

Article **On Factoring Groups into Thin Subsets**

Igor Protasov

Department of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, Academic Glushkov pr. 4d, 03680 Kyiv, Ukraine; i.v.protasov@gmail.com

Abstract: A subset *X* of a group *G* is called thin if, for every finite subset *F* of *G*, there exists a finite subset *H* of *G* such that $Fx \cap F\psi = \emptyset$, $xF \cap \psi F = \emptyset$ for all distinct $x, y \in X \setminus H$. We prove that every countable topologizable group *G* can be factorized $G = AB$ into thin subsets A , B .

Keywords: factorizations of a group; thin subset of a group

MSC: 20F69; 54C65

1. Introduction

Let *G* be a group, and $[G]^{<\omega}$ denote the set of all finite subsets of *G*. A subset *X* of is called:

- *left thin* if, for every $F \in [G]^{<\omega}$, there exists $H \in [G]^{<\omega}$ such that $Fx \cap Fy = \emptyset$ for all distinct $x, y \in X \setminus H$;
- *right thin* if, for every $F \in [G]^{<\omega}$, there exists $H \in [G]^{<\omega}$ such that $xF \cap yF = \emptyset$ for all distinct $x, y \in X \setminus H$;
	- *thin* if *X* is left and right thin.

The notion of left thin subsets was introduced in [\[1\]](#page-2-0). For motivation to study left thin, right thin and thin subsets and some results and references, see Comments and surveys [\[2–](#page-2-1)[5\]](#page-2-2). In *asymptology*, thin subsets play the part of discrete subsets (see Comments 1 and 2).

We recall that the product *AB* of subsets *A*, *B* of a group *G* is a *factorization* if $G = AB$ and each element *g* \in *G* has the unique representation *g* = *ab*, *a* \in *A*, *b* \in *B* (equivalently, the subsets $\{aB : a \in A\}$ are pairwise disjoint). For factorizations of groups into subsets, see [\[6\]](#page-2-3).

Our goal is to prove the following theorem. By a countable set, we mean a countably infinite set. The group topology τ is supposed to be Hausdorff.

Theorem 1. Let (G, τ) be a non-discrete countable topological group. Then G can be factorized *G* = *AB into thin subsets A*, *B.*

2. Proof

Proof of Theorem 1. Let $G = \{g_n : n < \omega\}$, $g_0 = e$, e is the identity of G , $F_n = \{g_i : i \leq n\}$. Given two sequences $(a_n)_{n \leq \omega}$, $(b_n)_{n \leq \omega}$ in *G*, we denote

$$
A_n = \{a_i, a_i^{-1} : i \leq n\}, \ \ B_n = \{b_i : i \leq n\}, \ \ A = \cup_{n < \omega} A_n, \ \ B = \cup_{n < \omega} B_n.
$$

We want to choose $(a_n)_{n<\omega}$, $(b_n)_{n<\omega}$ so that AB is a factorization of *G* and *A*, *B* are thin.

Let *X*,*Y* be subsets of *G*. We say that *XY* is a *partial factorization* of *G* if the subsets $\{Xy : y \in Y\}$ are pairwise disjoint (equivalently, the subsets $\{Yx : x \in X\}$ are pairwise disjoint).

Citation: Protasov, I. On Factoring Groups into Thin Subsets. *Axioms* **2021**, *10*, 89. [https://doi.org/](https://doi.org/10.3390/axioms10020089) [10.3390/axioms10020089](https://doi.org/10.3390/axioms10020089)

Academic Editors: Elena Martín-Peinador, Mikhail Tkachenko, T. Christine Stevens and Xabier Domínguez

Received: 2 April 2021 Accepted: 13 May 2021 Published: 14 May 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/[/](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

We put $a_0 = e$, $b_0 = e$ and suppose that a_0, \ldots, a_n and b_0, \ldots, b_n have been chosen so that the following conditions are satisfied

- (1) $A_n B_n$ is a partial factorization of *G* and $g_n \in A_n B_n$;
- (2) $F_i b_i \cap F_j b_j = \emptyset$, $b_i F_i \cap b_j F_j = \emptyset$ for all distinct $i, j \in \{0, \ldots, n\}$;
- (3) $F_i a_i \cap F_j a_j = \emptyset$, $a_i F_i \cap a_j F_j = \emptyset$, $F_i a_i^{-1} \cap F_j a_j^{-1} = \emptyset$, $a_i^{-1} F_i \cap a_j^{-1} F_j = \emptyset$ and
- $F_i a_i^{-1} \cap F_j a_j$, $a_i^{-1} F_i \cap a_j F_j = \emptyset$ for all distinct $i, j \in \{0, \ldots, n\}$;
- (4) if $a_i \neq a_i^{-1}$ then $F_i a_i \cap F_i a_i^{-1} = \emptyset$, $a_i F_i \cap a_i^{-1} F_i = \emptyset$, $i \in \{0, ..., n\}$.

We take the first element $g_m \in G \setminus A_nB_n$, put $g = g_m$ and show that there exists a symmetric neighborhood *U* of *e* such that

(5) $(A_n ∪ {x, x⁻¹})(B_n ∪ {xg})$ is a partial factorization for each $x ∈ U \setminus {e}$.

We choose a symmetric neighborhood *V* of *e* such that $(A_n \cup \{x, x^{-1}\})B_n$ is a partial factorization of *G* for each $x \in V \setminus \{e\}.$

Then we use $A_n = A_n^{-1}$, $g \in G \setminus A_n B_n$ and $e \in A_n \cap B_n$ to choose a symmetric neighborhood *U* of *e* such that $U \subset V$ and

$$
(A_n \cup \{x, x^{-1}\})B_n \cap (A_n \cup \{x, x^{-1}\})xg = \emptyset,
$$

equivalently, $A_nB_n \cap A_n xg = \emptyset$, $A_nB_n \cap \{x, x^{-1}\}xg = \emptyset$, $\{x, x^{-1}\}B_n \cap A_n xg = \emptyset$, ${x, x^{-1}}B_n \cap {x, x^{-1}}xg = \emptyset$ for each $x \in U \setminus {e}$, so we get (5). By the continuity of the group operations, the latter is possible because these 4 equalities hold for $x = e$.

If the set $\{x \in U : x^2 = e\}$ is infinite then we use (5) and choose $a_{n+1} \in U$, $a_{n+1} = a_{n+1}^{-1}$ and $b_{n+1} = a_{n+1}g$ to satisfy (1)–(3) with $n+1$ in place of *n*. Otherwise, we choose $a_{n+1} \in U$, $a_{n+1} \neq a_{n+1}^{-1}$ and $b_{n+1} = a_{n+1}g$ to satisfy (1)–(4).

After ω steps, we get the desired factorization $G = AB$. \Box

3. Comments

1. Given a set *X*, a family $\mathcal E$ of subsets of *X* \times *X* is called a *coarse structure* on *X* if

- each $E \in \mathcal{E}$ contains the diagonal $\triangle_X := \{(x, x) : x \in X\}$ of X;
- if *E*, $E' \in \mathcal{E}$ then $E \circ E' \in \mathcal{E}$ and $E^{-1} \in \mathcal{E}$, where $E \circ E' = \{(x, y) : \exists z \ ((x, z) \in \mathcal{E} \}$ $E, (z, y) \in E'$), $E^{-1} = \{(y, x) : (x, y) \in E\}$;
- if $E \in \mathcal{E}$ and $\triangle_X \subseteq E' \subseteq E$ then $E' \in \mathcal{E}$.

Elements $E \in \mathcal{E}$ of the coarse structure are called *entourages* on *X*.

For $x \in X$ and $E \in \mathcal{E}$ the set $E[x] := \{y \in X : (x, y) \in \mathcal{E}\}$ is called the *ball of radius* E *centered at x*. Since $E = \bigcup_{x \in X} (\{x\} \times E[x])$, the entourage *E* is uniquely determined by the family of balls $\{E[x] : x \in X\}$. A subfamily $\mathcal{E}' \subseteq \mathcal{E}$ is called a *base* of the coarse structure \mathcal{E}' if each set $E \in \mathcal{E}$ is contained in some $E' \in \mathcal{E}'$.

The pair (X, \mathcal{E}) is called a *coarse space* [\[7\]](#page-2-4) or a *ballean* [\[8,](#page-2-5)[9\]](#page-2-6).

A subset *B* of *X* is called *bounded* if $B \subseteq E[x]$ for some $E \in \mathcal{E}$ and $x \in X$. A subset *Y* of *X* is called *discrete* if, for every $E \in \mathcal{E}$, there exists a bounded subset *B* such that $E[x] \cap E[y] = \emptyset$ for all distinct $x, y \in Y \setminus B$.

2. Formally, coarse spaces can be considered as asymptotic counterparts of uniform topological spaces. However, actually, this notion is rooted in *geometry, geometrical group theory* and *combinatorics* (see [\[7](#page-2-4)[,8](#page-2-5)[,10,](#page-2-7)[11\]](#page-2-8)).

Given a group *G*, we denote by \mathcal{E}_l and \mathcal{E}_r the coarse structures on *G* with the bases

$$
\{\{(x,y): x \in Fy\} : F \in [G]^{<\omega}, e \in F\}, \ \{\{(x,y): x \in yF\} : F \in [G]^{<\omega}, e \in F\}
$$

and note that a subset *A* of *G* is left (resp. right) thin if and only if *A* is discrete in the coarse space (*G*, E*^l*) (resp. (*G*, E*r*)).

3. By [\[12\]](#page-2-9), every countable group *G* has a thin subset *A* such that $G = AA^{-1}$. By [\[13\]](#page-2-10), every countable topological group *G* has a closed discrete subset *A* such that *G* = *AA*−¹ . For thin subsets of topological groups and factorizations into dense subsets, see [\[14](#page-2-11)[,15\]](#page-2-12).

4. Can every countable group *G* be factorized *G* = *AB* into infinite subsets *A*, *B*? By Theorem 1, an answer to the following question could be negative only in the case of a non-topologizable group *G*.

On the other hand, analyzing the proof, one can see that Theorem 1 remains true if all mappings *x* \longmapsto *xg*, *x* \longmapsto *gx*, *g* ∈ *G*, *x* \longmapsto *x*⁻¹ and *x* \longmapsto *x*² are continuous at *e*. By [\[16\]](#page-2-13), every countable group *G* admits a non-discrete Hausdorff topology in which all shifts and the inversion $x \mapsto x^{-1}$ are continuous.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Chou, C. On the size of the set of left invariant means on a semigroup. *Proc. Am. Math. Soc.* **1969**, *23*, 199–205. [\[CrossRef\]](http://doi.org/10.2307/2037517)
- 2. Protasov, I. Selective survey on subset combinatorics of groups. *J. Math. Sci.* **2011**, *174*, 486–514. [\[CrossRef\]](http://dx.doi.org/10.1007/s10958-011-0314-x)
- 3. Protasov, I.; Protasova, K. Resent progress in subset combinatorics of groups. *J. Math. Sci.* **2018**, *234*, 49–60. [\[CrossRef\]](http://dx.doi.org/10.1007/s10958-018-3980-0)
- 4. Protasov, I.; Slobodianiuk, S. Partitions of groups. *Math. Stud.* **2014**, *42*, 115–128.
- 5. Banakh, T.; Protasov, I. Set-Theoretical Problems in Asymptology. Available online: <https://arxiv.org/abs/2004.01979> (accessed on 7 May 2020).
- 6. Szabo, S.; Sands, A. *Factoring Groups into Subsets*; CRS Press: Boca Raton, FL, USA, 2009.
- 7. Roe, J. *Lectures on Coarse Geometry*; Univ. Lecture Ser., 31; American Mathematical Society: Providence, RI, USA, 2003.
- 8. Protasov, I.; Banakh, T. *Ball Structures and Colorings of Groups and Graphs*; VNTL Publ.: Lviv, Ukraine, 2003.
- 9. Protasov, I.; Zarichnyi, M. *General Asymptology*; VNTL: Lviv, Ukraine, 2007.
- 10. De la Harpe, P. *Topics in Geometrical Group Theory*; University Chicago Press: Chicago, IL, USA, 2000.
- 11. Cornulier, Y.; de la Harpe, P. *Metric Geometry of Locally Compact Groups;* EMS Tracts in Mathematics; European Mathematical Society: Zürich, Switzerland, 2016.
- 12. Lutsenko, I. Thin systems of generators of groups. *Algebra Discret. Math.* **2010**, *9*, 108–114.
- 13. Protasov, I. Generating countable groups by discrete subsets. *Topol. Appl.* **2016**, *204*, 253–255. [\[CrossRef\]](http://dx.doi.org/10.1016/j.topol.2016.03.016)
- 14. Protasov, I. Thin subsets of topological groups.*Topol. Appl.* **2013**, *160*, 1083–1087. [\[CrossRef\]](http://dx.doi.org/10.1016/j.topol.2013.02.011)
- 15. Protasov, I.; Slobodianiuk, S. A note on factoring groups into dense subsets. *J. Group Theory* **2017**, *20*, 33–38. [\[CrossRef\]](http://dx.doi.org/10.1515/jgth-2016-0021)
- 16. Zelenyuk, Y. On topologizing groups. *J. Group Theory* **2007**, *10*, 235–244. [\[CrossRef\]](http://dx.doi.org/10.1515/JGT.2007.019)