η  ∂  ∂ ξ   +    n −  n 0     n     ξ  ( 1 − ξ )  ( 1 −   2 n −  n 0  −  n 1   n  ξ )    η   n − 2     ∂  ∂ η   ) ·  1  η ¯        d   ξ  ¯  (  η ¯    ∂  ∂ ξ   ¯  +    n −  n 0     n      ξ  ( 1 − ξ )   ( 1 −   2 n −  n 0  −  n 1   n  ξ )   ¯     η ¯    n − 2       ∂  ∂ η   ¯  )            =   1 η     d   ξ ( η  ∂  ∂ ξ   ) ·  1  η ¯        d   ξ  ¯  (  η ¯    ∂  ∂ ξ   ¯  ) = 1 .      











Thus,  Γ  is a Riemannian metric on   S reg  . It is flat by construction. □





Because  D  has nonempty interior and the map  δ  (35) is holomorphic, it can be analytically continued to the map


         δ Q  :  S reg  ⊆   C  2  → Q ⊆ C :  ( ξ , η )  ↦  F Q    π ^   ( ξ , η )   ,     



(39)




since   δ =  δ Q    |  D   . By construction     δ  Q *   ( γ  | Q  )  = Γ  . So the mapping   δ Q   is an isometry of   (  S reg  , Γ )   onto   ( Q , γ  | Q  )  . In particular, the map  δ  is an isometry of   ( D , Γ  | D  )   onto   ( Q , γ  | Q  )  . Moreover,  δ  is a local holomorphic diffeomorphism, because for every   ( ξ , η ) ∈ D  , the complex linear mapping    T  ( ξ , η )   δ   is an isomorphism, since it sends   X ( ξ , η )   to    ∂  ∂ z   |    z = δ ( ξ , η )    . Thus,  δ  is a developing map in the sense of differential geometry, see Spivak ([8], p. 97) note on §12 of Gauss [9]. The map  δ  is local because the integral curves of   ∂  ∂ z    on Q are only defined for a finite time, since they are horizontal line segments in Q. Thus, the integral curves of X (12) on  D  are defined for a finite time. Since the integral curves of   ∂  ∂ z    are geodesics on   ( Q , γ  | Q  )  , the image of a local integral curve of   ∂  ∂ z    under the local inverse of the mapping  δ  is a local integral curve of X. This latter local integral curve is a geodesic on   ( D , Γ  | D  )  , since  δ  is an isometry. Thus, we have proved



Theorem 6.

The holomorphic vector field X (12) on the fundamental domain  D  is the geodesic vector field for the flat Riemannian metric    Γ |  D   on  D .





Corollary 13.

The holomorphic vector field X on the affine Riemann surface   S reg   is the geodesic vector field for the flat Riemannian metric Γ on   S reg  .





Proof. 

The corollary follows by analytic continuation from the conclusion of Theorem 6, since   int  D   is a nonempty open subset of   S reg   and both the vector field X and the Riemannian metric  Γ  are holomorphic on   S reg  . □






7. Discrete Symmetries and Billiard Motions


Let  G  be the group of homeomorphisms of the affine Riemann surface  S  (3) generated by the mappings


  R : S → S :  ( ξ , η )  ↦  ( ξ ,   e   2 π i / n   η )     and    U : S → S :  ( ξ , η )  ↦  (  ξ ¯  ,  η ¯  )  .  











Clearly, the relations     R  n  =   U  2  = e   hold. For every   ( ξ , η ) ∈ S   we have


     U   R   − 1    ( ξ , η )      = U  ( ξ ,   e   − 2 π i / n   η )  =  (  ξ ¯  ,   e   2 π i / n    η ¯  )  = R  (  ξ ¯  ,  η ¯  )  = R  U  ( ξ , η )  .     











So the additional relation   U   R   − 1   = R  U   holds. Thus,  G  is isomorphic to the dihedral group.



Lemma 16.

 G  is a group of isometries of   (  S reg  , Γ )  .





Proof. 

For every    ( ξ , η )  ∈  S reg    we get


       R  *  Γ  ( ξ , η )   X ( ξ , η ) , X ( ξ , η )      = Γ  R ( ξ , η )    T  ( ξ , η )   R  X ( ξ , η )  ,  T  ( ξ , η )   R  X ( ξ , η )             = Γ  ( ξ ,   e   2 π i / n   η )  (   e   2 π i / n   η  ∂  ∂ ξ   +    n −  n 0     n     ξ  ( 1 − ξ )   ( 1 −    2 n −  n 0  −  n 1      n −  n 0     ξ )     η   n − 2      e   2 π i / n    ∂  ∂ η   ,             e   2 π i / n   η  ∂  ∂ ξ   +   n −  n 0   n     ξ  ( 1 − ξ )   ( 1 −    2 n −  n 0  −  n 1    n −  n 0     ξ )       η   n − 2       e   2 π i / n    ∂  ∂ η   )           =  1   |    e   2 π i / n     η |  2       d   ξ    e   2 π i / n   η  ∂  ∂ ξ    ·       d   ξ  ¯  (     e   2 π i / n   η  ∂  ∂ ξ    ¯  ) = 1           =  1   | η |  2       d   ξ ( η   ∂  ∂ ξ   ) ·      d   ξ  ¯   (   η  ∂  ∂ ξ    ¯  )  = Γ  ( ξ , η )   X ( ξ , η ) , X ( ξ , η )      








and


       U  *  Γ  ( ξ , η )   X ( ξ , η ) , X ( ξ , η )       = Γ  U ( ξ , η )    T  ( ξ , η )   U  X ( ξ , η )  ,  T  ( ξ , η )   U  X ( ξ , η )             =  1   | η |  2        d   ξ  ¯   (   η  ∂  ∂ ξ    ¯  )  ·       d   ξ  ¯  ¯   (    η  ∂  ∂ ξ    ¯  ¯  )  = Γ  ( ξ , η )   X ( ξ , η ) , X ( ξ , η )  .     











□





Recall that the group G, generated by the linear mappings


  R : C → C : z ↦   e   2 π i / n   z    and    U : C → C : z ↦  z ¯  ,  








is isomorphic to the dihedral group.



Lemma 17.

G is a group of isometries of   ( C , γ )  .





Proof. 

This follows because R and U are Euclidean motions. □





We would like the developing map   δ Q   (39) to intertwine the actions of  G  and G and the geodesic flows on   (  S reg  , Γ )   and   ( Q , γ  | Q  )  . There are several difficulties. The first is: the group G does not preserve the quadrilateral Q. To overcome this difficulty we extend the mapping   δ Q   (39) to the mapping   δ  K *    (17) of the affine Riemann surface   S reg   onto the regular stellated n-gon   K *  .



Lemma 18.

The mapping   δ  K *    (17) intertwines the action Φ (14) of  G  on   S reg   with the action


   Ψ : G ×  K *  →  K *  :  ( g , z )  ↦ g  ( z )    



(40)




of G on the regular stellated n-gon   K *  .





Proof. 

From the definition of the mapping   δ  K *    we see that for each   ( ξ , η ) ∈ D   we have    δ  K *      R  j   ( ξ , η )   =  R j   δ  K *    ( ξ , η )    for every   j ∈ Z  . By analytic continuation we see that the preceding equation holds for every    ( ξ , η )  ∈  S reg   . Since    F Q   (  ξ ¯  )  =    F Q   ( ξ )   ¯    by construction and    π ^   (  ξ ¯  ,  η ¯  )  =  ξ ¯    (11), from the definition of the mapping  δ  (35) we get   δ  (  ξ ¯  ,  η ¯  )  =   δ ( ξ , η )  ¯    for every   ( ξ , η ) ∈ D  . In other words,    δ  K *    U ( ξ , η )  = U  δ  K *    ( ξ , η )    for every   ( ξ , η ) ∈ D  . By analytic continuation we see that the preceding equation holds for all    ( ξ , η )  ∈  S reg   . Hence on   S reg   we have


   δ  K *     ∘     Φ g  =  Ψ  φ ( g )     ∘     δ  K *     for   every   g ∈ G .   



(41)







The mapping   φ : G → G   sends the generators  R  and  U  of the group  G  to the generators R and U of the group G, respectively. So it is an isomorphism. □





There is a second more serious difficulty: the integral curves of   ∂  ∂ z    run off the quadrilateral Q in finite time. We fix this by requiring that when an integral curve reaches a point P on the boundary   ∂ Q   of Q, which is not a vertex, it undergoes a specular reflection at P. (If the integral curve reaches a vertex of Q in forward or backward time, then the motion ends). This motion can be continued as a straight line motion, which extends the motion on the original segment in Q.



To make this precise, we give Q the orientation induced from  C  and suppose that the incoming (and hence outgoing) straight line motion has the same orientation as   ∂ Q  . If the incoming motion makes an angle  α  with respect to the inward pointing normal N to   ∂ Q   at P, then the outgoing motion makes an angle  α  with the normal N, see Richens and Berry [2]. Specifically, if the incoming motion to P is an integral curve of   ∂  ∂ z   , then the outgoing motion, after reflection at P, is an integral curve of    R  − 1    ∂  ∂ z   =   e   − 2 π i / n    ∂  ∂ z    . Thus, the outward motion makes a turn of   − 2 π / n   at P towards the interior of Q, see Figure 10 (left). In Figure 10 (right) the incoming motion has the opposite orientation from   ∂ Q  . This extended motion on Q is called a billiard motion. A billiard motion starting in the interior of   cl ( Q )   \   ( cl ( Q ) ∩ R )   is defined for all time and remains in   cl ( Q )   less its vertices, since each of the segments of the billiard motion is a straight line parallel to an edge of   cl ( Q )   and does not hit a vertex of   cl ( Q )  , see Figure 11.



We can do more. If we apply a reflection S in the edge of Q in its boundary   ∂ Q  , which contains the reflection point P, to the initial reflected motion at P, see Figure 12.



The motion in   S ( Q )   when it reaches   ∂ S ( Q )  , et cetera, the extended motion becomes a billiard motion in the regular stellated n-gon    K *  = Q ∪  ⨿  0 ≤ k ≤ n − 1   S  R k   ( Q )  )  , see Figure 11. So we have verified



Theorem 7.

A billiard motion in the regular stellated n-gon   K *  , which starts at a point in the interior of    K *    \   O   and does not hit a vertex of   cl (  K *  )  , is invariant under the action of the isometry subgroup   G ^   of the isometry group G of   (  K *  , γ  |  K *   )   generated by the rotation R.





Let   G ^   be the subgroup of  G  generated by the rotation  R . We now show



Lemma 19.

The holomorphic vector field X (12) on   S reg   is   G ^  -invariant.





Proof. 

We compute. For every    ( ξ , η )  ∈  S reg    and for   R ∈  G ^    we have


      T  ( ξ , η )    Φ R   X ( ξ , η )      =   e   2 π i / n    η  ∂  ∂ ξ   +    n −  n 0     n     ξ  ( 1 − ξ )   ( 1 −    2 n −  n 0  −  n 1     n   ξ )     η   n − 2     ∂  ∂ η              =  (   e   2 π i / n   η )   ∂  ∂ ξ   +    n −  n 0     n     ξ  ( 1 − ξ )   ( 1 −    2 n −  n 0  −  n 1     n   ξ )     (   e   2 π i / n   η )   n − 2     ∂  ∂ (   e   2 π i / n   η )             = X  ( ξ ,   e   2 π i / n   η )  = X   ∘     Φ R   ( ξ , η )  .     











Hence for every   j ∈ Z   we get


   T  ( ξ , η )    Φ   R  j    X ( ξ , η )  = X   ∘     Φ   R  j    ( ξ , η )   



(42)




for every    ( ξ , η )  ∈  S reg   . In other words, the vector field X is invariant under the action of   G ^   on   S reg  . □





Corollary 14.

For every   ( ξ , η ) ∈ D   we have


     X |    Φ   R  j    ( D )    = T  Φ   R  j       ∘    X |  D  .   



(43)









Proof. 

Equation (43) is a rewrite of Equation (42). □





Corollary 15.

Every geodesic on   (  S reg  , Γ )   is   G ^  -invariant.





Proof. 

This follows immediately from the lemma. □





Lemma 20.

For every    ( ξ , η )  ∈  S reg    and every   j ∈ Z   we have


    T   Φ   R  j    ( ξ , η )     δ  K *    X ( ξ , η )  =  ∂  ∂ z    |    δ  K *    (  Φ   R  j    ( ξ , η )  )  =  R j  z .      



(44)









Proof. 

From Equation (41) we get    δ  K *     ∘     Φ R  =  Ψ R    ∘     δ  K *     on   S reg  . Differentiating the preceding equation and then evaluating the result at   X  ( ξ , η )  ∈  T  ( ξ , η )    S reg    gives


    T   Φ R   ( ξ , η )     δ  K *     ∘     T  ( ξ , η )    Φ R   X  ( ξ , η )  =   T   δ  K *    ( ξ , η )     Ψ R    ∘     T  ( ξ , η )    δ  K *    X  ( ξ , η )   








for all    ( ξ , η )  ∈  S reg   . When   ( ξ , η ) ∈ D  , by definition    δ  K *    ( ξ , η )  = δ  ( ξ , η )   . So for every    ( ξ , η )  ∈  S reg   


   T  ( ξ , η )    δ  K *    X ( ξ , η )  =  T  ( ξ , η )   δ  X ( ξ , η )  =  ∂  ∂ z    |   z = δ ( ξ , η )      =  ∂  ∂ z    |   z =  δ  K *    ( ξ , η )     .  











Thus,


   T   Φ R   ( ξ , η )     δ  K *     T  ( ξ , η )    Φ R  X  ( ξ , η )   =  T   δ  K *    ( ξ , η )     Ψ R  (   ∂  ∂ z    |   z =  δ  K *    ( ξ , η )      ) ,  



(45)




for every   ( ξ , η ) ∈ D  . By analytic continuation (45) holds for every    ( ξ , η )  ∈  S reg   . Now    T  ( ξ , η )    Φ R    sends    T  ( ξ , η )    S reg    to    T   Φ R   ( ξ , η )     S reg   . Since    T  ( ξ , η )    Φ R  X  ( ξ , η )  =   e   2 π i / n   X  ( ξ , η )    for every    ( ξ , η )  ∈  S reg   , it follows that     e   2 π i / n   X  ( ξ , η )    is in    T   Φ R   ( ξ , η )     S reg   . Furthermore, since    T   δ  K *    ( ξ , η )     Ψ R    sends    T   δ  K *    ( ξ , η )     K *    to    T   Ψ R   (   δ  K *    ( ξ , η )     K *   , we get


   T   δ  K *    ( ξ , η )     Ψ R  (  ∂  ∂ z   |   z =  δ   K *   ( ξ , η )      ) = R  ∂  ∂ z    |   R z =  Ψ R   (  δ  K *    ( ξ , η )  )     .  











For every    ( ξ , η )  ∈  S reg    we obtain


   T   Φ R   ( ξ , η )     δ  K *    X ( ξ , η )  =  ∂  ∂ z    |   R z =  Ψ R   (  δ  K *    ( ξ , η )  )     ,  



(46)




that is, Equation (44) holds with   j = 0  . A similar calculation shows that Equation (46) holds with  R  replaces by    R  j  . This verifies Equation (44). □





We now show



Theorem 8.

The image of a   G ^   invariant geodesic on   (  S reg  , Γ )   under the developing map   δ  K *    (17) is a billiard motion in   K *  , see Figure 13.





Proof. 

Because   Φ   R  j    and   Ψ  R j    are isometries of   (  S reg  , Γ )   and   (  K *  , γ  |  K *   )  , respectively, it follows from equation (41) that the surjective map    δ  K *   :  (  S reg  , Γ )  →  (  K *  , γ  |  K *   )    (17) is an isometry. Hence   δ  K *    is a local developing map. Using the local inverse of   δ  K *    and Equation (44), it follows that a billiard motion in   int (  K *    \   O )   is mapped onto a geodesic in   (  S reg  , Γ )  , which is possibly broken at the points    (  ξ i  ,  η i  )  =   δ   K *   − 1    (  p i  )   . Here    p i  ∈ ∂  K *    are the points where the billiard motion undergoes a reflection. However, the geodesic on   S reg   is smooth at   (  ξ i  ,  η i  )   since the geodesic vector field X is holomorphic on   S reg  . Thus, the image of the geodesic under the developing map   δ  K *    is a billiard motion. □





Theorem 9.

Under the restriction of the mapping


   ν = σ   ∘    Π : C   \     V  +  →   ( C   \     V  +  )  ∼  / G =   S ˜  reg    



(47)




to    K *    \   O   the image of a billiard motion   λ z   is a smooth geodesic    λ ^   ν ( z )    on   (   S ˜  reg  ,  γ ^  )  , where     ν  *   (  γ ^  )    = γ |   C   \     V  +     .





Proof. 

Since the Riemannian metric  γ  on  C  is invariant under the group of Euclidean motions, the Riemannian metric    γ |    K *    \   O    on    K *    \   O   is   G ^  -invariant. Hence   γ   K *    \   O    is invariant under the reflection   S m   for   m ∈ { 0 , 1 , … , n − 1 }  . So    γ |    K *    \   O    pieces together to give a Riemannian metric    γ  ∼   on the identification space    (  K *    \   O )  ∼  . In other words, the pull back of    γ  ∼   under the map     Π |    K *    \   O   :  K *    \   O →   (  K *    \   O )  ∼   , which identifies equivalent edges of   K *  , is the metric    γ |    K *    \   O   . Since    Π |    K *    \   O    intertwines the G-action on    K *    \   O   with the G-action on    (  K *    \   O )  ∼  , the metric    γ  ∼   is   G ^  -invariant. It is flat because the metric  γ  is flat. So    γ  ∼   induces a flat Riemannian metric   γ ^   on the orbit space     (  K *    \   O )  ∼  / G =   S ˜  reg   . Since the billiard motion   λ z   is a   G ^  -invariant broken geodesic on   (  K *    \   O ,  γ   K *    \   O   )  , it gives rise to a continuous broken geodesic    λ   Π ( z )  ∼   on   (   (  K *    \   O )  ∼  ,   γ  ∼  )  , which is   G ^  -invariant. Thus,     λ ^   ν ( z )   = ν  (  λ z  )    is a piecewise smooth geodesic on the smooth G-orbit space   (   (  K *    \   O )  ∼  / G =   S ˜  reg  ,  γ ^  )  .



We need only show that    λ ^   ν ( z )    is smooth. To see this we argue as follows. Let   s ⊆  K *    be a closed segment of a billiard motion   γ z  , that does not meet a vertex of   cl (  K *  )  . Then s is a horizontal straight line motion in   cl (  K *  )  . Suppose that   E  k 0    is the edge of   K *  , perpendicular to the direction   u  k 0   , which is first met by s and let   P  k 0    be the meeting point. Let   S  k 0    be the reflection in   E  k 0   . The continuation of the motion s at   P  k 0    is the horizontal line   R  S  k 0    ( s )    in   K  k 0  *  . Recall that   K  k 0  *   is the translation of   K *   by   τ  k 0   . Using a suitable sequence of reflections in the edges of a suitable   K   k 0  ⋯  k ℓ   *   each followed by a rotation R and then a translation in  T  corresponding to their origins, we extend s to a smooth straight line  λ  in   C   \     V  +   , see Figure 14. The line  λ  is a geodesic in   ( C   \     V  +  , γ  |  C   \     V  +    )  , which in   K *   has image    λ ^   ν ( z )    under the  G -orbit map  ν  (47) that is a smooth geodesic on   (   S ˜  reg  ,  γ ^  )  . The geodesic   ν ( λ )   starts at   ν ( z )  . Thus, the smooth geodesic   ν ( λ )   and the geodesic    λ ^   ν ( z )    are equal. In other words,    λ ^   ν ( z )    is a smooth geodesic. □





Thus, the affine orbit space     S ˜  reg  =   ( C   \     V  +  )  ∼  / G   with flat Riemannian metric   γ ^   is the affine analogue of the Poincaré model of the affine Riemann surface   S reg   as an orbit space of a discrete subgroup of   PGl ( 2 , C )   acting on the unit disk in  C  with the Poincaré metric.
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Appendix A. Group Theoretic Properties


In this appendix we discuss some group theoretic properties of the set of equivalent edges of   cl (  K *  )  , which we use to determine the topology of    S ˜  reg  .



Let  E  be the set of unordered pairs   [ E ,  E ′  ]   of nonadjacent edges of   cl (  K *  )  . Define an action • of G on  E  by


  g   •   [ E ,  E ′  ]  =  [ g  ( E )  , g  (  E ′  )  ]   








for every unordered pair   [ E ,  E ′  ]   of nonadjacent edges of   cl (  K *  )  . For every   g ∈ G   the edges   g ( E )   and   g (  E ′  )   are nonadjacent. This follows because the edges E and   E ′   are nonadjacent and the elements of G are invertible mappings of  C  into itself. So   ⌀ = g  ( E ∩  E ′  )  = g  ( E )  ∩ g  (  E ′  )   . Thus, the mapping • is well defined. It is an action because for every g and   h ∈ G   we have


     g  •  ( h  •   [ E ,  E ′  ]  )     = g  •   [ h  ( E )  , h  (  E ′  )  ]  =  [ g (  h  ( E )  , g  ( h  (  E ′  )  ]           =  [  ( g h )   ( E )  ,  ( g h )   (  E ′  )  ]  =  ( g h )   •   [ E ,  E ′  ]  .     











Since   E =  ⋃  j = 0 , 1 , ∞     E  j   , the action • of G on  E  induces an action · of the group   G j   of reflections on the set    E  j   of equivalent edges of   cl (  K *  )  , which is defined by


   g j  ·  [ E ,  S k  ( j )    ( E )  ]  =  [  g j   ( E )  ,  g j   (  S k  ( j )    ( E )  )  ]  =  [  g j   ( E )  ,  (  g j   S k  ( j )    g j  − 1   )   (  g j   ( E )  )  ]  ,  








for every    g j  ∈  G j   , every edge E of   cl (  K *  )  , and every generator   S k  ( j )    of   G j  , where   k = 0 , 1 , … ,     n − 1  . Since    g j   S k  ( j )    g j  − 1   =  S r  ( j )     by Corollary 6, the mapping · is well defined.



Lemma A1.

The group G action • sends a   G j  -orbit on    E  j   to another   G j  -orbit on    E  j  .





Proof. 

Consider the   G j  -orbit of    [ E ,  S m  ( j )    ( E )  ]  ∈   E  j   . For every   g ∈ G   we have


  g    •    G j  ·  [ E ,  S m  ( j )    ( E )  ]   =  ( g  G j   g  − 1   )     •   g    1 p t  •   [ E ,  S m  ( j )    ( E )  ]  =  G j  ·  g      1 p t  •   [ E ,  S m  ( j )    ( E )  ]  ,  








because   G j   is a normal subgroup of G by Corollary 7. Since


  g    •    [ E ,  S m  ( j )    ( E )  ]  =  [ g  ( E )  , g  (  S m  ( j )    ( E )  )  ]  =  [ g  ( E )  , g  S m  ( j )    g  − 1    ( g  ( E )  )  ]   








and   g  S m  ( j )    g  − 1   =  S r  ( j )     by Corollary 6, it follows that   g    •    [ E ,  S m  ( j )    ( E )  ]  ∈   E  j   . □





Lemma A2.

For every   j = 0 , 1 , ∞   and every   k = 0 , 1 , … , n − 1   the isotropy group   G  e k j  j   of the   G j   action on    E  j   at    e k j  =  [ E ,  S k  ( j )    ( E )  ]    is   〈  S k  ( j )    |     (  S k  ( j )   )  2  = e 〉  .





Proof. 

Every   g ∈  G  e k j  j    satisfies


   e k j  =  [ E ,  S k  ( j )    ( E )  ]  = g ·  e k j  = g ·  [ E ,  S k  ( j )    ( E )  ]   








if and only if


   [ E ,  S k  ( j )    ( E )  ]  =  [ g  ( E )  , g  S k  ( j )    g  − 1    ( g  ( E )  )  ]  =  [ g  ( E )  ,  S r  ( j )    ( g  ( E )  )  ]   








if and only if one of the statements 1)   g ( E ) = E   &    S k  ( j )    ( E )  =  S r  ( j )    ( g  ( E )  )    or 2)   E = g (  S r  ( j )    ( E )  )   &   g  ( E )  =  S k  ( j )    ( E )    holds. From   g ( E ) = E   in 1) we get   g = e   using Lemma 3. To see this we argue as follows. If   g ≠ e  , then   g =  R p    (  S  ( j )   )  ℓ    for some   ℓ = 0 , 1   and some   p ∈ { 0 , 1 , … , n − 1 }  , see Equation (A1). Suppose that   g =  R p    with   p ≠ 0  . Then   g ( E ) ≠ E  , which contradicts our hypothesis. Now suppose that   g =  R p   S  ( j )    . Then   E = g  ( E )  =  R p   S  ( j )    ( E )   , which gives    R  − p    ( E )  =  S  ( j )    ( E )   . Let A and B be end points of the edge E. Then the reflection   S  ( j )    sends A to B and B to A, while the rotation   R  − p    sends A to A and B to B. Thus,    R  − p    ( E )  ≠  S  ( j )    ( E )   , which is a contradiction. Hence   g = e  . If   g  ( E )  =  S k  ( j )    ( E )    in 2), then    (  S k  ( j )   g )   ( E )  = E  . So    S k  ( j )   g = e   by Lemma 3, that is,   g =  S k  ( j )    . □





For every   j = 0 , 1 , ∞   and every    m j  = 0 , 1 , … ,  n  d j   − 1   let    G  e   m j   d j   j  j  =  {  g j  ∈  G j   |    g j  ·  e   m j   d j   j  =  e   m j   d j   j  }    be the isotropy group of the   G j   action on    E  j   at    e   m j   d j   j  =  [ E ,  S   m j   d j    ( j )    ( E )  ]   . Since    G  e   m j   d j   j  j  =  〈  S   m j   d j    ( j )    |     (  S   m j   d j    ( j )   )  2  = e 〉    is an abelian subgroup of   G j  , it is a normal subgroup. Thus,    H j  =  G j  /  G  e   m j   d j   j  j    is a subgroup of   G j   of order    ( 2 n /  d j  )  / 2 = n /  d j   . This proves



Lemma A3.

For every   j = 0 , 1 , ∞   and each    m j  = 0 , 1 , … ,  n  d j   − 1   the   G j  -orbit of   e   m j   d j   j   in    E  j   is equal to the   H j  -orbit of   e   m j   d j   j   in    E  j  .





Lemma A4.

For   j = 0 , 1 , ∞   we have    H j  =  〈 V =  R  d j    |    V  n /  d j    = e 〉   .





Proof. 

Since


   S k  ( j )   =  R k   S  ( j )    R  − k   =  R k   (  R  n j   U )   R  − k   =  R  2 k +  n j    U =  R  2 k    S  ( j )   ,  



(A1)




we get    S   m j   d j    ( j )   =  R   ( 2  m j  +   n j   d j   )   d j    U =   (  R  d j   )   m j    S  ( j )    . Because the group   G j   is generated by the reflections   S k  ( j )    for   k = 0 , 1 , … , n − 1  , it follows that


   G j  ⊆  〈 V =  R  d j   ,  S   m j   d j    ( j )    |    V  n /  d j    = e =   (  S   m j   d j    ( j )   )  2    &   V  S   m j   d j    ( j )   =  S   m j   d j    ( j )    V  − 1   〉  =  K j  .  








  K j   is a subgroup of G of order   2 n /  d j   . Clearly the isotropy group    G  e   m j   d j   j  j  =  〈  S   m j   d j    ( j )    |     (  S   m j   d j    ( j )   )  2  = e 〉    is an abelian subgroup of   K j  . Hence    H j  =  G j  /  G  e   m j   d j   j  j  ⊆  K j  /  G  e   m j   d j   j  j  =  L j   , where   L j   is a subgroup of   K j   of order    ( 2 n /  d j  )  / 2 = n /  d j   . Thus, the group   L j   has the same order as its subgroup   H j  . So    H j  =  L j   . However,    L j  =  〈 V =  R  d j    |   V  n /  d j    = e 〉   . □





Let    f ℓ j  =  R ℓ  ·  e 0 j   . Then


     f ℓ j     =  R ℓ  ·  e 0 j  =  R ℓ  ·  [ E ,  S  ( j )    ( E )  ]           =  [  R ℓ   ( E )  ,  R ℓ   S  ( j )    R  − ℓ    (  R ℓ   ( E )  )  ]  =  [  R ℓ   ( E )  ,  S ℓ  ( j )    (  R ℓ   ( E )  )  ]  .     











So


      V m  ·  f ℓ j      =  V m  ·  [  R ℓ   ( E )  ,  R ℓ   S  ( j )    R  − ℓ    (  R ℓ   ( E )  )  ]           = [  V m   (  R ℓ   ( E )  )  ,  V m   S ℓ  ( j )    V  − m    (  V m   (  R ℓ   ( E )  )  ]           =  [  R  m  d j  + ℓ    ( E )  ,  S  m  d j  + ℓ   ( j )    ( E )  ]  =  e  m  d j  + ℓ  j  .     











This proves


   ⋃   ℓ j  = 0    d j  − 1    H j  ·  f  ℓ j  j  =  ⋃   ℓ j  = 0    d j  − 1    ⋃   m j  = 0    n  d j   − 1    V  m j   ·  f  ℓ j  j  =  ⋃  k = 0   n − 1    e k j  ,  



(A2)




since every   k ∈ { 0 , 1 , … , n − 1 }   may be written uniquely as    m j   d j  +  ℓ j    for some    m j  ∈  { 0 , 1 , … ,  n  d j   − 1 }    and some    ℓ j  ∈  { 0 , 1 , … ,  d j  − 1 }   .
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Figure 1. The rational triangle   T =  T   n 0   n 1   n ∞     . 
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Figure 2. The rational quadrilateral Q. 
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Figure 3. The image Q of the fundamental domain  D  under the mapping  δ . The open edges   O D  ,   C  D ¯   , and   C D   of the quadrilateral are included; while the open edge   O  D ¯    is excluded. 
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Figure 4. The regular duodecagon K and the stellated regular duodecagon    K *  =  K  4 , 4 , 4  *    formed by rotating the quadrilateral   Q  4 , 4 , 4    through an angle 2 π /12 around the origin. 
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Figure 5. The dart in the figure is the quadrilateral    Q ′  = O  D ′  C   D ′  ¯   , which is the union of the triangles   T = Δ O  D ′  C   and the triangle    T ′  ¯  . 
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Figure 6. The triangulation    T  c l    (  K *  )    of the regular stellated hexagon   K *  . The vertices of cl(  K *  ) are labeled    X j  =  R j  X   for   X = A , B , C   and equivalent edges by   a , b , c , d , e , f  . 
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Figure 7. The geometric configuration. 
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Figure 8. The G-orbit space    S ˜  reg   is 2-sphere with two handles. 
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Figure 9. The regular stellated n-gon   K *   two of whose sides are   C  D ′    and   C   D ′  ¯   . 
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Figure 10. Reflection at a point P on   ∂ Q  . 
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Figure 11. A periodic billiard motion in the equilateral triangle   T =  T  1 , 1 , 1     starting at P. First, extended by the reflection U to a periodic billiard motion in the quadrilateral   Q = T ∪ U ( T )  . Second, extended by the relection S to a periodic billiard motion in   Q ∪ S ( Q )  . Third, extended by the reflection   S R   to a periodic billiard motion in the stellated equilateral triangle   H =  K  1 , 1 , 1  *  = Q ∪ S  ( Q )  S R  ( S  ( Q )  )   . 
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Figure 12. Continuation of a billiard motion in the quadrilateral Q to a billiard motion in the quarilateral   S ( Q )   obtained by the reflection S in an edge of Q. 
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Figure 13. (left) A billiard motion in    K *  =  K  1 , 1 , 1  *   . (center) The points c,   c ′   and d,   d ′   in   K *   are identified, which results in motion on a cylinder. (right) After identifying the points a,   a ′   and b,   b ′   on the cylinder the motion becomes a periodic geodesic on     S ˜  reg  =   (  K *    \    { O }  )  ∼  / G   on a smooth 2-torus less three points. 
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Figure 14. The billiard motion   γ z   in the stellated regular 3-gon   K  1 , 1 , 1  *   meets the edge 0, isreflected in this edge by   S 0  , and then is rotated by R. This gives an extended motion   R  S 0   γ z   , which is a straight line that is the same as reflecting   γ z   by U and then translating by   τ 0  . 
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Table 1. Based on the table in Aurell and Itzykson ([1], p. 193).
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	g
	     n 0  ,  n 1  ,  n ∞  ; n    
	g
	      n 0  ,  n 1  ,  n ∞  ; n   





	1
	   1 ,  1 ,  1 ;  3       
	3
	    2 ,  2 ,  3 ;  7   



	1
	   1 ,  1 ,  2 ;  4       
	3
	    1 ,  3 ,  3 ;  7   



	1
	   1 ,  2 ,  3 ;  6       
	3
	    1 ,  1 ,  5 ;  7   



	2
	   1 ,  2 ,  2 ;  5       
	3
	    2 ,  3 ,  3 ;  8   



	2
	   1 ,  1 ,  3 ;  5       
	3
	    1 ,  2 ,  5 ;  8   



	2
	   1 ,  1 ,  4 ;  6       
	3
	    1 ,  1 ,  6 ;  8   



	2
	   1 ,  3 ,  4 ;  8       
	3
	    2 ,  3 ,  4 ;  9   



	2
	   2 ,  3 ,  5 ;  10      
	3
	    1 ,  3 ,  5 ;  9   



	2
	   1 ,  4 ,  5 ;  10      
	3
	    1 ,  2 ,  6 ;  9   



	
	                     
	3
	    3 ,  4 ,  5 ;  12   



	
	                     
	3
	    1 ,  5 ,  6 ;  12   



	
	                     
	3
	    1 ,  3 ,  8 ;  12   



	
	                     
	3
	    2 ,  5 ,  7 ;  14   



	
	                     
	3
	    1 ,  6 ,  7 ;  14   
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Table 2. The set    E  0  . Here    D k ′  =  R k   (  D ′  )    and     D k ′  ¯  =  R k   (   D ′  ¯  )    for   k = 0 , 2 , 4   and    C k  =  R k   ( C )    for   k = { 0 , 1 , … , 5 }  , see Figure 6.
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	   a =    D ′  ¯  C ,  S 0  ( 0 )    (   D ′  ¯  C )  =   D 2 ′  ¯   C 1     
	   
	   b =   D ′   C 1  ,  S 1  ( 0 )    (  D ′   C 1  )  =  D 2 ′   C 2     





	   d =    D 2 ′  ¯   C 2  ,  S 2  ( 0 )    (   D 2 ′  ¯   C 2  )  =   D 4 ′  ¯   C 3     
	   
	   c =   D 2 ′   C 3  ,  S 3  ( 0 )    (  D 2 ′   C 3  )  =  D 4 ′   C 4     



	   e =    D 4 ′  ¯   C 4  ,  S 4  ( 0 )    (   D 4 ′  ¯   C 4  )  =   D ′  ¯   C 5     
	   
	   f =   D 4 ′   C 5  ,  S 5  ( 0 )    (  D 4 ′   C 5  )  =  D ′  C    
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