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Abstract: In this paper, we survey the split problem of fixed points of two pseudocontractive
operators and variational inequalities of two pseudomonotone operators in Hilbert spaces. We present
a Tseng-type iterative algorithm for solving the split problem by using self-adaptive techniques.
Under certain assumptions, we show that the proposed algorithm converges weakly to a solution of
the split problem. An application is included.
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1. Introduction

In this paper, we survey the variational inequality (in short, VI(C, φ)) of seeking an
element p† ∈ C such that

〈φ(p†), x− p†〉, for all x ∈ C, (1)

where C is a nonempty closed convex set in a real Hilbert space H, 〈·, ·〉means the inner
product of H, and φ : H → H is a nonlinear operator. Denote by Sol(C, φ) the solution set
of variational inequality (1).

A host of problems such as optimization problem, saddle point, equilibrium problem,
fixed point problem can be converted into the form of variational inequality (1), see [1–12].
Many numerical algorithms have been proposed and developed for solving (1) and related
problems, see [13–25] and the references therein. Generally speaking, φ should satisfy the
following assumptions

• φ is strongly monotone, i.e., there exists a positive constant γ such that

〈φ(u)− φ(û), u− û〉 ≥ γ‖u− û‖2, for all u, û ∈ H. (2)

• φ is Lipschitz continuous, i.e., there exists a positive constant κ such that

‖φ(u)− φ(û)‖ ≤ κ‖u− û‖, for all u, û ∈ H. (3)

In order to abate the restriction (2), Korpelevich’s extragradient algorithm ([26]) was
proposed in 1976
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{
yk = projC[x

k − τφ(xk)],
xk+1 = projC[x

k − τφ(yk)],
(4)

where projC denotes the orthogonal projection from H onto C and the step-size τ is in (0, 1
κ ).

Extragradient algorithm (4) guarantees the convergence of the sequence {xk} provided
φ is monotone. Extragradient algorithm and its variant have been investigated extensively,
see [27–31]. However, we have to compute (i) twice projC at two different points and
(ii) two values φ(xk) and φ(yk). Two important modifications of extragradient algorithm
have been made. One is proposed in [32] by Censor, Gibali and Reich and another is the
following remarkable algorithm proposed in [33] by Tseng{

yk = projC[x
k − γφ(xk)],

xk+1 = yk + γ[φ(xk)− φ(yk)],
(5)

where γ ∈ (0, 1
κ ).

On the other hand, if φ is not Lipschitz continuous or its Lipschitz constant κ is difficult
to estimate, then algorithms (4) and (5) are invalid. To avoid this obstacle, Iusem [34] used
a self-adaptive technique without prior knowledge of Lipschitz constant κ of φ for solving
(1). Some related works on self-adaptive methods for solving (1), please refer to [35–38].

Let H1 and H2 be two real Hilbert spaces. Let C and Q be two nonempty closed and
convex subsets of H1 and H2, respectively. Let S : C → C, T : Q → Q, f : H1 → H1 and
g : H2 → H2 be four nonlinear operators. We consider the classical split problem which is
to find a point x∗ ∈ C such that

x∗ ∈ Fix(S) ∩ Sol(C, f ) and Ax∗ ∈ Fix(T) ∩ Sol(Q, g), (6)

where Fix(S) := {u†|u† = Su†} and Fix(T) := {v†|v† = Tv†} are the fixed point sets of S
and T, respectively.

The solution set of (6) is denoted by Γ, i.e.,

Γ = {x∗ ∈ Fix(S) ∩ Sol(C, f ), Ax∗ ∈ Fix(T) ∩ Sol(Q, g)}.

Let f and g be the null operators in C and Q, respectively. Then, the split problem (6)
becomes to the split fixed point problem studied in [39,40] which is to find an element
point x∗ ∈ C such that

x∗ ∈ Fix(S) and Ax∗ ∈ Fix(T). (7)

Let S and T be the identity operators in C and Q, respectively. Then, the split prob-
lem (6) becomes to the split variational inequality problem studied in [41] which is to find
an element x∗ ∈ C such that

x∗ ∈ Sol(C, f ) and Ax∗ ∈ Sol(Q, g). (8)

The solution set of (8) is denoted by Γ1, i.e.,

Γ = {x∗ ∈ Sol(C, f ), Ax∗ ∈ Sol(Q, g)}.

The split problems (6)–(8) have a common prototype that is the split feasibility ([42])
problem of finding a point x∗ such that

x∗ ∈ C and Ax∗ ∈ Q. (9)

The split problems have emerged their powerful applications in image recovery and
signal processing, control theory, biomedical engineering and geophysics. Some iterative
algorithms for solving the split problems have been studied and extended by many scholars,
see [43–47].
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Motivated by the work in this direction, in this paper, we further survey the split
problem (6) in which S and T are two pseudocontractive operators and f and g are two
pseudomonotone operators. We present a Tseng-type iterative algorithm for solving the
split problem (6) by using self-adaptive techniques. Under certain conditions, we show
that the proposed algorithm converges weakly to a solution of the split problem (6).

2. Preliminaries

Let H be a real Hilbert space equipped with inner product 〈·, ·〉 and the induced norm
defined by x 7→ ‖x‖ :=

√
(x, x). For any x, x† ∈ H and constant η ∈ R, we have

‖ηx + (1− η)x†‖2 = η‖x‖2 + (1− η)‖x†‖2 − η(1− η)‖x− x†‖2. (10)

The symbol “ ⇀′′ denotes the weak convergence and the symbol “→′′ denotes the
strong convergence. Use ωw(uk) to denote the set of all weak cluster points of the sequence
{uk}, namely, ωw(uk) = {u† : there exists {uki} ⊂ {uk} such that uki ⇀ u† as i→ ∞}.

Recall that an operator φ : H → H is said to be

• Pseudomonotone, if

〈φ(x̃), x− x̃〉 ≥ 0 implies 〈φ(x), x− x̃〉 ≥ 0, ∀x, x̃ ∈ H.

• Weakly sequentially continuous, if H 3 uk ⇀ ũ implies that φ(uk) ⇀ φ(ũ).

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that an
operator S : C → C is said to be pseudocontractive if

‖S(x)− S(x†)‖2 ≤ ‖x− x†‖2 + ‖(I − S)x− (I − S)x†‖2, for all x, x† ∈ C.

For given u† ∈ H, there exists a unique point in C, denoted by projC[u
†] such that

‖u† − projC[u
†]‖ ≤ ‖x− u†‖, for all x ∈ C.

It is known that projC is firmly nonexpansive, that is, projC satisfies

‖projC[x
∗]− projC[x

†]‖2 ≤ 〈projC[x
∗]− projC[x

†], x∗ − x†〉, for all x∗, x† ∈ H.

It is obvious that projC is nonexpansive, i.e., ‖projC[x
∗]− projC[x

†]‖ ≤ ‖x∗ − x†‖ for
all x∗, x† ∈ H. Moreover, projC satisfies the following inequality ([48])

〈x∗ − projC[x
∗], x† − projC[x

∗]〉 ≤ 0, x∗ ∈ H and for all x† ∈ C. (11)

Lemma 1 ([49]). Let C be a nonempty, convex and closed subset of a Hilbert space H. Assume
that the operator S : C → C is pseudocontractive and κ-Lipschitz continuous. Then, for all ũ ∈ C
and u† ∈ Fix(S), we have

‖u† − S((1− α)ũ + αS(ũ))‖2 ≤ ‖ũ− u†‖2 + (1− α)‖ũ− S((1− α)ũ + αS(ũ))‖2,

where α is a constant in (0, 1√
1+κ2+1

).

Lemma 2 ([50]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
f : C → H be a continuous and pseudomonotone operator. Then p† ∈ Sol(C, f ) iff p† solves the
following variational inequality

〈 f (u), u− p†〉 ≥ 0, for all u ∈ C.

Lemma 3 ([51]). Let C be a nonempty, convex and closed subset of a Hilbert space H. Let the
operator S : C → C be continuous pseudocontractive. Then, S is demiclosed, i.e., uk ⇀ ũ and
S(uk)→ u† as k→ +∞ imply that S(ũ) = u†.
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Lemma 4 ([52]). Let Γ be a nonempty closed convex subset of a real Hilbert space H. Let {xk} ⊂ H
be a sequence. If the following assumptions are satisfied

(i) ∀x∗ ∈ Γ, limk→+∞ ‖xk − x∗‖ exists;
(ii) wω(xk) ⊂ Γ.

Then the sequence {xk} converges weakly to some point in Γ.

3. Main Results

In this section, we present our main results.
Let H1 and H2 be two real Hilbert spaces. Let C ⊂ H1 and Q ⊂ H2 be two nonempty

closed convex sets. Let S : C → C, T : Q → Q, f : H1 → H1 and g : H2 → H2 be four
nonlinear operators. Let A : C → Q be a bounded linear operator with its adjoint A∗.

Let {αk}, {βk}, {ζk} and {λk} be four real number sequences. Let ϑ, δ, ω, µ and ε be
five constants. Let γ0 and τ0 be two positive constants.

Next, we introduce an iterative algorithm for solving the split problem (6).
In order to demonstrate the convergence analysis of Algorithm 1, we add some

conditions on the operators and the parameters.

Algorithm 1: Select an initial point x0 ∈ C. Set k = 0.

Step 1. Assume that the present iterate xk and the step-sizes γk and τk are given.
Compute 

vk = (1− βk)xk + βkS[(1− αk)xk + αkS(xk)], (12)

yk = projC[v
k − γk f (vk)], (13)

uk = (1− ϑ)vk + ϑyk + ϑγk[ f (vk)− f (yk)], (14)

wk = projQ[Auk − τkg(Auk)], (15)

tk = (1− δ)Auk + δwk + δτk[g(Auk)− g(wk)], (16)

qk = (1− ζk)tk + ζkT[(1− λk)tk + λkT(tk)]. (17)

Step 2. Compute the next iterate xk+1 by the following form

xk+1 = projC[u
k + εA∗(qk − Auk)]. (18)

Step 3. Increase k by 1 and go back to Step 1. Meanwhile, update

γk+1 =

min
{

γk, ω‖yk−vk‖
‖ f (yk)− f (vk)‖

}
, f (yk) 6= f (vk),

γk, else.
(19)

and

τk+1 =

min
{

τk, µ‖wk−Auk‖
‖g(wk)−g(Auk)‖

}
, g(wk) 6= g(Auk),

τk, else.
(20)

Suppose that

(c1): S and T are two pseudocontractive operators with Lipschitz constants L1 and L2,
respectively;

(c2): the operator f is pseudomonotone on H1, weakly sequentially continuous and κ1-
Lipschitz continuous on C;

(c3): the operator g is pseudomonotone on H2, weakly sequentially continuous and κ2-
Lipschitz continuous on Q.

(r1): L1 > 1 and 0 < β < βk < β < αk < α < 1√
1+L2

1+1
(∀k ≥ 0);
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(r2): L2 > 1 and 0 < ζ < ζk < ζ < λk < λ < 1√
1+L2

2+1
(∀k ≥ 0);

(r3): ϑ ∈ (0, 1], δ ∈ (0, 1], ω ∈ (0, 1), µ ∈ (0, 1) and ε ∈ (0, 1/‖A‖2).

Remark 1. According to (19), the sequence {γk} is monotonically decreasing. Moreover, by

the κ1-Lipschitz continuity of f , we obtain that ω‖yk−vk‖
‖ f (yk)− f (vk)‖ ≥

ω
κ1

. Thus, {γk} has a lower

bound min{γ0, ω
κ1
}. Therefore, the limit limk→+∞ γk exists. Similarly, the sequence {τk} is

monotonically decreasing and has a lower bound min{τ0, µ
κ2
}. So, the limit limk→+∞ τk exists.

Now, we prove our main theorem.

Theorem 1. Suppose that Γ 6= ∅. Then the sequence {xk} generated by Algorithm 1 converges
weakly to some point p ∈ Γ.

Proof. Let x∗ ∈ Γ. Then, x∗ ∈ Fix(S) ∩ Sol(C, f ) and Ax∗ ∈ Fix(T) ∩ Sol(Q, g). By (10)
and (12), we have

‖vk − x∗‖2 = ‖(1− βk)(xk − x∗) + βk(S[(1− αk)xk + αkS(xk)]− x∗)‖2

= (1− βk)‖xk − x∗‖2 + βk‖S[(1− αk)xk + αkS(xk)]− x∗‖2

− (1− βk)βk‖S[(1− αk)xk + αkS(xk)]− xk‖2.

(21)

Using Lemma 1, we obtain

‖S[(1− αk)xk + αkS(xk)]− x∗‖2 ≤ ‖xk − x∗‖2 + (1− αk)‖S[(1− αk)xk + αkS(xk)]− xk‖2. (22)

Combining (21) and (22), we derive

‖vk − x∗‖2 ≤ (1− βk)‖xk − x∗‖2 + βk(1− αk)‖S[(1− αk)xk + αkS(xk)]− xk‖2

+ βk‖xk − x∗‖2 − (1− βk)βk‖S[(1− αk)xk + αkS(xk)]− xk‖2

= ‖xk − x∗‖2 − βk(αk − βk)‖S[(1− αk)xk + αkS(xk)]− xk‖2

(by condition (r1)) ≤ ‖xk − x∗‖2.

(23)

Similarly, according to (10), Lemma 1 and (17), we have the following estimate

‖qk − Ax∗‖2 ≤ ‖tk − Ax∗‖2 − (λk − ζk)ζk‖T[(1− λk)tk + λkT(tk)]− tk‖2

(by condition (r2)) ≤ ‖tk − Ax∗‖2.
(24)

Applying the inequality (11) to (13), we obtain

〈yk − vk + γk f (vk), yk − x∗〉 ≤ 0. (25)

Since x∗ ∈ Sol(C, f ) and yk ∈ C, 〈 f (x∗), yk − x∗〉 ≥ 0. This together with the pseu-
domonotonicity of f implies that

〈 f (yk), yk − x∗〉 ≥ 0. (26)

Based on (25) and (26), we get

〈yk − vk, yk − x∗〉+ γk〈 f (vk)− f (yk), yk − x∗〉 ≤ 0.

It follows that

1
2
(‖yk − vk‖2 + ‖yk − x∗‖2 − ‖vk − x∗‖2) + γk〈 f (vk)− f (yk), yk − x∗〉 ≤ 0,

which yields
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‖yk − x∗‖2 ≤ ‖vk − x∗‖2 − 2γk〈 f (vk)− f (yk), yk − x∗〉 − ‖yk − vk‖2. (27)

By (14), we have

‖uk − x∗‖2 = ‖(1− ϑ)(vk − x∗) + ϑ(yk − x∗) + ϑγk[ f (vk)− f (yk)]‖2

= ‖(1− ϑ)(vk − x∗) + ϑ(yk − x∗)‖2 + ϑ2γ2
k‖ f (vk)− f (yk)‖2

+ 2ϑ(1− ϑ)γk〈vk − x∗, f (vk)− f (yk)〉
+ 2ϑ2γk〈yk − x∗, f (vk)− f (yk)〉.

(28)

From (10), we obtain

‖(1− ϑ)(vk − x∗) + ϑ(yk − x∗)‖2 = (1− ϑ)‖vk − x∗‖2 + ϑ‖yk − x∗‖2

− (1− ϑ)ϑ‖vk − yk‖2.
(29)

Substituting (27) and (29) into (28), we deduce

‖uk − x∗‖2 ≤ (1− ϑ)‖vk − x∗‖2 + ϑ‖vk − x∗‖2 − 2ϑγk〈 f (vk)− f (yk), yk − x∗〉 − ϑ‖yk − vk‖2

− (1− ϑ)ϑ‖vk − yk‖2 + ϑ2γ2
k‖ f (vk)− f (yk)‖2 + 2ϑ(1− ϑ)γk〈vk − x∗, f (vk)− f (yk)〉

+ 2ϑ2γk〈yk − x∗, f (vk)− f (yk)〉
= ‖vk − x∗‖2 − (2− ϑ)ϑ‖vk − yk‖2 + ϑ2γ2

k‖ f (vk)− f (yk)‖2

− 2ϑ(1− ϑ)γk〈 f (vk)− f (yk), yk − vk〉
≤ ‖vk − x∗‖2 − (2− ϑ)ϑ‖vk − yk‖2 + ϑ2γ2

k‖ f (vk)− f (yk)‖2

+ 2ϑ(1− ϑ)γk‖ f (vk)− f (yk)‖‖yk − vk‖.

(30)

Thanks to (19), ‖ f (vk)− f (yk)‖ ≤ ω‖yk−vk‖
γk+1

. It follows from (30) that

‖uk − x∗‖2 ≤ ‖vk − x∗‖2 − (2− ϑ)ϑ‖vk − yk‖2 + ϑ2ω2 γ2
k

γ2
k+1
‖yk − vk‖

+ 2ϑ(1− ϑ)ω
γk

γk+1
‖yk − vk‖2

= ‖vk − x∗‖2 − ϑ

[
2− ϑ− ϑω2 γ2

k
γ2

k+1
− 2(1− ϑ)ω

γk
γk+1

]
‖yk − vk‖2.

(31)

By Remark 1, limk→+∞
γk

γk+1
= 1. So,

lim
k→+∞

[
2− ϑ− ϑω2 γ2

k
γ2

k+1
− 2(1− ϑ)ω

γk
γk+1

]
= 2− ϑ− ϑω2 − 2(1− ϑ)ω = −ϑ(ω− 1)(ω +

2− ϑ

ϑ
) > 0.

Then, there exists σ > 0 and m1 such that 2− ϑ− ϑω2 γ2
k

γ2
k+1
− 2(1− ϑ)ω γk

γk+1
≥ σ when

k ≥ m1. In combination with (31), we get

‖uk − x∗‖2 ≤ ‖vk − x∗‖2 − σϑ‖yk − vk‖2.

This together with (23) implies that

‖uk − x∗‖2 ≤ ‖xk − x∗‖2 − βk(αk − βk)‖S[(1− αk)xk + αkS(xk)]− xk‖2

− σϑ‖yk − vk‖2.
(32)

By the property (11) of projQ and (15), we have
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〈wk − Auk + τkg(Auk), wk − Ax∗〉 ≤ 0. (33)

Since Ax∗ ∈ Sol(Q, g) and wk ∈ Q, 〈g(Ax∗), wk − Ax∗〉 ≥ 0. By the pseudomono-
tonicity of g, we obtain

〈g(wk), wk − Ax∗〉 ≥ 0. (34)

Taking into account (33) and (34), we obtain

〈wk − Auk, wk − Ax∗〉+ τk〈g(Auk)− g(wk), wk − Ax∗〉 ≤ 0,

which is equivalent to

1
2
(‖wk − Auk‖2 + ‖wk − Ax∗‖2 − ‖Auk − Ax∗‖2) + τk〈g(Auk)− g(wk), wk − Ax∗〉 ≤ 0.

It follows that

‖wk − Ax∗‖2 ≤ ‖Auk − Ax∗‖2 − 2τk〈g(Auk)− g(wk), wk − Ax∗〉 − ‖wk − Auk‖2. (35)

From (14), we receive

‖tk − Ax∗‖2 = ‖(1− δ)(Auk − Ax∗) + δ(wk − Ax∗) + δτk[g(Auk)− g(wk)]‖2

= ‖(1− δ)(Auk − Ax∗) + δ(wk − Ax∗)‖2 + δ2τ2
k ‖g(Auk)− g(wk)‖2

+ 2δ(1− δ)τk〈Auk − Ax∗, g(Auk)− g(wk)〉
+ 2δ2τk〈wk − Ax∗, g(Auk)− g(wk)〉.

(36)

By virtue of (10), we achieve

‖(1− δ)(Auk − Ax∗) + δ(wk − Ax∗)‖2 = (1− δ)‖Auk − Ax∗‖2 + δ‖wk − Ax∗‖2

− (1− δ)δ‖Auk − wk‖2.
(37)

Substituting (35) and (37) into (36), we obtain

‖tk − Ax∗‖2 ≤ ‖Auk − Ax∗‖2 − (2− δ)δ‖Auk − wk‖2 + δ2τ2
k ‖g(Auk)− g(wk)‖2

− 2δ(1− δ)τk〈wk − Auk, g(Auk)− g(wk)〉
≤ ‖Auk − Ax∗‖2 − (2− δ)δ‖Auk − wk‖2 + δ2τ2

k ‖g(Auk)− g(wk)‖2

+ 2δ(1− δ)τk‖wk − Auk‖‖g(Auk)− g(wk)‖.

(38)

Duo to (20), we have

‖g(Auk)− g(wk)‖ ≤ µ‖Auk − wk‖
τk+1

.

This together with (38) implies that

‖tk − Ax∗‖2 ≤ ‖Auk − Ax∗‖ − (2− δ)δ‖Auk − wk‖2 + δ2µ2 τ2
k

τ2
k+1
‖wk − Auk‖

+ 2δ(1− δ)µ
τk

τk+1
‖Auk − wk‖2

= ‖Auk − Ax∗‖ − δ

[
2− δ− δµ2 τ2

k
τ2

k+1
− 2(1− δ)µ

τk
τk+1

]
‖Auk − wk‖2.

(39)
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By Remark 1, limk→+∞
τk

τk+1
= 1 and hence

lim
k→∞

[
2− δ− δµ2 τ2

k
τ2

k+1
− 2(1− δ)µ

τk
τk+1

]
= 2− δ− δµ2 − 2(1− δ)µ > 0.

So, there exists $ > 0 and m2 such that

2− δ− δµ2 τ2
k

τ2
k+1
− 2(1− δ)µ

τk
τk+1

≥ $,

when k ≥ m2.
In the light of (39), we have

‖tk − Ax∗‖2 ≤ ‖Auk − Ax∗‖ − $δ‖wk − Auk‖2. (40)

Owing to (24) and (40), we get

‖qk − Ax∗‖2 ≤ ‖Auk − Ax∗‖ − (λk − ζk)ζk‖T[(1− λk)tk + λkT(tk)]− tk‖2

− $δ‖wk − Auk‖2.
(41)

Observe that

〈uk − x∗, A∗(qk − Auk)〉 = 〈Auk − Ax∗, qk − Auk〉

=
1
2
[‖qk − Ax∗‖2 − ‖Auk − Ax∗‖2]− 1

2
‖qk − Auk‖2.

(42)

Combining (41) and (42), we acquire

〈uk − x∗, A∗(qk − Auk)〉 ≤ −1
2

$δ‖wk − Auk‖2 − 1
2
‖qk − Auk‖2

− 1
2
(λk − ζk)ζk‖T[(1− λk)tk + λkT(tk)]− tk‖2.

(43)

In view of (18), we have

‖xk+1 − x∗‖2 = ‖projC[u
k + εA∗(qk − Auk)]− projC[x

∗]‖2

≤ ‖uk − x∗ + εA∗(qk − Auk)‖2

= ‖uk − x∗‖2 + ‖εA∗(qk − Auk)‖2 + 2ε〈A∗(qk − Auk), uk − x∗〉.

It follows from (32) and (43) that

‖xk+1 − x∗‖2 ≤ ‖uk − x∗‖2 + ε2‖A‖2‖qk − Auk‖2 − ε$δ‖wk − Auk‖2

− ε‖qk − Auk‖2 − ε(λk − ζk)ζk‖T[(1− λk)tk + λkT(tk)]− tk‖2

= ‖uk − x∗‖2 − ε(1− ε‖A‖2)‖qk − Auk‖2 − ε$δ‖wk − Auk‖2

− ε(λk − ζk)ζk‖T[(1− λk)tk + λkT(tk)]− tk‖2

≤ ‖xk − x∗‖2 − ε$δ‖wk − Auk‖2 − ε(1− ε‖A‖2)‖qk − Auk‖2

− βk(αk − βk)‖S[(1− αk)xk + αkS(xk)]− xk‖2 − σϑ‖yk − vk‖2

− ε(λk − ζk)ζk‖T[(1− λk)tk + λkT(tk)]− tk‖2

≤ ‖xk − x∗‖2,

(44)

which implies that limk→+∞ ‖xk − x∗‖ exists. Since ‖xk+1 − x∗‖ ≤ ‖uk − x∗‖ ≤ ‖vk −
x∗‖ ≤ ‖xk − x∗‖, we deduce
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lim
k→+∞

‖uk − x∗‖ = lim
k→+∞

‖vk − x∗‖ = lim
k→+∞

‖xk − x∗‖. (45)

So, the sequences {xk}, {uk} and {vk} are all bounded.
By virtue of (44), we derive

βk(αk − βk)‖S[(1− αk)xk + αkSxk]− xk‖2 + σϑ‖yk − vk‖2 + ε$δ‖wk − Auk‖2

+ ε(1− ε‖A‖2)‖qk − Auk‖2 + ε(λk − ζk)ζk‖T[(1− λk)tk + λkTtk]− tk‖2

≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 → 0,

which implies that 

lim
k→+∞

‖qk − Auk‖ = 0, (46)

lim
k→+∞

‖S[(1− αk)xk + αkS(xk)]− xk‖ = 0, (47)

lim
k→+∞

‖T[(1− λk)tk + λkT(tk)]− tk‖ = 0, (48)

lim
k→+∞

‖yk − vk‖ = 0, (49)

lim
k→+∞

‖wk − Auk‖ = 0. (50)

By the L1-Lipschitz continuity of S, we have

‖S(xk)− xk‖ ≤ ‖S(xk)− S[(1− αk)xk + αkS(xk)]‖+ ‖S[(1− αk)xk + αkS(xk)]− xk‖
≤ L1αk‖S(xk)− xk‖+ ‖S[(1− αk)xk + αkS(xk)]− xk‖.

It follows that

‖S(xk)− xk‖ ≤ 1
1− L1αk

‖S[(1− αk)xk + αkS(xk)]− xk‖.

This together with (47) implies that

lim
k→+∞

‖S(xk)− xk‖ = 0. (51)

From (12) and (47), we conclude that ‖xk − vk‖ → 0.
Next, we show that ωw(xk) ⊂ Γ. Pick any p† ∈ ωw(xk). Then, there exists a subse-

quence {xki} of {xk} such that xki ⇀ p† as i→ +∞. In addition, yki ⇀ p† and vki ⇀ p† as
i→ +∞.

First, we prove that p† ∈ Sol(C, f ). In view of (11) and yki = projC[v
ki − γki

f (vki )],
we achieve

〈yki − vki + γki
f (vki ), yki − u〉 ≤ 0, for all u ∈ C.

It follows that

1
γki

〈vki − yki , u− yki 〉+ 〈 f (vki ), yki − vki 〉 ≤ 〈 f (vki ), u− vki 〉, for all u ∈ C. (52)

Noting that from (49), we have limi→+∞ ‖vki − yki‖ = 0. Meanwhile, {yki} and
{ f (vki )} are bounded. Then, by (52), we deduce

lim inf
i→+∞

〈 f (vki ), u− vki 〉 ≥ 0, for all u ∈ C. (53)

Let {εj} be a positive real numbers sequence satisfying limj→+∞ εj = 0. On account
of (53), for each εj, there exists the smallest positive integer nj such that
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〈 f (vkij ), u− v
kij 〉+ εj ≥ 0, for all j ≥ nj. (54)

Moreover, for each j > 0, f (v
kij ) 6= 0. Setting ϕ(v

kij ) = f (v
kij )

‖ f (v
kij )‖2

, we have 〈 f (vkij ), ϕ(v
kij )〉 =

1. From (54), we have

〈 f (vkij ), u + εj ϕ(v
kij )− v

kij 〉 ≥ 0.

By the pseudomonotonicity of f , we get

〈 f (u + εj ϕ(v
kij )), u + εj ϕ(v

kij )− v
kij 〉 ≥ 0,

which implies that

〈 f (u), u− v
kij 〉 ≥ 〈 f (u)− f (u + εj ϕ(v

kij )), u + εj ϕ(v
kij )− v

kij 〉

+ 〈 f (u),−εj ϕ(v
kij )〉.

(55)

Because of f (v
kij ) ⇀ f (p†), we have

lim inf
j→+∞

‖ f (v
kij )‖ ≥ ‖ f (p†)‖ > 0.

Then,

lim
j→+∞

‖εj ϕ(v
kij )‖ = lim

j→+∞

εj

‖ f (v
kij )‖

= 0.

This together with (55) implies that

〈 f (u), u− p†〉 ≥ 0. (56)

By Lemma 2 and (56), we conclude that p† ∈ Sol(C, f ).
On the other hand, by (51), ‖Sxki − xki‖ → 0 as i→ +∞. This together with xki ⇀ p†

and Lemma 3 implies that p† ∈ Fix(S). Therefore, p† ∈ Fix(S) ∩ Sol(C, f ).
Next, we show that Ap† ∈ Fix(T) ∩ Sol(Q, g). Observe that

‖T(tk)− tk‖ ≤ ‖T(tk)− T[(1− λk)tk + λkT(tk)]‖+ ‖T[(1− λk)tk + λkT(tk)]− tk‖
≤ L2λk‖T(tk)− tk‖+ ‖T[(1− λk)tk + λkT(tk)]− tk‖.

It follows that

‖T(tk)− tk‖ ≤ 1
1− L2λk

‖T[(1− λk)tk + λkT(tk)]− tk‖.

This together with (48) implies that

lim
k→+∞

‖T(tk)− tk‖ = 0. (57)

From (14), uki ⇀ p† as i → +∞. Thanks to (17) and (48), we have qki − tki → 0 as
i→ +∞. Combining with (46), we deduce that tki ⇀ Ap†. Applying Lemma 3 to (57), we
obtain that Ap† ∈ Fix(T).

Next, we show that Ap† ∈ Sol(Q, g). In view of (10) and wki = projQ[Auki −
τki

g(Auki )], we achieve

〈wki − Auki + τki
g(Auki ), wki − v〉 ≤ 0, for all v ∈ Q.
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It follows that

1
τki
〈wki − Auki , wki − v〉+ 〈g(Auki ), wki − Auki 〉 ≤ 〈g(Auki ), v− Auki 〉, for all v ∈ Q. (58)

Noting that from (r3), we have limi→+∞ ‖wki − Auki‖ = 0. Then, by (58), we deduce

lim inf
i→+∞

〈g(Auki ), v− Auki 〉 ≥ 0, for all v ∈ Q. (59)

Choose a positive real numbers sequence {υj} such that limj→+∞ υj = 0. In terms
of (59), for each υj, there exists the smallest positive integer mj such that

〈g(Auki ), v− Auki 〉+ υj ≥ 0, for all j ≥ mj. (60)

Moreover, for each j > 0, g(Auki ) 6= 0. Setting ψ(uki ) = g(Auki )

‖g(Auki )‖2 , we have

〈g(Auki ), ψ(uki )〉 = 1. From (60), we have

〈g(A(u
kij )), v + υjψ(u

kij )− Au
kij 〉 ≥ 0.

By the pseudomonotonicity of g, we get

〈g(v + υjψ(u
kij )), v + υjψ(u

kij )− Au
kij 〉 ≥ 0,

which implies that

〈g(v), v− Au
kij 〉 ≥ 〈g(v)− g(v + υjψ(u

kij )), v + υjψ(u
kij )− Au

kij 〉

+ 〈g(v),−υjψ(u
kij )〉.

(61)

Because of g(A(u
kij )) ⇀ g(Ap†), we have

lim inf
j→+∞

‖g(A(u
kij ))‖ ≥ ‖g(Ap†)‖ > 0.

Then,

lim
j→+∞

‖υjψ(u
kij ))‖ = lim

j→∞

υj

‖g(Auki )‖
= 0.

This together with (61) implies that

〈g(v), v− Ap†〉 ≥ 0, for all v ∈ Q. (62)

By Lemma 2 and (62), we conclude that Ap† ∈ Sol(Q, g). So, p ∈ Γ and ωw(xk) ⊂ Γ.
Finally, we show that the entire sequence {xk} converges weakly to p†. As a matter of

fact, we have the following facts:

(i) ∀x∗ ∈ Γ, limk→+∞ ‖xk − x∗‖ exists;
(ii) wω(xk) ⊂ Γ;
(iii) p† ∈ wω(xk).

Thus, by Lemma 4, we deduce that the sequence {xk} weakly converges to p† ∈ Γ.
This completes the proof.

Corollary 1. Suppose that Γ1 6= ∅. Then the sequence {xk} generated by Algorithm 2 converges
weakly to some point p1 ∈ Γ1.
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Algorithm 2: Select an initial point x0 ∈ C. Set k = 0.

Step 1. Assume that the present iterate xk and the step-sizes γk and τk are given.
Compute 

yk = projC[x
k − γk f (xk)], (63)

uk = (1− ϑ)xk + ϑyk + ϑγk[ f (xk)− f (yk)], (64)

wk = projQ[Auk − τkg(Auk)], (65)

tk = (1− δ)Auk + δwk + δτk[g(Auk)− g(wk)]. (66)

Step 2. Compute the next iterate xk+1 by the following form

xk+1 = projC[u
k + εA∗(tk − Auk)]. (67)

Step 3. Increase k by 1 and go back to Step 1. Meanwhile, update

γk+1 =

min
{

γk, ω‖yk−xk‖
‖ f (yk)− f (xk)‖

}
, f (yk) 6= f (xk),

γk, else.
(68)

τk+1 =

min
{

τk, µ‖wk−Auk‖
‖g(wk)−g(Auk)‖

}
, g(wk) 6= g(Auk),

τk, else.
(69)

4. Application to Split Pseudoconvex Optimization Problems and Fixed Point Problems

In this section, we apply Algorithm 1 to solve split pseudoconvex optimization prob-
lems and fixed point problems.

Let Rn be the Euclidean space. Let C be a closed convex set in Rn. Recall that a
differentiable function F : Rn → R is said to be pseudoconvex on C if for every pair of
distinct points x, y ∈ C,

∇F(x)T(y− x) ≥ 0 implies F(y) ≥ F(x).

Now, we consider the following optimization problem

min F(x) subject to x ∈ C, (70)

where F(x) is pseudoconvex and twice continuously differentiable.
Denote by SOP(C, F) the solution set of optimization problem (70).
The following lemma reveals the relationship between the variational inequality and

the pseudoconvex optimization problem.

Lemma 5 ([53]). Suppose that F : Rn → R is differentiable and pseudoconvex on C. Then
x∗ ∈ C satisfies

∇F(x∗)T(x− x∗) ≥ 0 for all x ∈ C

if and only if x∗ is a minimum of F(x) in C.

Let Rn and Rm be two Euclidean spaces. Let C ⊂ Rn and Q ⊂ Rm be two nonempty
closed convex sets. Let A be a given m× n real matrix. Let S : C → C and T : Q → Q
be two pseudocontractive operators with Lipschitz constants L1 and L2, respectively. Let
F : Rn → R be a differentiable function with κ1-Lipschitz continuous gradient which is
also pseudoconvex on C. Let G : Rm → R be a differentiable function with κ2-Lipschitz
continuous gradient which is also pseudoconvex on Q.
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Consider the following split problem of finding a point x∗ ∈ C such that

x∗ ∈ Fix(S) ∩ SOP(C, F) and Ax∗ ∈ Fix(T) ∩ SOP(Q, G). (71)

The solution set of (71) is denoted by Γ2, i.e.,

Γ2 = {x∗ ∈ Fix(S) ∩ SOP(C, F), Ax∗ ∈ Fix(T) ∩ SOP(Q, G)}.

Next, we introduce an iterative algorithm for solving the split problem (71).
Let {αk}, {βk}, {ζk} and {λk} be four real number sequences. Let ϑ, δ, ω, µ and ε be

five constants. Let γ0 and τ0 be two positive constants.

Theorem 2. Suppose that Γ2 6= ∅ and the conditions (r1)–(r3) hold. Then the sequence {xk}
generated by Algorithm 3 converges to some point p ∈ Γ2.

Algorithm 3: Select an initial point x0 ∈ C. Set k = 0.

Step 1. Assume that the present iterate xk and the step-sizes γk and τk are given.
Compute

vk = (1− βk)xk + βkS[(1− αk)xk + αkS(xk)],
yk = projC[v

k − γk∇F(vk)],
uk = (1− ϑ)vk + ϑyk + ϑγk[∇F(vk)−∇F(yk)],
wk = projQ[Auk − τk∇G(Auk)],
tk = (1− δ)Auk + δwk + δτk[∇G(Auk)−∇G(wk)],
qk = (1− ζk)tk + ζkT[(1− λk)tk + λkT(tk)].

Step 2. Compute the next iterate xk+1 by the following form

xk+1 = projC[u
k + εA∗(qk − Auk)].

Step 3. Increase k by 1 and go back to Step 1. Meanwhile, update

γk+1 =

min
{

γk, ω‖yk−vk‖
‖∇F(yk)−∇F(vk)‖

}
, ∇F(yk) 6= ∇F(vk),

γk, else.

and

τk+1 =

min
{

τk, µ‖wk−Auk‖
‖∇G(wk)−∇G(Auk)‖

}
, ∇G(wk) 6= ∇G(Auk),

τk, else.

5. Concluding Remarks

In this paper, we survey iterative methods for solving the split problem of fixed points
of two pseudocontractive operators and variational inequalities of two pseudomonotone
operators in Hilbert spaces. By using self-adaptive techniques, we construct a Tseng-type
iterative algorithm for solving this split problem. We prove that the proposed Tseng-
type iterative algorithm converges weakly to a solution of the split problem under some
additional conditions imposed the operators and the parameters. Finally, we apply our
algorithm to solve split pseudoconvex optimization problems and fixed point problems.
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