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Abstract

:

In this paper, we introduce four new types of contractions called in this order Kanan-S-type tricyclic contraction, Chattergea-S-type tricyclic contraction, Riech-S-type tricyclic contraction, Cirić-S-type tricyclic contraction, and we prove the existence and uniqueness for a fixed point for each situation.
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1. Introduction


It is well known that the Banach contraction principle was published in 1922 by S. Banach as follows:



Theorem 1.

Let   X , d   be a complete metric space and a self mapping   T : X ⟶ X  . If there exists   k ∈ [ 0 , 1 )   such that, for all   x , y ∈ X  ,   d ( T x , T y ) ≤ k d ( x , y )  , then T has a unique fixed point in   X .  





The Banach contraction principle has been extensively studied and different generalizations were obtained.



In 1968 [1], Kannan established his famous extension of this contraction.



Theorem 2.

Ref. [1] Let   X , d   be a complete metric space and a self mapping   T : X ⟶ X  . If T satisfies the following condition:


   d  ( T x , T y )  ≤ k  d ( x , T x ) + d ( y , T y )   f o r  a l l  x , y ∈ X  w h e r e  0 < k <  1 2  ,   








then T has a fixed point in   X .  





A similar contractive condition has been introduced by Chattergea in 1972 [2] as follows:



Theorem 3.

Ref. [2] Let   T : X ⟶ X  , where   X , d   is a complete metric space. If there exists   0 < k <  1 2    such that


   d  ( T x , T y )  ≤ k  d ( y , T x ) + d ( T y , x )   f o r  a l l  x , y ∈ X ,   








then T has a fixed point in   X .  





We can also find another extension of the Banach contraction principle obtained by S. Reich, Kannan in 1971 [3].



Theorem 4.

Ref. [3] Let   T : X ⟶ X  , where   X , d   is a complete metric space. If there exists   0 < k <  1 3    such that


   d  ( T x , T y )  ≤ k  d ( x , y ) + d ( x , T x ) + d ( y , T y )   f o r  a l l  x , y ∈ X ,   








then T has a fixed point in   X .  





In addition, in the same year, Cirić gave the following extension [4].



Theorem 5.

Ref. [4] Let   T : X ⟶ X  , where   X , d   a complete metric space. If there exists   k ∈ [ 0 , 1 )   such that


   d  ( T x , T y )  ≤ k M a x  d ( x , y ) , d ( x , T x ) , d ( y , T y ) , d ( y , T x ) , d ( T y , x )   f o r  a l l  x , y ∈ X ,   








then T has a fixed point in   X .  





Many authors have investigated these situations and many results were proved (see [5,6,7,8,9,10,11,12,13]).



In this article, we prove the uniqueness and existence of the fixed points in different types contractions for a self mapping T defined on the union of tree closed subsets of a complete metric space with k in different intervals.




2. Preliminaries


In best approximation theory, the concept of tricyclic mappings extends that of ordinary cyclic mappings. Moreover, in the case where two of the sets, say A and C, coincide, we find a cyclic mapping which is also a self-map, and, hence, a best proximity point result for a tricyclic mappings means also a fixed point and a best proximity point result for a self-map and a cyclic mapping.



Definition 1.

Let A, B be nonempty subsets of a metric space   X , d  . A mapping   T : A ∪ B ⟶ A ∪ B   is said to be cyclic if:


   T  A    ⊆ B , T  B    ⊆ A .   













In 2003, Kirk et al. [14] proved that, if   T : A ∪ B ⟶ A ∪ B   is cyclic and, for some   k ∈    0 , 1   ,   d  T x , T y    ≤ k d  x , y    for all   x ∈ A , y ∈ B  , then   A ∩ B ≠ ∅  , and T has a unique fixed point in   A ∩ B  .



In 2017, Sabar et al. [15] proved a similar result for tricyclic mappings and introduced the concept of tricyclic contractions.



Theorem 6.

Ref. [15] Let   A , B   and C be nonempty closed subsets of a complete metric space   X , d  , and let a mapping   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C  . If   T  A    ⊆ B , T  B    ⊆ C   and   T  C    ⊆ A   and there exists   k ∈    0 , 1    such that   D  T x , T y , T z    ≤ k D  x , y , z    for all    x , y , z    ∈ A × B × C  , then   A ∩ B ∩ C   is nonempty and T has a unique fixed point in   A ∩ B ∩ C ,  





where   D  x , y , z    = d  ( x , y )  + d  ( x , z )  + d  ( y , z )  .  



Definition 2.

Ref. [15] Let   A , B   and C be nonempty subsets of a metric space   X , d  . A mapping   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   is said to be tricyclic contracton if there exists   0 < k < 1   such that:




	1.

	
  T  A    ⊆ B , T  B    ⊆ C   and   T  C    ⊆ A .  




	2.

	
  D  T x , T y , T z    ≤ k D  x , y , z  +  ( 1 − k )  δ  A , B , C    for all    x , y , z    ∈ A × B × C .  











where   δ  A , B , C    = inf  { D  x , y , z  : x ∈ A , y ∈ B , z ∈ C }   



Very Recently, Sabiri et al. introduced an extension of the aforementioned mappings and called them p-cyclic contractions [16].




3. Main Results


Definition 3.

Let   A , B   and C be nonempty subsets of a metric space   X , d  . A mapping   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   is said to be a Kannan-S-type tricyclic contraction, if there exists   k ∈    0 ,  1 3     such that




	1.

	
   T  A    ⊆ B , T  B    ⊆ C , T  C    ⊆ A .   




	2.

	
  D  T x , T y , T z    ≤ k  d  x , T x    +   d  y , T y    +   d  z , T z     for all    x , y , z    ∈ A × B × C .  











We give an example to show that a map can be a tricyclic contraction but not a Kannan-S-type tricyclic contraction.



Example 1.

Let X be   R 2   normed by the norm    ‖  ( x , y )  ‖  =    x    +    y  ,   and    A = [ 1 , 2 ] × { 0 } , B = { 0 } × [ − 2 , − 1 ] ,     C = [ − 2 , − 1 ] × { 0 } ,   then


   δ  A , B , C    = D  (  ( 1 , 0 )  ,  ( 0 , − 1 )  ,  ( − 1 , 0 )  )  = 6 .   











Put   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   such that


   T  x , 0    =    0 , −   x + 2  3        i f   x , 0    ∈ A  ,   










   T  0 , y    =      y − 2  3  , 0            i f   0 , y    ∈ B ,   










   T  z , 0    =    −   z − 2  3  , 0         i f   z , 0    ∈ C ,   











We have   T  A    ⊆ B , T  B    ⊆ C   and   T  C    ⊆ A  , and


      D ( T  x , 0  , T  0 , y  , T  z , 0  )    =    D   ( 0 , −   x + 2  3  )  ,  (   y − 2  3  , 0 )  ,  ( −   z − 2  3  , 0 )         =     2 3   ( x − y − z )  + 4       =     1 3  D  (  x , 0  ,  0 , y  ,  z , 0  )  + 4       =     1 3  D  (  x , 0  ,  0 , y  ,  z , 0  )  +  ( 1 −  1 3  )  δ  A , B , C       








for all    x , 0    ∈ A ,  0 , y    ∈ B ,  z , 0    ∈ C .  



On the other hand,


   D  ( T  2 , 0  , T  0 , − 2  , T  − 2 , 0  )  = D   ( 0 , −  4 3  )  ,  (   − 4  3  , 0 )  ,  (  4 3  , 0 )   = 8   








and


   d  (  2 , 0  , T  2 , 0  )  + d  (  0 , − 2  , T  0 , − 2  )  + d  (  − 2 , 0  , T  − 2 , 0  )  = 10 ,   








which implies that



   D ( T  2 , 0  , T  0 , − 2  , T  − 2 , 0  )   


   >  1 3   d  (  2 , 0  , T  2 , 0  )  + d  (  0 , − 2  , T  0 , − 2  )  + d  (  − 2 , 0  , T  − 2 , 0  )     











Then, T is tricyclic contraction but not a Kannan-S-type tricyclic contraction.





Now, we give an example for which T is a Kannan-S-type tricyclic contraction but not a tricyclic contraction.



Example 2.

Let   X = R   with the usual metric. Let   A = B = C =    0 , 1  ,   then   δ  A , B , C    = 0 .   Put   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   such that


   T x =   1 6   i f   0 ≤ x < 1  ,  T x =   1 4   i f   x = 1    











For   x = 1 , y = 1   and   z =  23 24  ,   we have


   D  ( T  ( 1 )  , T  ( 1 )  , T  (  23 24  )  )  = D  (  1 4  ,  1 4  ,  1 6  )  = 2 d  (  1 4  ,  1 6  )  =  1 6  .   








and


   D  ( 1 , 1 ,  23 24  )  = 2 d  ( 1 ,  23 24  )  =  1 12  .   











Then, T is not tricyclic contraction.



However T is a Kannan-S-type tricyclic contraction. Indeed:




	
If   x = y = z = 1  , we have


   D  ( T  ( 1 )  , T  ( 1 )  , T  ( 1 )  )  = 0 ≤  9 4  k   








for all   k ≥ 0  , then for 0   ≤ k <  1 3  .  



	
If   x ∈      0 , 1   ,   y ∈      0 , 1    and   z ∈      0 , 1   , we have


   D  ( T x , T y , T z )  = 0 ≤ k ( d  ( x ,  1 6  )  + d  ( y ,  1 6  )  + d  ( z ,  1 6  )    








for all   k ≥ 0  , then for 0   ≤ k <  1 3  .  



	
If   x = 1 , y ∈      0 , 1    and   z ∈      0 , 1   , we have


   D  (  T 1  , T y , T z )  = D  (  1 4  ,  1 6  ,  1 6  )  =  1 6    








and


   d  ( 1 , T  ( 1 )  )  + d  ( y , T y )  + d  ( z , T z )  =  3 4  + d  ( y ,  1 6  )  + d  ( z ,  1 6  )  ,   








then, for   k =  2 9   , we have


   D ( T ( 1 ) , T ( y , T z ) ≤ k ( d ( 1 , T ( 1 ) ) + d ( y , T y ) + d ( z , T z ) ) .   











	
If   x = 1 , y = 1   and   z ∈      0 , 1  ,   we have


   D  ( T  ( 1 )  , T  ( 1 )  , T z )  = D  (  1 4  ,  1 4  ,  1 6  )  =  1 6    








and


   d  ( 1 , T  ( 1 )  )  + d  ( 1 , T  ( 1 )  )  + d  ( z , T z )  =  3 2  + d  ( z ,  1 6  )  .   











Then, for   k =  2 9   , we have


   D ( T ( 1 ) , T ( 1 ) , T z ) ≤ k ( d ( 1 , T ( 1 ) ) + d ( 1 , T ( 1 ) ) + d ( z , T z ) ) .   











Consequently, for   k =  2 9   , we have:


   D  ( T x , T y , T z )  ≤ k  ( d  ( x , T x )  + d  ( y , T y )  + d  ( z , T z )  )   f o r  a l l   x , y , z    ∈ A × B × C .   


















Theorem 7.

Let   A , B   and C be nonempty closed subsets of a complete metric space    X , d  ,   and let   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   be a Kannan-S-type tricyclic contraction. Then, T has a unique fixed point in   A ∩ B ∩ C .  





Proof. 

Fix   x ∈ A  . We have


  d   T 3  x ,  T 2  x    ≤ D   T 3  x ,  T 2  x , T x    ≤ k  d   T 2  x ,  T 3  x    +   d  T x ,  T 2  x    +   d  x , T x   .  











Then,


  d   T 3  x ,  T 2  x    ≤ k  d   T 2  x ,  T 3  x    +   d  T x ,  T 2  x    +   d  x , T x   ,  








which implies


  d   T 3  x ,  T 2  x    ≤  k  ( 1 − k )    d  T x ,  T 2  x    +   d  x , T x   .  











Similarly, we have


  d   T 2  x , T x    ≤  k  ( 1 − k )    d   T 3  x ,  T 2  x    +   d  x , T x    










  d   T 2  x , T x    ≤  k  ( 1 − k )     k  ( 1 − k )    d  T x ,  T 2  x    +   d  x , T x     +   d  x , T x    










  ⟹ d   T 2  x , T x    ≤  k  1 − 2 k    ( d  x , T x  )  .  











Then,


  d   T 2  x , T x    ≤ t d  x , T x   where  t =  k  1 − 2 k    and  t ∈    0 , 1  ,  








which implies


  d   T  n + 1   x ,  T n  x    ≤  t n  d  x , T x  , for  all  n ≥ 1  











Consequently,


    ∑  + ∞    n = 1   d   T  n + 1   x ,  T n  x    ≤    ( ∑   + ∞    n = 1    t n   ) d   x , T x  < + ∞  








implies that   {  T n  x }   is a Cauchy sequence in    X , d  .   Hence, there exists   z ∈ A ∪ B ∪ C   such that    T n  x ⟶ z .   Notice that   {  T  3 n   x }   is a sequence in   A , {  T  3 n − 1   x }   is a sequence in C and   {  T  3 n − 2   x }   is a sequence in B and that both sequences tend to the same limit z. Regarding the fact that   A , B   and C are closed, we conclude   z ∈ A ∩ B ∩ C  , hence   A ∩ B ∩ C ≠ ⌀ .  



To show that z is a fixed point, we must show that   T z = z  . Observe that


     d  T z , z     =    lim d  T z ,  T  3 n   x  ≤ lim D   T  3 n   x ,  T  3 n − 1   x , T z        ≤    lim k [ d   T  3 n − 1   x ,  T  3 n   x  + d   T  3 n − 2   x ,  T  3 n − 1   x  + d  ( z , T z )  ]       ≤    k d  T z , z  ,     








which is equivalent to


   1 − k  d  T z , z  = 0 .  











Since   k ∈  0 ,  1 3    ,   then  d  T z , z  = 0  , which implies   T z = z  .



To prove the uniqueness of   z ,   assume that there exists   w ∈ A ∪ B ∪ C   such that   w ≠ z   and   T w = w  . Taking into account that T is tricyclic, we get   w ∈ A ∩ B ∩ C .   We have


  d  z , w  = d  T z , T w  ≤ D  T z , T w , T w  ≤ k  [ d  z , T z  + d  w , T w  + d  w , T w  ]  = 0  








which implies   d  z , w  = 0  . We get that   z = w   and hence z is the unique fixed point of   T .   □





Example 3.

Let X be   R 2   normed by the norm    ‖   x , y   ‖ =   x  +  y  ,   let   A = { 0 } × [ 0 , + 1 ] , B = [ 0 , + 1 ] × { 0 }  ,   C = { 0 } × [ − 1 , 0 ]   and let   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   be defined by


   T  0 , x    =     x 6  , 0          i f   0 , x    ∈ A  ,   










   T  y , 0    =    0 ,   − y  6         i f   y , 0    ∈ B ,   










   T  0 , z    =    0 ,   − z  6          i f   0 , z    ∈ C .   











We have


   T  A    ⊆ B , T  B    ⊆ C  and  T  C    ⊆ A   











In addition, for all    0 , x    ∈ A ,    y , 0    ∈ B ,    0 , z    ∈ C  , we have


   D  T  0 , x  , T  y , 0  , T  0 , z     = D    x 6  , 0  ,  0 ,   − y  6   ,  0 ,   − z  6      =  1 3   ( x + y − z )    











In addition, we have


   d   0 , x  , T  0 , x   + d   y , 0  , T  y , 0   + d   0 , z  , T  0 , z   =  7 6   ( x + y − z )    











This implies


   D  T  0 , x  , T  y , 0  , T  0 , z   =  2 7   d   0 , x  , T  0 , x   + d   y , 0  , T  y , 0   + d   0 , z  , T  0 , z    .   











Then, T is a Kannan-S-type tricyclic contraction, and T has a unique fixed point   0 , 0   in   A ∩ B ∩ C .  





Corollary 1.

Let   ( X , d )   be a complete metric space and a self mapping   T : X ⟶ X  . If there exists   k ∈  0 ,  1 3     such that


   D  T x , T y , T z  ≤ k  d  x , T x  + d  y , T y  + d  z , T z     








for all    x , y , z  ∈  X 3   , then T has a unique fixed point.





Now, we shall define another type of a tricyclic contraction.



Definition 4.

Let   A , B   and C be nonempty subsets of a metric space   X , d  . A mapping   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   is said to be a Chattergea-S-type tricyclic contraction if   T  A  ⊆ B , T  B  ⊆ C , T  C  ⊆ A  , and there exist   k ∈  0 ,  1 3     such that  D  T x , T y , T z  ≤ k  d  y , T x  + d  z , T y  + d  x , T z     for all    x , y , z  ∈ A × B × C .  





Theorem 8.

Let   A , B   and C be nonempty closed subsets of a complete metric space   X , d  , and let   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   be a Chattergea-S-type tricyclic contraction. Then, T has a unique fixed point in   A ∩ B ∩ C .  





Proof. 

Fix   x ∈ A  . We have


  D  T x ,  T 2  x ,  T 3  x  ≤ k  d  T x , T x  + d   T 2  x ,  T 2  x  + d   T 3  x , x    








which implies


  D   T 3  x ,  T 2  x , T x  ≤ k d   T 3  x , x   








so


  d   T 3  x ,  T 2  x  ≤ k  d   T 3  x ,  T 2  x  + d   T 2  x , T x  + d  T x , x     ( by  the  triangular  inequality )   










  ⟹ d   T 3  x ,  T 2  x  ≤  k  ( 1 − k )    d  T x ,  T 2  x  + d  x , T x    








and


  d   T 2  x , T x  ≤ D   T 3  x ,  T 2  x , T x  ≤  k  ( 1 − k )    d   T 3  x ,  T 2  x  + d  x , T x    










  ⟹ d   T 2  x , T x  ≤  k  ( 1 − k )     k  ( 1 − k )    d  T x ,  T 2  x  + d  x , T x   + d  x , T x    










  ⟹ d   T 2  x , T x  ≤  k  1 − 2 k    ( d  x , T x  )   











Then,


  d   T 2  x , T x  ≤ t d  x , T x   where  t =  k  1 − 2 k    and  t ∈  0 , 1  ,  








which implies


  d   T  n + 1   x ,  T n  x  ≤  t n  d  x , T x   








for all   n ≥ 1  . Consequently,


    ∑  + ∞    n = 1   d   T  n + 1   x ,  T n  x  ≤    ( ∑   + ∞    n = 1    t n   ) d   x , T x  < + ∞  








implies that   {  T n  x }   is a Cauchy sequence in   X , d  . Hence, there exists   z ∈ A ∪ B ∪ C   such that    T n  x ⟶ z .   Notice that   {  T  3 n   x }   is a sequence in   A , {  T  3 n − 1   x }   is a sequence in C, and   {  T  3 n − 2   x }   is a sequence in B and that both sequences tend to the same limit z. Regarding that   A , B   and C are closed, we conclude   z ∈ A ∩ B ∩ C ,   hence   A ∩ B ∩ C ≠ ⌀ .  



To show that z is a fixed point, we must show that   T z = z .   Observe that


     d  T z , z     =    lim d  T z ,  T  3 n   x    ≤ lim D  T z ,  T  3 n   x ,  T  3 n − 1   x        ≤    lim k  [ d   T  3 n − 1   x , T z    +     T  3 n − 2   x ,  T  3 n   x    +   d  ( z ,  T  3 n − 1   x )  ]  ≤ k d  T z , z  ,     








which is equivalent to    1 − k  d  T z , z    = 0 .   Since   k ∈  1 ,  1 3   ,   then   d  T z , z  = 0  , which implies   T z = z .  



To prove the uniqueness of   z ,   assume that there exists   w ∈ A ∪ B ∪ C   such that   w ≠ z   and   T w = w .   Taking into account that T is tricyclic, we get   w ∈ A ∩ B ∩ C .  



We have


     d  z , w     =    d  T z , T w  ≤ D  T z , T w , T w        ≤    k [ d  T z , w  + d  T w , w  + d  T w , z  ]       ≤    2 k d  z , w  .     











Then,   d  z , w  = 0 .   We conclude that   z = w   and hence z is the unique fixed point of   T .   □





Corollary 2.

Let   ( X , d )   be a complete metric space and a self mapping   T : X ⟶ X  . If there exists   k ∈  0 ,  1 3     such that


   D  T x , T y , T z  ≤ k  d  y , T x  + d  z , T y  + d  x , T z     








for all    x , y , z  ∈  X 3   , then T has a unique fixed point.





In this step, we define a Reich-S-type tricyclic contraction.



Definition 5.

Let   A , B   and C be nonempty subsets of a metric space   X , d  .



A mapping   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   is said to be a Reich-S-type tricyclic contraction if there exists   k ∈  0 ,  1 7     such that:




	1.

	
   T  A  ⊆ B , T  B  ⊆ C , T  C  ⊆ A .   




	2.

	
  D  T x , T y , T z  ≤ k  D  x , y , z  + d  x , T x  + d  y , T y  + d  z , T z     for all    x , y , z  ∈ A × B × C .  











Theorem 9.

Let   A , B   and C be nonempty closed subsets of a complete metric space    X , d  ,   and let   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   be a Reich-S-type tricyclic contraction. Then, T has a unique fixed point in   A ∩ B ∩ C .  





Proof. 

Fix   x ∈ A  . We have


     d   T 2  x ,  T 3  x     ≤    D  T x ,  T 2  x ,  T 3  x        ≤    k  D  ( x , T x ,  T 2  x )  + d   T 2  x ,  T 3  x  + d  T x ,  T 2  x  + d  x , T x       










  ⟹ d   T 2  x ,  T 3  x   1 − k  ≤ k  [ 2 d   T 2  x , T x  + 2 d  x , T x  + d   T 2  x , x  ]   










     ⟹ d   T 2  x ,  T 3  x     ≤     k  1 − k    2 d   T 2  x , T x  + 2 d  x , T x  + d   T 2  x , x         ≤     k  1 − k    2 d   T 2  x , T x  + 2 d  x , T x  + d   T 2  x , T x  + d  T x , x         ≤     k  1 − k    3 d   T 2  x , T x  + 3 d  x , T x       










  ⟹ d   T 2  x ,  T 3  x  ≤   3 k   1 − k    [ d   T 2  x , T x  + d  x , T x  ]   








and


  d   T 2  x , T x  ≤ D  T x ,  T 2  x ,  T 3  x  ≤ k  D  ( x , T x ,  T 2  x )  + d   T 2  x ,  T 3  x  + d  T x ,  T 2  x  + d  x , T x    










  ⟹ d   T 2  x , T x  ≤ k  3 d   T 2  x , T x  + 3 d  x , T x  + d   T 2  x ,  T 3  x    










  ⟹ d   T 2  x , T x   1 − 3 k  ≤ k  [ d   T 2  x ,  T 3  x  + 3 d  x , T x  ]   










  ⟹ d   T 2  x , T x  ≤  k  1 − 3 k   d   T 2  x ,  T 3  x  +   3 k   1 − 3 k   d  x , T x   










  ⟹ d   T 2  x , T x  ≤  k  1 − 3 k     3 k   1 − k    [ d   T 2  x , T x  + d  x , T x  ]  +   3 k   1 − 3 k   d  x , T x   










  ⟹ d   T 2  x , T x  ≤   3  k 2     1 − 3 k   1 − k    d   T 2  x , T x  +  (   3  k 2     1 − 3 k   1 − k    +   3 k   1 − 3 k   )  d  x , T x   










  ⟹ d   T 2  x , T x   1 −   3  k 2     1 − 3 k   1 − k     ≤   3  k 2  + 3 k  1 − k     1 − 3 k   1 − k    d  x , T x   










  ⟹ d   T 2  x , T x    1 − 3 k   1 − k  − 3  k 2   ≤  ( 3  k 2  + 3 k  1 − k  )  d  x , T x   










  ⟹ d   T 2  x , T x   1 − 4 k  ≤ 3 k d  x , T x   










  ⟹ d   T 2  x , T x  ≤   3 k   1 − 4 k   d  x , T x  .  











Then,


  d   T 2  x , T x  ≤ t d  x , T x   where  t =   3 k   1 − 4 k    and  t ∈  0 , 1  ,  








which implies


  d   T  n + 1   x ,  T n  x  ≤  t n  d  x , T x  ,  








consequently


    ∑  + ∞    n = 1   d   T  n + 1   x ,  T n  x  ≤    ( ∑   + ∞    n = 1    t n   ) d   x , T x  < + ∞  











This implies that   {  T n  x }   is a Cauchy sequence in   X , d  . Hence, there exists   z ∈ A ∪ B ∪ C   such that    T n  x ⟶ z .   Notice that   {  T  3 n   x }   is a sequence in   A , {  T  3 n − 1   x }   is a sequence in C and   {  T  3 n − 2   x }   is a sequence in B and that both sequences tend to the same limit z. Regarding the fact that   A , B   and C are closed, we conclude that   z ∈ A ∩ B ∩ C ,   hence   A ∩ B ∩ C ≠ ⌀ .  



To show that z is a fixed point, we must show that   T z = z  . Observe that


     d  T z , z     =    lim d  T z ,  T  3 n   x        ≤    lim D   T  3 n   x ,  T  3 n − 1   x , T z        ≤    lim k [ d   T  3 n − 1   x ,  T  3 n − 2   x  + d   T  3 n − 1   x , z  + d  (  T  3 n − 2   x , z )        +    d   T  3 n − 1   x ,  T  3 n   x  + d   T  3 n − 2   x ,  T  3 n − 1   x  + d  z , T z   ]        ≤    k d  T z , z  ,     








which is equivalent to    1 − k  d  T z , z  = 0  .



Since   k ∈  0 ,  1 7   ,   then   d  T z , z  = 0  , which implies   T z = z .  



To prove the uniqueness of   z ,   assume that there exists   w ∈ A ∪ B ∪ C   such that   w ≠ z   and   T w = w .   Taking into account that T is tricyclic, we get   w ∈ A ∩ B ∩ C .  


     d  z , w     =    d  T z , T w        ≤    D  T z , T w , T w        ≤    k [ 2 d  z , w  + d  w , w  + d  z , T z  + d  T w , w  + d  T w , w  ]       ≤    2 k d  z , w      








implies   d  z , w  = 0 .   We conclude that   z = w   and hence z is the unique fixed point of   T .   □





Example 4.

We take the same example 3.



Let X be   R 2   normed by the norm    ‖   x , y   ‖ =   x  +  y   ,


   A = { 0 } × [ 0 , + 1 ] , B = [ 0 , + 1 ] × { 0 } , C = { 0 } × [ − 1 , 0 ]   








and let   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   be defined by


   T  0 , x  =   x 6  , 0          i f   0 , x  ∈ A  ,   










   T  y , 0  =  0 ,   − y  6         i f   y , 0  ∈ B ,   










   T  0 , z  =  0 ,   − z  6          i f   0 , z  ∈ C ,   











We have T is tricyclic and for all    0 , x  ∈ A ,  y , 0  ∈ B ,  0 , z  ∈ C  ,


      D  T  0 , x  , T  y , 0  , T  0 , z      =    D    x 6  , 0  ,  0 ,   − y  6   ,  0 ,   − z  6          =     1 3   ( x + y − z )  .      











In addition, we have


   D  (  0 , x  ,  y , 0  ,  0 , z  )  + d   0 , x  , T  0 , x   + d   y , 0  , T  y , 0   + d   0 , z  , T  0 , z     










   = 2  ( x + y − z )  +  7 6   ( x + y − z )  =  19 6   ( x + y − z )  .   











Then,


      D  T  0 , x  , T  y , 0  , T  0 , z      =     2 19   ( D   (  0 , x  ,  y , 0  ,  0 , z  )  + d   0 , x  , T  0 , x           + d   y , 0  , T  y , 0   + d   0 , z  , T  0 , z    )        ≤     1 7   ( D   (  0 , x  ,  y , 0  ,  0 , z  )  + d   0 , x  , T  0 , x           + d   y , 0  , T  y , 0   + d   0 , z  , T  0 , z    )       











This implies that T is a Reich-S-type tricyclic contraction, and T has a unique fixed point   0 , 0   in   A ∩ B ∩ C .  





Corollary 3.

Let   ( X , d )   a complete metric space and a self mapping   T : X ⟶ X  . If there exists   k ∈  0 ,  1 7     such that


   D  T x , T y , T z  ≤ k  D  x , y , z  + d  x , T x  + d  y , T y  + d  z , T z     








for all    x , y , z  ∈  X 3   , then T has a unique fixed point in X.





The next tricyclic contraction considered in this section is the Cirić-S-type tricyclic contraction defined below.



Definition 6.

Let   A , B   and C be nonempty subsets of a metric space    X , d  ,     T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   be a Cirié-S-type tricyclic contraction, if there exists   k ∈    0 , 1    such that




	1.

	
   T  A    ⊆ B , T  B    ⊆ C , T  C    ⊆ A   




	2.

	
  D  T x , T y , T z    ≤ k M  x , y , z    for all    x , y , z  ∈ A × B × C .  









where   M  x , y , z  = max  { D  x , y , z  , d  x , T x  , d  y , T y  , d  z , T z  }   





The fixed point theorem of the Cirić-S-type tricyclic contraction reads as follows.



Theorem 10.

Let   A , B   and C be nonempty closed subsets of a complete metric space    X , d  ,   and let   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C   be a Cirić-S- type tricyclic contraction, then T has a unique fixed point in   A ∩ B ∩ C .  





Proof. 

Taking   x ∈ A ,   we have   D  T x , T y , T z  ≤ k M  x , y , z    for all    x , y , z  ∈ A × B × C  . If   M  x , y , z  = D  x , y , z   , Theorem 7 implies the desired result.



Consider the case   M  x , y , z  = d  x , T x  .   We have:


      D  T x ,  T 2  x ,  T 3  x  ≤ k d  x , T x     ⟹    d  T x ,  T 2  x  ≤ k d  x , T x        ⟹    d   T n  x ,  T  n + 1   x  ≤  k n  d  x , T x      











Consequently,


    ∑  + ∞    n = 1   d   T  n + 1   x ,  T n  x  ≤    ( ∑   + ∞    n = 1    k n   ) d   x , T x  < + ∞  








which implies that   {  T n  x }   is a Cauchy sequence in   X , d  . Hence, there exists   z ∈ A ∪ B ∪ C   such that    T n  x ⟶ z .   Notice that   {  T  3 n   x }   is a sequence in   A , {  T  3 n − 1   x }   is a sequence in C, and   {  T  3 n − 2   x }   is a sequence in B and that both sequences tend to the same limit z; regarding the fact that   A , B   and C are closed, we conclude   z ∈ A ∩ B ∩ C ,   hence   A ∩ B ∩ C ≠ ⌀ .  



To show that z is a fixed point, we must show that   T z = z .   Observe that


  d  T z , z  = lim d  T z ,  T  3 n   x    ≤ lim D   T  3 n   x ,  T  3 n − 1   x , T z  ≤ k d  T z , z  ,  








which is equivalent to    1 − k  d  T z , z  = 0  . Since   k ∈  0 , 1  ,   then   d  T z , z  = 0  , which implies   T z = z .  



To prove the uniqueness of   z ,   assume that there exists   w ∈ A ∪ B ∪ C   such that   w ≠ z   and   T w = w  .



Taking into account that T is tricyclic, we get   w ∈ A ∩ B ∩ C .  



  d  z , w  = d  T z , T w  ≤ D  T z , T w , T w  ≤ k d  ( z , T z )  = 0   implies   d  z , w  = 0 .   We conclude that   z = w   and hence z is the unique fixed point of   T .  



Consider the case   M  x , y , z  = d  y , T y   . We have:


  D  T x ,  T 2  x ,  T 3  x  ≤ k d  T x ,  T 2  x  ⟹ d  T x ,  T 2  x  ≤ k d  T x ,  T 2  x  < d  T x ,  T 2  x  ,  








which is impossible since   k ∈  0 , 1   



Consider the case   M  x , y , z  = d  z , T z   . We have:


  D  T x ,  T 2  x ,  T 3  x  ≤ k d   T 2  x ,  T 3  x  ⟹ d   T 2  x ,  T 3  x  ≤ k d   T 2  x ,  T 3  x  < d   T 2  x ,  T 3  x  ,  








which is impossible since   k ∈  0 , 1  .   □





Corollary 4.

Let   A , B   and C be a nonempty subset of a complete metric space   X , d   and let a mapping   T : A ∪ B ∪ C ⟶ A ∪ B ∪ C  . If there exists   k ∈  0 , 1    such that




	1.

	
   T  A  ⊆ B , T  B  ⊆ C , T  C  ⊆ A .   




	2.

	
  D  T x , T y , T z  ≤ k max  { D  x , y , z  , d  x , T x  }     ∀  x , y , z  ∈ A × B × C  .



Then, T has a unique fixed point in   A ∩ B ∩ C .  
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