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Abstract: A subset X of a group G is called thin if, for every finite subset F of G, there exists a finite
subset H of G such that Fx N Fy = @, xF NyF = @ for all distinct x,y € X \ H. We prove that every
countable topologizable group G can be factorized G = AB into thin subsets A, B.
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1. Introduction

Let G be a group, and [G|<%“ denote the set of all finite subsets of G. A subset X of
is called:

e left thin if, for every F € [G]<Y, there exists H € [G]<%“ such that Fx N Fy = @ for all
distinct x,y € X\ H;

*  right thin if, for every F € [G]<%, there exists H € [G]<“ such that xF NyF = @ for all
distinct x,y € X\ H;

e thinif X is left and right thin.

The notion of left thin subsets was introduced in [1]. For motivation to study left
thin, right thin and thin subsets and some results and references, see Comments and
surveys [2-5]. In asymptology, thin subsets play the part of discrete subsets (see Comments
1 and 2).

We recall that the product AB of subsets A, B of a group G is a factorization if G = AB
and each element ¢ € G has the unique representation ¢ = ab, a € A, b € B (equivalently,
the subsets {aB : a € A} are pairwise disjoint). For factorizations of groups into subsets,
see [6].

Our goal is to prove the following theorem. By a countable set, we mean a countably
infinite set. The group topology T is supposed to be Hausdorff.

Theorem 1. Let (G, T) be a non-discrete countable topological group. Then G can be factorized
G = AB into thin subsets A, B.

2. Proof

Proof of Theorem 1. Let G = {g, : n < w}, g0 = ¢, eis the identity of G, F, = {g; : i < n}.
Given two sequences (4, )n<w, (bn)n<w in G, we denote

An == {al,al_l : l S n}, Bn - {bl : l S 1’1}, A = Un<wAn, B - Un<an.

We want to choose (4y)n<w, (by)n<w S0 that AB is a factorization of G and A, B are
thin.

Let X, Y be subsets of G. We say that XY is a partial factorization of G if the subsets
{Xy : y € Y} are pairwise disjoint (equivalently, the subsets {Yx : x € X} are pairwise
disjoint).
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We put ag = ¢, by = e and suppose that ay, . ..,a, and by, ..., b, have been chosen so
that the following conditions are satisfied

(1) Ay;By is a partial factorization of G and g, € A, By;
(2) Fb; N F]b] =@, b;F;N b/F] = @ for all distinct i,j € {O, ey, n};
(3) Fa;N F]Ll] =@, a;EN ajk; = Q, Pl‘bll-_l N F]‘ﬂj_l =Q, Lli_lFi N ﬂj_le =@ and

Fialfl N Faj, a;lFi NajF; = @ for all distincti,j € {0,...,n};

(4) if a; # ﬂ;l then Fa;N F[ﬂfl =, a;FN a;lFi =Q,i€ {0, e ,n}.
We take the first element g, € G\ A, By, put § = ¢ and show that there exists a
symmetric neighborhood U of e such that

(5) (AU {x,x1})(B,U{xg}) is a partial factorization for each x € U \ {e}.
We choose a symmetric neighborhood V of e such that (A, U {x,x"'})B, isa partial
factorization of G for each x € V' \ {e}.

Then we use A, = A;l, g€G \ A;B, and e € A, N By, to choose a symimetric
neighborhood U of e such that U C V and

(A U{x,x 'HB, N (AU {x,x 1})xg =,

equivalently, A;B, NA,xg =@, AuB,N {x,x }xg =@, {x,x '}B,NAxg =0,
{x,x 13BN {x,x }xg = @ for each x € U \ {e}, so we get (5). By the continuity of the
group operations, the latter is possible because these 4 equalities hold for x = e.

Iftheset {x € U : x?> = ¢} is infinite then we use (5) and choose a,, .1 € U, a,, ;1 = a,
and b, = a,419 to satisfy (1)—(3) with n 4+ 1 in place of n. Otherwise, we choose
Ay € U, ay41 # a;}rl and b, = a,1g to satisfy (1)—(4).

After w steps, we get the desired factorization G = AB. O

3. Comments
1. Given a set X, a family £ of subsets of X x X is called a coarse structure on X if

e each E € &£ contains the diagonal Ax := {(x,x) : x € X} of X;
e ifEE €&thenEoE € Eand E™! € & where EoE = {(x,y) : Iz ((x,2) €

E, (zy) €E)}, E ={(y,x): (x,y) € E};
e ifEcfand Ax CE CEthenE cé&.

Elements E € £ of the coarse structure are called entourages on X.

Forx € Xand E € € theset E[x| := {y € X : (x,y) € £} is called the ball of radius E
centered at x. Since E = J,cx({x} x E[x]), the entourage E is uniquely determined by the
family of balls {E[x] : x € X}. A subfamily £’ C & is called a base of the coarse structure £
if each set E € £ is contained in some E’ € &’.

The pair (X, £) is called a coarse space [7] or a ballean [8,9].

A subset B of X is called bounded if B C E[x] for some E € £ and x € X. A subset
Y of X is called discrete if, for every E € &, there exists a bounded subset B such that
E[x] N E[y] = @ for all distinct x,y € Y\ B.

2. Formally, coarse spaces can be considered as asymptotic counterparts of uniform
topological spaces. However, actually, this notion is rooted in geometry, geometrical group
theory and combinatorics (see [7,8,10,11]).

Given a group G, we denote by & and &, the coarse structures on G with the bases

{{(x,y) :x € Fy}: Fe [G]~“,e € F}, {{(x,y):x €yF}:F €[G]*“,e € F}

and note that a subset A of G is left (resp. right) thin if and only if A is discrete in the coarse
space (G, &) (resp. (G, &) ).

3. By [12], every countable group G has a thin subset A such that G = AA~!. By [13],
every countable topological group G has a closed discrete subset A such that G = AA~L.
For thin subsets of topological groups and factorizations into dense subsets, see [14,15].
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4. Can every countable group G be factorized G = AB into infinite subsets A, B? By
Theorem 1, an answer to the following question could be negative only in the case of a
non-topologizable group G.

On the other hand, analyzing the proof, one can see that Theorem 1 remains true if all
mappings x — xg, X — ¢x, ¢ € G, x — x~ ! and x — x? are continuous at e. By [16],
every countable group G admits a non-discrete Hausdorff topology in which all shifts and
the inversion x — x~! are continuous.
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