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Abstract: This note is devoted to a robust stability analysis, as well as to the problem of the robust
stabilization of a class of continuous-time Markovian jump linear systems subject to block-diagonal
stochastic parameter perturbations. The considered parametric uncertainties are of multiplicative
white noise type with unknown intensity. In order to effectively address the multi-perturbations
case, we use scaling techniques. These techniques allow us to obtain an estimation of the lower
bound of the stability radius. A first characterization of a lower bound of the stability radius is
obtained in terms of the unique bounded and positive semidefinite solutions of adequately defined
parameterized backward Lyapunov differential equations. A second characterization is given in
terms of the existence of positive solutions of adequately defined parameterized backward Lyapunov
differential inequalities. This second result is then exploited in order to solve a robust control
synthesis problem.

Keywords: Markov jump systems; robust stability; structured parametric uncertainties; stability
radius; scaling; linear matrix inequalities
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1. Introduction

The class of Markovian jump linear systems is very appropriate for modeling a plant
the structure of which is subject to random abrupt changes. Problems, such as stability and
optimal control, as well as important applications of such systems, can be found in several
references in the current literature, for instance in [1–4] and the references therein. On the
other hand, robustness, with respect to stochastic parametric uncertainties for this class of
system, has attracted a lot of interest from the research community. This is partly due to the
engineering applications potential of such a modeling paradigm. We will restrict ourselves
in this paper to those works that relied on the concept of stability radii in the treatment
of the parametric uncertainties robustness problem. Without being exhaustive, we cite
here [5–8]. For the interested reader, a comprehensive historical perspective of the different
aspects regarding the stability radius, both in deterministic and stochastic frameworks,
may be found in [9].

In the current paper, we study the robust stability and robust stabilization problems,
under multi-perturbations, for a class of continuous-time Markovian jump linear systems
affected by parametric uncertainties of multiplicative white noise type with unknown
intensity. The only available information is that the intensities of the white noises are
output-dependent, unknown, nonlinear functions. In order to effectively address the
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multi-perturbations case, we will use scaling techniques (see [10,11]) in order to obtain an
estimation of the lower bound of the stability radius. We first provide a lower bound of
the stability radius in terms of the unique bounded and positive semidefinite solutions of
adequately defined parameterized backward Lyapunov differential equations. A second
characterization of a lower bound of the stability radius is given in terms of the existence
of positive solutions of adequately defined parameterized backward Lyapunov differential
inequalities. This second result is very useful for the robust control synthesis problem
as it allows the formulation of the feedback gains computation as a convex optimization
problem under the Linear Matrix Inequalities (LMIs) paradigm. The original contributions
of the paper could be summarized as follows:

(i) An estimation of the lower bound of the stability radius is obtained for a class of
continuous-time Markovian jump linear systems subject to block-diagonal stochastic
parameter perturbations. The considered parametric uncertainties are of multiplicative
white noise type with unknown intensity;

(ii) Scaling techniques have been used in order to effectively address the multi-perturbations
case. This allows us to provide a lower bound of the stability radius in terms of the
unique bounded and positive semidefinite solutions of adequately defined parameter-
ized backward Lyapunov differential equations;

(iii) A second characterization of a lower bound of the stability radius is given in terms
of the existence of positive solutions of adequately defined parameterized backward
Lyapunov differential inequalities. This second formulation allows us to state and
solve a robust stabilization problem as a convex optimization problem.

Section 2 provides some preliminary definitions and introduces the problem for-
mulation. Several preliminary issues are given in Section 3, which are related to some
Lyapunov-type operators as well as to the scaling technique. The main results are es-
tablished in Section 4. In Section 5, a numerical example is provided to illustrate the
theoretical results.

2. Problem Formulation
2.1. Model Description

Let us consider the system G∆, which has the state space representation described by:

dxptq “ Apt, ηtqxptq `
r
ÿ

k“1

Dkpt, ηtq∆kpt, zkptq, ηtqdwkptq (1a)

zkptq “ Ekpt, ηtqxptq. (1b)

t P R` “ r0, 8q, where xptq P Rn are state parameters at the instance time t. Here,
twptqutě0,

`

wptq “ pw1ptq w2ptq . . . wrptqqT
˘

is an r-dimensional standard Wiener process
defined on a given probability space pΩ,F ,Pq and tηtutě0 is a standard Markov process
with right-continuous paths and left limits defined on the same probability space pΩ,F ,Pq,
taking values in the finite set N “ t1, 2, . . . , Nu and having the transition semigroup
Pptq “ eQt, t ě 0, where Q P RNˆN is a matrix whose elements have the properties:

qij ě 0, if i ‰ j (2a)
N
ÿ

`“1

qi` “ 0 (2b)

for all i, j P N . For more details regarding the properties of a standard Wiener process
and of the solutions of the stochastic differential equation affected by multiplicative white
noise perturbations, we refer to the monographs [12–14]. For the properties of the Markov
processes, we mention [15,16].

Throughout the paper, we shall write Apt, iq, Dkpt, iq, Ekpt, iq, ∆kpt, zk, iq whenever
ηt “ i P N .
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Regarding the stochastic processes and the functions that describe the coefficients of
the system (1), we make the assumptions:

Hypothesis 1a. tηtutě0 and twptqutě0 are P-independent stochastic processes;

Hypothesis 1b. the initial probability distribution of the Markov process π0 “ pπ0p1q, π0p2q, . . . ,
π0pNqq, where π0piq fi Prη0 “ is ą 0,@i ď N.

Hypothesis 1c. t Ñ Apt, iq : R` Ñ Rnˆn, t Ñ Dkpt, iq : R` Ñ Rnˆmk , t Ñ Ekpt, iq : R` Ñ
Rνkˆn, k “ 1, 2, ¨ ¨ ¨ , r, i P N , are bounded and continuous matrix valued functions.

The functions ∆kp¨, ¨, tq, which model the parametric uncertainties occurring in (1a),
satisfy the assumptions:

Hypothesis 2. The functions pt, zkq Ñ ∆kpt, zk, iq : R` ˆRνk Ñ Rmk are arbitrary nonlinear
functions, which are Borel measurable with the property that ∆kpt, 0, iq “ 0, @pt, iq P R` ˆN , and
which satisfy a Lipschitz condition of the form:

|∆kpt, zk, iq ´ ∆kpt, ẑk, iq| ď µk|zk ´ ẑk| (3)

@zk, ẑk P Rνk , pt, iq P R` ˆN . Throughout the paper, | ¨ | denotes the Euclidean norm of a vector.

The system (1) can be viewed as a disruption of the following system:

9xptq “ Apt, ηtqxptq, t P R`, (4)

which will be named the nominal system. The disruption is produced by a disturbance
modeled by the stochastic process:

r
ÿ

k“1

Dkpt, ηtq∆kpt, zkptq, ηtqdwkptq, (5)

whose magnitude depends nonlinearly on the output:

zkptq “ Ekpt, ηtqxptq, 1 ď k ď r.

Often we shall say that the nominal system is defined by the pair pAp¨q, Qq, where
Ap¨q “ pAp¨, 1q, Ap¨, 2q, ¨ ¨ ¨ , Ap¨, Nqq are the matrix valued functions satisfying the assump-
tion of Hypothesis 1c and Q is the generator matrix of the Markov process the elements of
which satisfy (2).

For each t P R`, Ht P F stands for the σ-algebra generated by the random variables
wpsq and ηs with 0 ď s ď t. Further, we denote Xt0 the set of random vectors x0 : Ω Ñ Rn,
which are Ht0-measurable and satisfy Er|x0|

2s ă 8. Here, and in the sequel, Er¨s denotes
the mathematical expectation.

Reasoning as in the proof of Theorem 1.1 in Chapter 5 from [12], we obtain the
following result regarding the existence of the solution of a stochastic differential equation
of type (1) for an arbitrary function ∆kp¨, ¨, iq, satisfying the assumption of Hypothesis 2.

Proposition 1. Assume that the matrix valued functions arising in (1) satisfy the assumption
Hypotheses 1a–1c. Let t0 P R` and x0 P Xt0 be arbitrary. Then, for any nonlinear function
∆kp¨, ¨, iq satisfying the assumption Hypothesis 2, the system G∆ described by (1) has a unique
solution x∆pt; t0, x0q, t ě t0, which has the properties:

(a) x∆p¨; t0, x0q is almost surely continuous in any t ě t0;
(b) for any t ě t0, x∆pt; t0, x0q P Xt;
(c) x∆pt0; t0, x0q “ x0.
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Remark 1. Since the functions ∆kpt, zk, iq ” 0 satisfy the assumption of Hypothesis 2, we deduce
that the result in Proposition 1 is also applicable in the case of the nominal system (4).

2.2. Robust Stability: Stability Radius

In order to define the concept of robustness of the stability of the zero solution of the
nominal system (4) with respect to the structured perturbation (5), we shall introduce a
norm in the set of admissible uncertainties D of all nonlinear functions of type:

∆pt, zq “ pp∆1pt, z1, 1q, ∆1pt, z1, 2q, ¨ ¨ ¨ , ∆1pt, z1, Nqq, ¨ ¨ ¨ ,

p∆rpt, zr, 1q, ∆rpt, zr, 2q, ¨ ¨ ¨ , ∆rpt, zr, Nqqq (6a)

z “
´

zT
1 , zT

2 , ¨ ¨ ¨ , zT
r

¯T
(6b)

and pt, zkq Ñ ∆kpt, zk, iq : R` ˆRνk , 1 ď k ď r and i P N are arbitrary functions satisfying
the assumption of Hypothesis 2. To ease the expression of (6), we rewrite it in the form:

∆pt, zq “ p∆1pt, z1q, ∆2pt, z2q, ¨ ¨ ¨ , ∆rpt, zrqq, (7)

where ∆kpt, zkq “ p∆kpt, zk, 1q, ¨ ¨ ¨ , ∆kpt, zk, Nqq.
We set:

|||∆kp¨, ¨q||| fi inf
!

µk ą 0
ˇ

ˇ

ˇ
|∆kpt, zk, iq ´ ∆kpt, ẑk, iq| ď µk|zk ´ ẑk|,@zk, ẑk P Rνk , t P R`, i P N

)

. (8)

From (3) and (8), together with ∆kpt, 0, iq “ 0, we obtain that

|∆kpt, zk, iq| ď |||∆kp¨, ¨q||| ¨ |zk| (9)

for all pt, zk, iq P R` ˆRνk ˆN .
Now we define

}∆p¨, ¨q} “ max
kPr
|||∆kp¨, ¨q|||, (10)

where we have denoted
r “ t1, 2, ¨ ¨ ¨ , ru. (11)

Remark 2. Among the subsets of the set of admissible uncertainties D, we distinguish the subset
Dlin consisting of all uncertainties of type (6), where

∆kpt, zk, iq “ ∇kpt, iqzk (12)

for each k P r, for all pt, zk, iq P R` ˆRνk ˆN , where t Ñ ∇kpt, iq : R` Ñ Rmkˆνk are arbitrary
continuous and bounded matrix valued functions. In this case, the smallest µk ą 0 for which the
inequality (3) is satisfied is given by:

µk “ sup
tPR`

max
iPN

´

λmax

”

∇T
k pt, iq ¨∇kpt, iq

ı¯
1
2 . (13)

So, (8), (10) and (13) allow us to retrieve the norm of the parametric uncertainties considered
in [17].

Let us recall the concept of stability of the zero equilibrium of a system of type (1) and
of the nominal system (4) that will be used in the rest of the paper.

Definition 1. We say that the zero solution of a system G∆, ∆ P D, is:
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(a) globally exponentially mean square stable with conditioning (GESMS–C) if there exist β ě 1,
α ą 0 with the property:

E
”

|x∆pt, t0, x0q|
2ˇ
ˇηt0 “ i

ı

ď βe´αpt´t0qE
”

|x0|
2ˇ
ˇηt0 “ i

ı

, (14)

@t ě t0 ě 0, x0 P Xt0 , i P N and any initial probability distribution π0 of the Markov
process;

(b) globally stochastically stable with conditioning (GSS–C) if there exists c ą 0 with the property:

ż 8

t0

E
”

|x∆pt, t0, x0q|
2ˇ
ˇηt0 “ i

ı

dt ď cE
”

|x0|
2ˇ
ˇηt0 “ i

ı

, (15)

@t0 ě 0, x0 P Xt0 , i P N and any initial probability distribution π0 of the Markov process.

Remark 3.

(a) Even if the positive constants, α and β, which appear in (14) and c from (15), do not depend
upon t, t0, x0, i, they can depend upon the admissible uncertainties ∆p¨, ¨q P D.

(b) Since the nominal system (4) is a special case of a system of type (1) (with ∆p¨, ¨q “ 0), it
follows that the previous definition is also applicable in the case of the nominal system. It is
worth noting that the system (4) is a linear system and this is why the "global" epithet of the
stability is redundant. At the same time, in the linear case, the stability property is not related
to a solution, it is a property of the whole system. Therefore, we shall say that the nominal
system is exponentially stable in mean square with conditioning (ESMS–C) if its solutions
have a behavior like that described by (14).

(c) Applying Theorem 8.3.7 from [4], we deduce that the zero solution of a system G∆ is GESMS–C
if and only if it is GSS–C.

Roughly speaking, the mean square exponential stability with the conditioning of the
nominal system (4) is robust with respect to the structured uncertainties of type (5) if the
zero solution of all perturbed systems G∆ is ESMS–C for all admissible uncertainties ∆p¨, ¨q
from a subset of D.

To measure the level of the robustness of the stability of a linear system of type (4)
with respect to the structured uncertainties of type (5) we introduce the following concept
of stability radius. This definition is an extension of Definition 3.2 from [18].

Definition 2. The stability radius of the nominal system (4) or, equivalently, of the pair pAp¨q, Qq
with respect to the structured disturbances (5), the structure of which is determined by the pairs of
matrix valued functions pDkp¨, iq, Ekp¨, iqq, pk, iq P rˆN , is the number:

ρD
`

Ap¨q, Q
ˇ

ˇpDkp¨, iq, Ekp¨, iqq, pk, iq P rˆN
˘

“ inf
 

ρ ą 0
ˇ

ˇD∆p¨, ¨q P D, }∆p¨, ¨q} ď ρ

for which the zero solution of the corresponding system G∆ is not GESMS.u (16)

Our aim is to obtain a lower bound for the stability radius of the nominal system (4)
with respect to disturbances of type (5). To this end, we shall adapt to this framework of
systems with Markov jumping parameters—the scaling technique introduced in [18].

3. Several Preliminary Issues
3.1. The Lyapunov Type Operators and Lyapunov Differential Equations

Let Sn be the linear space of symmetric matrices of size n ˆ n. We set SN
n fi

Sn ˆ Sn ˆ ¨ ¨ ¨ ˆ Sn
looooooooooomooooooooooon

N times

. The elements of SN
n are of the form X “ pXp1q, ¨ ¨ ¨ , XpNqq, where

Xpiq P Sn, i P N . Equipped with the inner product:
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xX, Yy “
N
ÿ

i“1

TrrXpiqYpiqs, (17)

SN
n is a finite dimensional ordered Hilbert space. The order relation on SN

n denoted by “ľ”
is induced by the convex cone SN`

n “
 

X “ pXp1q, ¨ ¨ ¨ , XpNqq P SN
n
ˇ

ˇXpiq ě 0, 1 ď i ď N
(

.
Here, Xpiq ě 0 means that Xpiq is a positive semidefinite matrix.

Based on the coefficients of the nominal system (4), we consider the operator valued
function Lp¨q : R` Ñ BpSN

n q defined by:

LptqrXs “ pLptqrXsp1q,LptqrXsp2q, ¨ ¨ ¨ ,LptqrXspNqq (18a)

LptqrXspiq “ Apt, iqXpiq ` XpiqATpt, iq `
N
ÿ

j“1

qjiXpjq. (18b)

@X P SN
n , i P N .

Here, BpSN
n q denotes the space of the linear operators defined in SN

n . In (18b), qji are
the real numbers, which satisfy conditions (2).

The adjoint L˚ptq of the linear operator Lptq, with respect to the inner product (17), is
described by

L˚ptqrXs “ pL˚ptqrXsp1q,L˚ptqrXsp2q, ¨ ¨ ¨ ,L˚ptqrXspNqq (19a)

L˚ptqrXspiq “ ATpt, iqXpiq ` XpiqApt, iq `
N
ÿ

j“1

qijXpjq. (19b)

i P N .
Let Tpt, t0q : SN

n Ñ SN
n be the linear evolution operator defined by the linear differen-

tial equation
9Xptq “ LptqrXptqs, (20)

that is, Tpt, t0qrHs “ Xpt; t0, Hq, where Xp¨; t0, Hq is the solution of the Lyapunov type
differential Equation (20), satisfying Xpt0; t0, Hq “ H.

Applying Theorem 2.7.5 and Theorem 3.2.2 (a) from [4], we obtain:

Proposition 2. If the nominal system (4) is ESMS–C, then, for each bounded and continuous
function H : R` Ñ SN

n , the backward Lyapunov differential equation (BLDE),

9Xptq `L˚ptqrXptqs `Hptq “ 0,

has a unique solution X̃p¨q “
`

X̃p¨, 1q, ¨ ¨ ¨ , X̃p¨, Nq
˘

, which is bounded on R`. This solution has
the representation

X̃ptq “
ż 8

t
T˚ps, tqrHpsqsds, t P R`.

Furthermore, X̃ptq ľ 0 if Hptq ľ 0, t P R`.

3.2. The Scaling of the Uncertainties

The system (1) may be rewritten into an equivalent form:

dxptq “ Apt, ηtqxptqdt`
r
ÿ

k“1

1
αkpηtq

Dkpt, ηtq∆α
k pt, zα

k ptq, ηtqdwkptq (21a)

zα
k ptq “ αkpηtqEkpt, ηtqxptq, (21b)
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where αkpηtq P p0,8q and ∆α
k pt, ¨, iq is defined by

∆α
k pt, zα

k ptq, iq fi αkpiq∆kpt, α´1
k piqzk, iq (22)

for all pt, zk, iq P R` ˆRνk ˆN .
From (3) and (22), one sees that for any vector of scaling parameters α “ pαkpiqqpk,iqPrˆN P

p0,8qrˆN , we have that ∆α
k p¨, ¨, iq satisfy the assumption of Hypothesis 2, if ∆kp¨, ¨, iq satisfy

Hypothesis 2.
Moreover, from (8) it follows that

|||∆α
k p¨, ¨q||| “ |||∆kp¨, ¨q|||, (23)

where ∆α
k p¨, ¨q “

`

∆α
k p¨, ¨, 1q, ∆α

k p¨, ¨, 2q, ¨ ¨ ¨ , ∆α
k p¨, ¨, Nq

˘

.
We set ∆αp¨, ¨q “ p∆α

1p¨, ¨q, ∆α
2p¨, ¨q, ¨ ¨ ¨ , ∆α

Np¨, ¨qq. From (10) and (23), we obtain that

}∆αp¨, ¨q} “ }∆p¨, ¨q.} (24)

Let us consider the BLDE,

9Xptq `L˚ptqrXptqs ` Eαptq “ 0 (25a)

Eαptq “ pEαpt, 1q, ¨ ¨ ¨ , Eαpt, Nqq (25b)

Eαpt, iq “
r
ÿ

k“1

α2
kpiqE

T
k pt, iqEkpt, iq; (25c)

L˚ptq being the operator valued function defined by (19).
Specializing the statement of Proposition 2 to the case of BLDE (25), we obtain:

Proposition 3. Suppose that the following conditions are satisfied:

(a) The assumption pH1q is fulfilled;
(b) The nominal system (4) is ESMS–C;

Under these conditions, for each vector of scaling parameters α “ tαkpiqupk,iqPrˆN , αkpiq ą 0,
the BLDE (25) has a unique solution Xαp¨q “ pXαp¨, 1q, ¨ ¨ ¨Xαp¨, Nqq, which is bounded on R` and
Xαpt, iq ě 0, @pt, iq P R` ˆN . Moreover, the dependence with respect to the scaling parameters
αkpiq of the solution Xαp¨q is described by

Xαptq “
r
ÿ

l“1

N
ÿ

i“1

α2
l piqXliptq. (26)

t P R`, where for each pl, iq P r ˆN , Xlip¨q “ pXlip¨, 1q, ¨ ¨ ¨ , Xlip¨, Nqq is the unique
bounded solution of the following BLDE:

9Xliptq `L˚ptqrXliptqs ` Eliptq “ 0 (27a)

Eliptq “ pElipt, 1q, ¨ ¨ ¨ , Elipt, Nqq (27b)

Elipt, jq “

#

0 if j ‰ i
ET

l pt, iqElpt, iq if j “ i.
(27c)

4. The Main Results
4.1. A Lower Bound of the Stability Radius

In the sequel, we shall use the notation p0,8qrˆN and the set of the vectors
α “ pαkiqpk,iqPrˆN , αki ą 0.

The next Theorem provides a lower bound of the stability radius in terms of the
unique bounded and positive semi-definite solutions of the BLDE (25).
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Theorem 4. Assume:

(a) The assumptions pH1q and pH2q hold true;
(b) The nominal system (4) is ESMS–C.

Let σ ą 0 be given. If there exists α P p0,8qrˆN such that

max
kPr

max
jPN

sup
tPR`

$

&

%

˜

σ

αkj

¸2
›

›

›
DT

k pt, jqXαpt, jqDkpt, jq
›

›

›

,

.

-

ă 1, (28)

where Xαp¨q “ pXαp¨, 1q, ¨ ¨ ¨ , Xαp¨, Nqq is the unique bounded solution of the BLDE (25) associated
to the parameter α, then

ρD
`

Ap¨q, Q
ˇ

ˇpDkp¨, iq, Ekp¨, iqq, pk, iq P rˆN
˘

ě σ. (29)

Proof. Let ∆p¨, ¨q “ p∆1p¨, ¨q, ¨ ¨ ¨ , ∆rp¨, ¨qq P D be an arbitrary admissible uncertainty satisfying

}∆p¨, ¨q} ď σ. (30)

We show that the corresponding system G∆ is GESMS–C. Invoking Proposition 3, we
deduce that, under the considered assumptions, the BLDE (25) has a unique bounded on
R` solution Xαp¨q, and this solution is positive semidefinite, that is, Xαptq P SN`

n , @t P R`.
Applying an Itô type formula (see, for example, Theorem 1.10.2 from [4]) in the case of the
function Vpt, x, iq fi xTXαpt, iqx, along the trajectories of the equivalent version (20) of the
system G∆, we obtain

E
“

Vpt, xptq, ηtq|ηt0 “ i
‰

“ E
“

Vpt0, x0, ηt0q|ηt0 “ i
‰

`

ż t

t0

E
”

xTpsq
´

9Xαps, ηsq `LpsqrXαpsqspηsq
¯

xpsq|ηt0 “ i
ı

ds (31)

`

r
ÿ

k“1

ż t

t0

E
«

1
α2

kpηsq

`

∆α
k ps, zα

k psq, ηsq
˘T DT

k ps, ηsqXαps, ηsqDkps, ηsq∆α
k ps, zα

k psq, ηsq|ηt0 “ i

ff

ds.

@t ě t0 ě 0, i P N , x0 P Xt0 and xpsq “ xps; t0, x0q is the solution of (1) or, equivalently,
of its version (21). Employing (21b) and (25), we rewrite the first integral from the right
hand side of (31) as

ż t

t0

E
”

xTpsq
´

9Xαps, ηsq `LpsqrXαpsqspηsq
¯

xpsq|ηt0 “ i
ı

ds “ ´
r
ÿ

k“1

ż t

t0

E
”

|zα
k psq|

2|ηt0 “ i
ı

ds. (32)

On the other hand, (9) and (10) allow us to obtain

ż t

t0

E
«

1
α2

kpηsq

`

∆α
k ps, zα

k psq, ηsq
˘T DT

k ps, ηsqXαps, ηsqDkps, ηsq∆α
k ps, zα

k psq, ηsq|ηt0 “ i

ff

ds

ď

ż t

t0

E
«

1
α2

kpηsq
}DT

k ps, ηsqXαps, ηsqDkps, ηsq}|∆α
k ps, zα

k psq, ηsq|
2ˇ
ˇηt0 “ i

ff

ds (33)

ď max
jPN

sup
sPR`

ˆ

}∆p¨, ¨q}
αkpjq

˙2
¨ }DT

k ps, jqXαps, jqDkps, jq} ¨
ż t

t0

E
”

|zα
k psq|

2ˇ
ˇηt0 “ i

ı

ds.
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Substituting (32) and (33) in (31), we obtain (from (24) and (30)):

E
“

Vpt, xptq, ηtq
ˇ

ˇηt0 “ i
‰

ď E
“

Vpt0, x0, iq
ˇ

ˇηt0 “ i
‰

`

#

r
ÿ

k“1

max
jPN

sup
sPR`

«

ˆ

σ

αkpjq

˙2
}DT

k ps, jqXαps, jqDkps, jq}

ff

´ 1

+

ˆ

ż t

t0

E
”

|zα
k psq|

2ˇ
ˇηt0 “ i

ı

ds.

Setting ξ “ max
kPr

max
jPN

sup
sPR`

"

´

σ
αkpjq

¯2
}DT

k ps, jqXαps, jqDkps, jq}
*

, we get

p1´ ξq
r
ÿ

k“1

ż t

t0

E
”

|zα
k psq|

2ˇ
ˇηt0 “ i

ı

ds ď E
”

|xT
0 Xαpt0, iqx0

ˇ

ˇηt0 “ i
ı

, (34)

@t ě t0 ě 0, i P N , x0 P Xt0 .
Since Xαp¨q is unique bounded on R` and a positive semi-definite solution of the

BLDE (25), we deduce that there exists µ ą 0 such that 0 ď Xαpt, iq ď µIn; @pt, iq P R` ˆN .
This inequality, together with (28) and (34), allow us to infer that:

0 ď
r
ÿ

k“1

ż t

t0

E
”

|zα
k psq|

2ˇ
ˇηt0 “ i

ı

ds ď c1E
”

|x0|
2ˇ
ˇηt0 “ i

ı

,

where c1 “ µp1´ ξq´1 ą 0 does not depend upon t, t0, i, x0.
Letting t Ñ8, we obtain

0 ď
r
ÿ

k“1

ż 8

t0

E
”

|zα
k psq|

2ˇ
ˇηt0 “ i

ı

ds ď c1E
”

|x0|
2ˇ
ˇηt0 “ i

ı

, (35)

@t0 ě 0, i P N , x0 P Xt0 .
Further, from (9), (10), (24), (30) and (35), we deduce that

ż 8

t0

E
”

|∆kps, zkpsq, ηsq|
2ˇ
ˇηt0 “ i

ı

ds ď c2E
”

|x0|
2ˇ
ˇηt0 “ i

ı

, (36)

@t0 ě 0, i P N , x0 P Xt0 and c2 “ σc1 does not depend upon t0, x0, i.
Applying Theorem 3.6.1 (ii) from [4] in the case of system (1), taking f0ptq “ 0,

fkptq “ Dkpt, ηtq∆kpt, zkptq, ηtq, 1 ď k ď r, one gets
ż 8

t0

E
”

|xpt; t0, x0q|
2ˇ
ˇηt0 “ i

ı

dt ď c̃E
”

|x0|
2ˇ
ˇηt0 “ i

ı

,

@t0 ě 0, i P N , x0 P Xt0 , c̃ ą 0 being a constant. Thus, we have shown that, for
any admissible uncertainty ∆p¨, ¨q satisfying (30), the corresponding system G∆ is GSSM–C.
Finally, applying Theorem 8.3.7 from [4], we obtain that the zero solution of G∆ is GESMS–C.
This means that (29) is satisfied. The proof is complete.

The next result provides a lower bound of the stability radius of the nominal system (4)
with respect to the stochastic structured uncertainties of type (5).

Theorem 5. Assume that the assumptions of Theorem 4 are fulfilled. Then,

ρD
`

Ap¨q, Q
ˇ

ˇpDkp¨, iq, Ekp¨, iqq, pk, iq P rˆN
˘

ě ρ̃, (37)
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where

ρ̃ fi sup
αPp0,8qrˆN

«

max
pk,jqPrˆN

sup
tPR`

α´2
k pjq}DT

k pt, jqXαpt, jqDkpt, jq}

ff´ 1
2

, (38)

Xαp¨q “ pXαp¨, 1q, ¨ ¨ ¨ , Xαp¨, Nqq being the unique bounded and positive semi-definite solution
of the BLDE (25) associated to the vector of scaling parameters α “ pαkpjqqpk,jqPrˆN .

Proof. Let us assume by contradiction that (37) is not true. Hence,
ρD

`

Ap¨q, Q
ˇ

ˇpDkp¨, iq, Ekp¨, iqq, pk, iq P rˆN
˘

ă ρ̃. Let σ ą 0 be such that

ρD
`

Ap¨q, Q
ˇ

ˇpDkp¨, iq, Ekp¨, iqq, pk, iq P rˆN
˘

ă σ ă ρ̃. (39)

From (38), we deduce that there exists α̂ “ pα̂kpjqqpk,jqPrˆN , α̂kpjq ą 0 such that

˜

max
pk,jqPrˆN

sup
tPR`

α̂´2
k pjq}DT

k pt, jqXα̂pt, jqDkpt, jq}

¸´ 1
2

ą σ,

or equivalently

max
kPr

max
jPN

sup
tPR`

ˆ

σ

α̂kpjq

˙2
}DT

k pt, jqXα̂pt, jqDkpt, jq} ă 1,

which is just (28) with α replaced by α̂.
From Theorem 4, we obtain that ρD

`

Ap¨q, Q
ˇ

ˇpDkp¨, iq, Ekp¨, iqq, pk, iq P rˆN
˘

ě σ, which
contradicts (39). So, (37) holds true. This completes the proof.

Besides BLDE (25), we may consider the following two kinds of backward Lyapunov
differential inequalities (BLDIs) on SN

n :

9Yptq `L˚ptqrYptqs ` Eαptq ĺ 0, t P R` (40)

and
9Yptq `L˚ptqrYptqs ` Eαptq Î 0, t P R`. (41)

We recall that if Hp¨q : ra, bs Ă R` Ñ SN
n , we shall say that Hp¨q is uniform negative

and we shall write Hptq Î 0, t P ra, bs, if there exists ε ą 0 such that Hpt, iq ď ´εIn (i.e.,
Hpt, iq ` εIn is negative semi-definite), @pt, iq P ra, bs ˆN . We will say that Hp¨q is uniform
positive on ra, bs and we shall write Hptq Ï 0, t P ra, bs iff ´Hp¨q is uniform negative
on ra, bs.

Regarding the solutions of the BLDIs (40), (41), we have the following Lemma:

Lemma 6. Under the assumptions Hypotheses 1b and 1c the following hold:

(i) the nominal system (4) is ESMS–C if and only if the BLDI (41) has at least a uniform positive
and bounded solution on R`;

(ii) if the nominal system (4) is ESMS–C, then any bounded solution Yαp¨q of the BLDIs (40) and
(41) satisfies: Yαptq ľ Xαptq, @t P R`, where Xαp¨q is the unique bounded on R` solution of
the BLDE (25).

Proof.

(i) It follows from applying Theorem 3.3.4 from [4] in the case of the nominal system (4).
(ii) Is obtained by subtracting (25) from (40) and using Proposition 2 to conclude that

Yαptq ´ Xαptq ľ 0.

Now, we provide a lower bound of the stability radius of the nominal system (4) in
terms of the solutions of the BLDIs (40) and (41).
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Corollary 7.

(a) Assume that the assumptions of Theorem 4 are fulfilled. Let σ ą 0 be given. If there exists a
vector of scaling parameters α P p0, 8qrˆN and a bounded solution Yαp¨q of the corresponding
BLDI (40), satisfying the condition

max
kPr

max
jPN

sup
tPR`

ˆ

σ

αkpjq

˙2
}DT

k pt, jqYαpt, jqDkpt, jq} ă 1, (42)

then
ρD

`

Ap¨q, Q
ˇ

ˇpDkp¨, iq, Ekp¨, iqq, pk, iq P rˆN
˘

ě σ. (43)

(b) Assume that the assumptions of Hypotheses 1a–1c is fulfilled. If there exists a vector of scaling
parameters α P p0, 8qrˆN and a bounded and uniform positive on R` solution Yαp¨q of the
BLDI (41) satisfying a condition of type (42), then

(i) the nominal system (4) is ESMS–C;
(ii) the stability radius of the nominal system (4) with respect to the stochastic disturbance of

type (5) satisfy a condition of type (43).

Proof.

(a) Based on Lemma 6 (ii), we deduce that (28) holds if (42) is true, because the spec-
tral norm on the space SN

n is monotone with respect to the convex cone SN`
n . The

conclusion follows from applying Theorem 4.
(b) The fact that the nominal system is ESMS–C is obtained from Lemma 6 (i). The part

(ii) is obtained in the same way as in the proof of (a) from above. Thus the proof ends.

4.2. Robust Stabilization via a State Feedback

Let us consider the controlled system,

9xptq “ Apt, ηtqxptq ` Bpt, ηtquptq, (44)

where xptq P Rn are the states of the system at time t and uptq P Rnu is the vector of the
control parameters. If the system (44) is subject to the parametric uncertainties of type (5),
it takes the form

dxptq “ Apt, ηtqxptqdt`
r
ÿ

k“1

Dkpt, ηtq∆kpt, zkptq, ηtqdwkptq ` Bpt, ηtquptqdt (45a)

zkptq “ Ekpt, ηtqxptq, (45b)

k P r. In both (44) and (45) t Ñ Bpt, iq : R` Ñ Rnˆnu , i P N are bounded and
continuous matrix valued functions. The other matrix valued functions involved in (44)
and (45) are satisfying the assumptions of Hypotheses 1a–1c and Hypothesis 2.

Our aim is to find conditions that guarantee the existence of a control of type:

uptq “ Fpt, ηtqxptq, (46)

which stabilizes the nominal system (44) together with all perturbed systems of type (45),
corresponding to the admissible uncertainties ∆p¨, ¨q P D satisfying }∆p¨, ¨q} ă σ, where
σ ą 0 is a prescribed level of robustness of the stabilization achieved by the designed control.

An answer to the problem stated here is given in the following theorem:

Theorem 8. Let σ ą 0 be given. Assume:

(a) There exist C1-matrix valued functions t Ñ Zpt, iq : R` Ñ Sn, which are bounded with a
bounded derivative;
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(b) There exist bounded and continuous matrix valued functions t Ñ Kpt, iq : R` Ñ Rnuˆn;
(c) There exist positive scalars ζkpiq, ξkpiq, εpiq, k P r, i P N , satisfying the following system of

linear matrix inequalities (LMIs):
¨

˝

Θ1pt, Zpt, iq, Kpt, iq, iq Zpt, iqΞpt, iq Zpt, iqΓpt, iq
‹ ´Θ2pζ1piq, ¨ ¨ ¨ , ζrpiqq 0
‹ ‹ ´Θ3pZ´iptqq

˛

‚` εpiqIñ ď 0 (47a)

ˆ

ζkpiqImk σζkpiqDT
k pt, iq

‹ Zpt, iq

˙

´ ξkpiqIn`mk ě 0 (47b)

t P R`, k P r, i P N , where we denoted

Θ1pt, Zpt, iq, Kpt, iq, iq “ ´ 9Zpt, iq ` Apt, iqZpt, iq ` Zpt, iqATpt, iq ` Bpt, iqKpt, iq

` KTpt, iqBpt, iq ` qiiIn P Sn (48a)

Θ2pζ1piq, ¨ ¨ ¨ , ζrpiqq “ diagrζ1piqIν1 , ζ2piqIν2 , ¨ ¨ ¨ , ζrpiqIνr s P Sν (48b)

Θ3pZ´iptqq “ diagrZpt, 1q, ¨ ¨ ¨ , Zpt, i´ 1q, Zpt, i` 1q, ¨ ¨ ¨ , Zpt, Nqs P SnpN´1q (48c)

Ξpt, iq “
´

ET
1 pt, iq ET

2 pt, iq ¨ ¨ ¨ ET
r pt, iq

¯

P Rnˆν (48d)

Γpt, iq “
ˆ

q
1
2
i1In ¨ ¨ ¨ q

1
2
ii´1In q

1
2
ii`1In ¨ ¨ ¨ q

1
2
iNIn

˙

P RnˆnpN´1q (48e)

ν “ ν1 ` ¨ ¨ ¨ ` νr, ñ “ ν` nN.

Under these conditions, the control (46), with the gain matrix defined by Fpt, iq “ Kpt, iqZ´1pt, iq
robustly stabilizes the nominal system (44). The stability radius of the closed-loop nominal system,

9xptq “ pApt, ηtq ` Bpt, ηtqFpt, ηtqqxptq, (49)

satisfies
ρD

´

Ap¨q ` Bp¨qFp¨q, Q
ˇ

ˇpDkp¨, iq, Ekp¨, iqqpk,iqPrˆN

¯

ě σ. (50)

Proof. Pre and post multiplying (47a) by Upt, iq “ diagrZ´1pt, iq, Iν, InpN´1qs and using the
Schur complement technique, we obtain that Ypt, iq “ Z´1pt, iq solves the following BLDI

9Ypt, iq ` pApt, iq ` Bpt, iqFpt, iqqTYpt, iq `Ypt, iqpApt, iq ` Bpt, iqFpt, iqq `
N
ÿ

j“1

qijYpt, jq

`

r
ÿ

k“1

ζ´1
k piqET

k pt, iqEkpt, iq `
εpiq

2
In ď 0. (51)

At the same time, the Schur complement technique used in the case of (47b) allows us
to deduce that:

Imk ´ σ2ζkpiqDT
k pt, iqYpt, iqDkpt, iq ´ ξ̂kpiqImk ě 0, (52)

where we have denoted ξ̂kpiq “
ξkpiq
ζkpiq

. Rewriting (52) in the equivalent form,

DT
k pt, iqYpt, iqDkpt, iq ď

1´ ξ̂kpiq
σ2ζkpiq

Imk ,

we may obtain, via the definition of the spectral norm of a symmetric and positive semidef-
inite matrix, that:

}DT
k pt, iqYpt, iqDkpt, iq} ď

1´ ξ̂kpiq
σ2ζkpiq
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for all t P R`, pk, iq P rˆN . The previous inequality yields

σ2ζkpiq}DT
k pt, iqYpt, iqDkpt, iq} ă 1´

1
2

ξ̌

where ξ̌ “ minpk,iqPrˆN hatξkpiq. This allows us to infer that

max
kPr

max
iPN

sup
tPR`

σ2ζkpiq}DT
k pt, iqYpt, iqDkpt, iq} ă 1. (53)

One sees that if we take αkpiq :“ ζ
´ 1

2
k piq, then (51) is of type (41), while (53) is of

type (42). Hence, by applying Corollary 7 (b) in the case of the nominal system (49), we
deduce that this system is ESMS–C and its stability radius satisfies (50). Thus the proof is
completed.

Remark 4.

(a) It is worth mentioning that if the matrix valued functions, which are involved as coefficients
of (47), are periodic functions, and if (47) has a solution Zp¨q “ pZp¨, 1q, ¨ ¨ ¨ , Zp¨, Nqq and
Kp¨q “ pKp¨, 1q, ¨ ¨ ¨ , Kp¨, Nqq with Zptq Ï 0, t P R`, then (47) also has a solution Z̃p¨q,
K̃p¨q, which is periodic with the same period as the coefficients of (47);

(b) Since the constant functions can be regarded as periodic functions of an arbitrary period, one
obtains that, if the coefficients of (47) do not depend upon t, then (47) has a constant solution
Z “ pZp1q, ¨ ¨ ¨ , ZpNqq and K “ pKp1q, ¨ ¨ ¨ , KpNqq with Zpiq ą 0, if it is solvable. Hence,
without loss of generality, in the periodic case to test the solvability of (47) we look for a
periodic solution with the same period as the coefficients. Moreover, if the coefficients of (47)
do not depend upon t, then we test its solvability, looking for constant solutions.

5. Numerical Experiments

In this section, we will address the problem of robust stabilization described in
Section 4.2. We will consider the time-invariant case. This will simplify the presenta-
tion and we believe that the conclusions from this section still hold in the time-varying
case. The main objective here is to show how the extra degree of freedom provided by
the scaling technique allows the improvement of the estimation of the lower bound of the
stability radius when compared to a non-scaling one. Let σ˚ and σ˚α be the lower bounds
corresponding to the non-scaling and the scaling paradigms, respectively. σ˚ is obtained
by solving the following maximization problem under LMIs constraints:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

max
ZpiqPS`

n , KpiqPRnuˆn
σ

s.t.
¨

˚

˝

Θ1pZpiq, Kpiq, iq ZpiqΞpiq ZpiqΓpiq
‹ ´Θ2p1, ¨ ¨ ¨ , 1q 0
‹ ‹ ´Θ3pZ´iq

˛

‹

‚

ă 0

˜

Imk σDT
k piq

‹ Zpiq

¸

ą 0,

(54)

i P N , while σ˚α is computed using Theorem 8.
We have randomly generated 100 numerical examples and computed for each example

the parameter ρ˚ “ σ˚
α

σ˚ . The obtained results are illustrated by Figure 1. As one expected,
one clearly sees the advantage of the scaling technique paradigm.
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Figure 1. Plot of the quantity ρ˚ “
σ˚

α

σ˚ .

6. Conclusions

In this paper, we have addressed the problem of a robust stability analysis of a class
of continuous-time Markovian jump linear systems subject to block-diagonal stochastic
parameter perturbations. The multi-perturbations case has been efficiently tackled by using
scaling techniques. As a robustness metric, we used the concept of stability radius and we
obtained an estimation of its lower bound. A first characterization of this lower bound is
obtained in terms of solutions of adequately defined parameterized backward Lyapunov
differential equations. Then, a second characterization was obtained in terms of solutions
of a class of parameterized backward Lyapunov differential inequalities. Based on this
result, we solved, in a second step, a state-feedback robust stabilization problem under a
convex optimization paradigm.

Our ongoing efforts are devoted, on one hand, to the problem of output–feedback
robust stabilization of the considered class of stochastic systems. In this case, only output
measurements are available instead of the whole state variables. The resulting robust
controller will be in a dynamical/static output–feedback form. Some recent works on
the deterministic framework [19–21] offer some potential directions to be explored and
adapted to our setting. On the other hand, we are interested by the generalization of our
results to a more general setting. More specifically, we would like to consider a class of
MJLSs with the state space of the underlying Markov chain being countably infinite or
being some local compact topological space.

Author Contributions: Conceptualization, V.D. and S.A.; methodology, V.D. and S.A.; software, S.A.;
validation, V.D. and S.A.; formal analysis, V.D. and S.A; investigation, V.D. and S.A; writing—original
draft preparation, V.D. and S.A.; writing—review and editing, V.D. and S.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Axioms 2021, 10, 148 15 of 15

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Boukas, E.K. Stochastic Switching Systems: Analysis and Design; Birkhauser: Basel, Switzerland, 2004.
2. Costa, O.L.V.; Fragoso, M.D.; Marques, R.P. Discrete-Time Markov Jump Linear Systems; Springer: Berlin/Heidelberg,

Germany, 2005.
3. Dragan, V.; Morozan, T.; Stoica, A. Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems; Springer:

Berlin/Heidelberg, Germany, 2010.
4. Dragan, V.; Morozan, T.; Stoica, A.M. Mathematical Methods in Robust Control of Linear Stochastic Systems; Springer: New York, NY,

USA, 2013.
5. Aberkane, S.; Dragan, V. Robust Stability and Robust Stabilization of a Class of Discrete-Time Time-Varying Linear Stochastic

Systems. SIAM J. Control Optim. 2015, 53, 30–57. [CrossRef]
6. Dragan, V. Robust stabilization of discrete-time time-varying linear systems with Markovian switching and nonlinear parametric

uncertainties. Int. J. Syst. Sci. 2014, 45, 1508–1517. [CrossRef]
7. El Bouhtouri, A.; Hinrichsen, D.; Pritchard, A.J. Stability radii of discrete-time stochastic systems with respect to blockdiagonal

perturbations. Automatica 2000, 36, 1033–1040. [CrossRef]
8. El Bouhtouri, A.; El Hadri, K. Robust stabilization of discrete-time jump linear systems with multiplicative noise. IMA J. Math.

Control Inf. 2005, 23, 447–462. [CrossRef]
9. Hinrichsen, D.; Pritchard, A.J. Mathematical Systems Theory I, Modeling, State Space Analysis, Stability and Robustness; Springer:

Berlin/Heidelberg, Germany, 2005.
10. Doyle, J. Analysis of feedback systems with structured uncertainties. Proc. IEEE 1986, 129, 242–250. [CrossRef]
11. Hinrichsen, D.; Pritchard, A.J. Real and complex stability radii: A survey. In Control of Uncertain Systems, Progress in System and

Control Theory; Hinrichsen, D., Martensson, B., Eds.; Birkhauser: Basel, Switzerland, 1990; Volume 6, pp. 119–162.
12. Friedman, A. Stochastic Differential Equations and Applications; Academic: New York, NY, USA, 1975; Volume 1.
13. Mao, X.; Yuan, C. Stochastic Differential Equations with Markovian Switching; Imperial College Press: London, UK, 2006.
14. Oksendal, B. Stochastic Differential Equations; Springer: Berlin/Heidelberg, Germany, 1998.
15. Chung, K.L. Markov Chains with Stationary Transition Probabilities; Springer: Berlin/Heidelberg, Germany, 1967.
16. Doob, J.L. Stochastic Processes; Wiley: New York, NY, USA, 1967.
17. Dragan, V.; Morozan, T. Stability and robust stabilization to linear stochastic systems described by differential equations with

Markov jumping and multiplicative white noise. Stoch. Anal. Appl. 2002, 20, 33–92. [CrossRef]
18. Hinrichsen, D.; Pritchard, A.J. Stability radii of systems with stochastic uncertainty and their optimization by output feedback.

SIAM J. Control Optim. 1996, 34, 1972–1998. [CrossRef]
19. Chang, Y.; Zhang, S.; Alotaibi, N.D.; Alkhateeb, A.F. Observer-based adaptive finite-time tracking control for a class of switched

nonlinear systems with unmodelled dynamics. IEEE Access 2020, 8, 204782–204790. [CrossRef]
20. Wang, Y.; Niu, B.; Wang, H.; Alotaibi, N.; Abozinadah, E. Neural network-based adaptive tracking control for switched nonlinear

systems with prescribed performance: An average dwell time switching approach. Neurocomputing 2021, 435, 295–306. [CrossRef]
21. Zhou, P.; Zhang, L.; Zhang, S.; Alkhateeb, A.F. Observer-Based Adaptive Fuzzy Finite-Time Control Design with Prescribed

Performance for Switched Pure-Feedback Nonlinear Systems. IEEE Access 2020, 9, 69481–69491 [CrossRef]

http://doi.org/10.1137/130918241
http://dx.doi.org/10.1080/00207721.2013.860643
http://dx.doi.org/10.1016/S0005-1098(00)00013-3
http://dx.doi.org/10.1093/imamci/dni066
http://dx.doi.org/10.1049/ip-d.1982.0053
http://dx.doi.org/10.1081/SAP-120002421
http://dx.doi.org/10.1137/S0363012994276895
http://dx.doi.org/10.1109/ACCESS.2020.3023726
http://dx.doi.org/10.1016/j.neucom.2020.10.023
http://dx.doi.org/10.1109/ACCESS.2020.3036927

	Introduction
	Problem Formulation
	Model Description
	Robust Stability: Stability Radius

	Several Preliminary Issues
	The Lyapunov Type Operators and Lyapunov Differential Equations
	The Scaling of the Uncertainties

	The Main Results
	A Lower Bound of the Stability Radius
	Robust Stabilization via a State Feedback

	Numerical Experiments
	Conclusions
	References

