



# Article On Factoring Groups into Thin Subsets

Igor Protasov 🕩

Department of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, Academic Glushkov pr. 4d, 03680 Kyiv, Ukraine; i.v.protasov@gmail.com

**Abstract:** A subset *X* of a group *G* is called thin if, for every finite subset *F* of *G*, there exists a finite subset *H* of *G* such that  $Fx \cap Fy = \emptyset$ ,  $xF \cap yF = \emptyset$  for all distinct  $x, y \in X \setminus H$ . We prove that every countable topologizable group *G* can be factorized G = AB into thin subsets *A*, *B*.

Keywords: factorizations of a group; thin subset of a group

MSC: 20F69; 54C65

### 1. Introduction

Let *G* be a group, and  $[G]^{<\omega}$  denote the set of all finite subsets of *G*. A subset *X* of is called:

- *left thin* if, for every  $F \in [G]^{<\omega}$ , there exists  $H \in [G]^{<\omega}$  such that  $Fx \cap Fy = \emptyset$  for all distinct  $x, y \in X \setminus H$ ;
- *right thin* if, for every  $F \in [G]^{<\omega}$ , there exists  $H \in [G]^{<\omega}$  such that  $xF \cap yF = \emptyset$  for all distinct  $x, y \in X \setminus H$ ;
- *thin* if X is left and right thin.

The notion of left thin subsets was introduced in [1]. For motivation to study left thin, right thin and thin subsets and some results and references, see Comments and surveys [2–5]. In *asymptology*, thin subsets play the part of discrete subsets (see Comments 1 and 2).

We recall that the product *AB* of subsets *A*, *B* of a group *G* is a *factorization* if *G* = *AB* and each element  $g \in G$  has the unique representation g = ab,  $a \in A$ ,  $b \in B$  (equivalently, the subsets  $\{aB : a \in A\}$  are pairwise disjoint). For factorizations of groups into subsets, see [6].

Our goal is to prove the following theorem. By a countable set, we mean a countably infinite set. The group topology  $\tau$  is supposed to be Hausdorff.

**Theorem 1.** Let  $(G, \tau)$  be a non-discrete countable topological group. Then G can be factorized G = AB into thin subsets A, B.

### 2. Proof

**Proof of Theorem 1.** Let  $G = \{g_n : n < \omega\}$ ,  $g_0 = e$ , e is the identity of G,  $F_n = \{g_i : i \le n\}$ . Given two sequences  $(a_n)_{n < \omega}$ ,  $(b_n)_{n < \omega}$  in G, we denote

$$A_n = \{a_i, a_i^{-1} : i \le n\}, \ B_n = \{b_i : i \le n\}, \ A = \bigcup_{n < \omega} A_n, \ B = \bigcup_{n < \omega} B_n$$

We want to choose  $(a_n)_{n < \omega}$ ,  $(b_n)_{n < \omega}$  so that *AB* is a factorization of *G* and *A*, *B* are thin.

Let *X*, *Y* be subsets of *G*. We say that *XY* is a *partial factorization* of *G* if the subsets  $\{Xy : y \in Y\}$  are pairwise disjoint (equivalently, the subsets  $\{Yx : x \in X\}$  are pairwise disjoint).



Citation: Protasov, I. On Factoring Groups into Thin Subsets. *Axioms* 2021, 10, 89. https://doi.org/ 10.3390/axioms10020089

Academic Editors: Elena Martín-Peinador, Mikhail Tkachenko, T. Christine Stevens and Xabier Domínguez

Received: 2 April 2021 Accepted: 13 May 2021 Published: 14 May 2021

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



**Copyright:** © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). We put  $a_0 = e$ ,  $b_0 = e$  and suppose that  $a_0, ..., a_n$  and  $b_0, ..., b_n$  have been chosen so that the following conditions are satisfied

(1)  $A_n B_n$  is a partial factorization of *G* and  $g_n \in A_n B_n$ ;

(2)  $F_i b_i \cap F_j b_j = \emptyset, b_i F_i \cap b_j F_j = \emptyset$  for all distinct  $i, j \in \{0, ..., n\}$ ;

- (3)  $F_i a_i \cap F_j a_j = \emptyset$ ,  $a_i F_i \cap a_j F_j = \emptyset$ ,  $F_i a_i^{-1} \cap F_j a_j^{-1} = \emptyset$ ,  $a_i^{-1} F_i \cap a_j^{-1} F_j = \emptyset$  and
- $F_i a_i^{-1} \cap F_j a_j, \quad a_i^{-1} F_i \cap a_j F_j = \emptyset$  for all distinct  $i, j \in \{0, \dots, n\}$ ;
- (4) if  $a_i \neq a_i^{-1}$  then  $F_i a_i \cap F_i a_i^{-1} = \emptyset$ ,  $a_i F_i \cap a_i^{-1} F_i = \emptyset$ ,  $i \in \{0, ..., n\}$ .

We take the first element  $g_m \in G \setminus A_n B_n$ , put  $g = g_m$  and show that there exists a symmetric neighborhood *U* of *e* such that

(5)  $(A_n \cup \{x, x^{-1}\})(B_n \cup \{xg\})$  is a partial factorization for each  $x \in U \setminus \{e\}$ .

We choose a symmetric neighborhood *V* of *e* such that  $(A_n \cup \{x, x^{-1}\})B_n$  is a partial factorization of *G* for each  $x \in V \setminus \{e\}$ .

Then we use  $A_n = A_n^{-1}$ ,  $g \in G \setminus A_n B_n$  and  $e \in A_n \cap B_n$  to choose a symmetric neighborhood U of e such that  $U \subset V$  and

$$(A_n \cup \{x, x^{-1}\})B_n \cap (A_n \cup \{x, x^{-1}\})xg = \emptyset,$$

equivalently,  $A_n B_n \cap A_n xg = \emptyset$ ,  $A_n B_n \cap \{x, x^{-1}\} xg = \emptyset$ ,  $\{x, x^{-1}\} B_n \cap A_n xg = \emptyset$ ,  $\{x, x^{-1}\} B_n \cap \{x, x^{-1}\} xg = \emptyset$  for each  $x \in U \setminus \{e\}$ , so we get (5). By the continuity of the group operations, the latter is possible because these 4 equalities hold for x = e.

If the set  $\{x \in U : x^2 = e\}$  is infinite then we use (5) and choose  $a_{n+1} \in U$ ,  $a_{n+1} = a_{n+1}^{-1}$ and  $b_{n+1} = a_{n+1}g$  to satisfy (1)–(3) with n + 1 in place of n. Otherwise, we choose  $a_{n+1} \in U$ ,  $a_{n+1} \neq a_{n+1}^{-1}$  and  $b_{n+1} = a_{n+1}g$  to satisfy (1)–(4).

After  $\omega$  steps, we get the desired factorization G = AB.  $\Box$ 

## 3. Comments

1. Given a set *X*, a family  $\mathcal{E}$  of subsets of *X* × *X* is called a *coarse structure* on *X* if

- each  $E \in \mathcal{E}$  contains the diagonal  $\triangle_X := \{(x, x) : x \in X\}$  of X;
- if  $E, E' \in \mathcal{E}$  then  $E \circ E' \in \mathcal{E}$  and  $E^{-1} \in \mathcal{E}$ , where  $E \circ E' = \{(x, y) : \exists z \ ((x, z) \in E, (z, y) \in E')\}, E^{-1} = \{(y, x) : (x, y) \in E\};$
- if  $E \in \mathcal{E}$  and  $\triangle_X \subseteq E' \subseteq E$  then  $E' \in \mathcal{E}$ .

Elements  $E \in \mathcal{E}$  of the coarse structure are called *entourages* on X.

For  $x \in X$  and  $E \in \mathcal{E}$  the set  $E[x] := \{y \in X : (x, y) \in \mathcal{E}\}$  is called the *ball of radius* E *centered at* x. Since  $E = \bigcup_{x \in X} (\{x\} \times E[x])$ , the entourage E is uniquely determined by the family of balls  $\{E[x] : x \in X\}$ . A subfamily  $\mathcal{E}' \subseteq \mathcal{E}$  is called a *base* of the coarse structure  $\mathcal{E}$  if each set  $E \in \mathcal{E}$  is contained in some  $E' \in \mathcal{E}'$ .

The pair  $(X, \mathcal{E})$  is called a *coarse space* [7] or a *ballean* [8,9].

A subset *B* of *X* is called *bounded* if  $B \subseteq E[x]$  for some  $E \in \mathcal{E}$  and  $x \in X$ . A subset *Y* of *X* is called *discrete* if, for every  $E \in \mathcal{E}$ , there exists a bounded subset *B* such that  $E[x] \cap E[y] = \emptyset$  for all distinct  $x, y \in Y \setminus B$ .

2. Formally, coarse spaces can be considered as asymptotic counterparts of uniform topological spaces. However, actually, this notion is rooted in *geometry, geometrical group theory* and *combinatorics* (see [7,8,10,11]).

Given a group *G*, we denote by  $\mathcal{E}_l$  and  $\mathcal{E}_r$  the coarse structures on *G* with the bases

$$\{\{(x,y): x \in Fy\}: F \in [G]^{<\omega}, e \in F\}, \{\{(x,y): x \in yF\}: F \in [G]^{<\omega}, e \in F\}$$

and note that a subset *A* of *G* is left (resp. right) thin if and only if *A* is discrete in the coarse space  $(G, \mathcal{E}_l)$  (resp.  $(G, \mathcal{E}_r)$ ).

3. By [12], every countable group *G* has a thin subset *A* such that  $G = AA^{-1}$ . By [13], every countable topological group *G* has a closed discrete subset *A* such that  $G = AA^{-1}$ . For thin subsets of topological groups and factorizations into dense subsets, see [14,15].

On the other hand, analyzing the proof, one can see that Theorem 1 remains true if all mappings  $x \mapsto xg$ ,  $x \mapsto gx$ ,  $g \in G$ ,  $x \mapsto x^{-1}$  and  $x \mapsto x^2$  are continuous at *e*. By [16], every countable group *G* admits a non-discrete Hausdorff topology in which all shifts and the inversion  $x \mapsto x^{-1}$  are continuous.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

#### References

- 1. Chou, C. On the size of the set of left invariant means on a semigroup. Proc. Am. Math. Soc. 1969, 23, 199-205. [CrossRef]
- 2. Protasov, I. Selective survey on subset combinatorics of groups. J. Math. Sci. 2011, 174, 486–514. [CrossRef]
- 3. Protasov, I.; Protasova, K. Resent progress in subset combinatorics of groups. J. Math. Sci. 2018, 234, 49-60. [CrossRef]
- 4. Protasov, I.; Slobodianiuk, S. Partitions of groups. Math. Stud. 2014, 42, 115–128.
- Banakh, T.; Protasov, I. Set-Theoretical Problems in Asymptology. Available online: https://arxiv.org/abs/2004.01979 (accessed on 7 May 2020).
- 6. Szabo, S.; Sands, A. Factoring Groups into Subsets; CRS Press: Boca Raton, FL, USA, 2009.
- 7. Roe, J. Lectures on Coarse Geometry; Univ. Lecture Ser., 31; American Mathematical Society: Providence, RI, USA, 2003.
- 8. Protasov, I.; Banakh, T. Ball Structures and Colorings of Groups and Graphs; VNTL Publ.: Lviv, Ukraine, 2003.
- 9. Protasov, I.; Zarichnyi, M. General Asymptology; VNTL: Lviv, Ukraine, 2007.
- 10. De la Harpe, P. Topics in Geometrical Group Theory; University Chicago Press: Chicago, IL, USA, 2000.
- 11. Cornulier, Y.; de la Harpe, P. *Metric Geometry of Locally Compact Groups;* EMS Tracts in Mathematics; European Mathematical Society: Zürich, Switzerland, 2016.
- 12. Lutsenko, I. Thin systems of generators of groups. Algebra Discret. Math. 2010, 9, 108-114.
- 13. Protasov, I. Generating countable groups by discrete subsets. Topol. Appl. 2016, 204, 253–255. [CrossRef]
- 14. Protasov, I. Thin subsets of topological groups. *Topol. Appl.* **2013**, *160*, 1083–1087. [CrossRef]
- 15. Protasov, I.; Slobodianiuk, S. A note on factoring groups into dense subsets. J. Group Theory 2017, 20, 33–38. [CrossRef]
- 16. Zelenyuk, Y. On topologizing groups. J. Group Theory 2007, 10, 235-244. [CrossRef]