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Abstract: This study is on the factorization properties of continuous homomorphisms defined on
subgroups (or submonoids) of products of (para)topological groups (or monoids). A typical result is
the following one: Let D = ∏i∈I Di be a product of paratopological groups, S be a dense subgroup of
D, and χ a continuous character of S. Then one can find a finite set E ⊂ I and continuous characters
χi of Di, for i ∈ E, such that χ =

(
∏i∈E χi ◦ pi

)
�S, where pi : D → Di is the projection.
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1. Introduction

Factorization of continuous functions defined on (dense) subspaces of topological
products has a long and illustrious history, with several new ideas and discoveries. The
articles [1–5] provide an excellent overview of the methodologies employed in this area
of research.

The current paper is a natural extension of [6,7], in which we investigated continuous
homomorphisms of subgroups (submonoids) of topological group products (monoids).
We proved in those articles that in many circumstances, a continuous homomorphism
f : S→ H of a submonoid (subgroup) S of a product D = ∏ i ∈ IDi of topological monoids
(groups) to a topological monoid (group) H enables a factorization in the form

f = g ◦ pJ �S, (1)

where J is a “small” subset of the index set I, pJ : D → DJ = ∏i∈J Di is the projection, and
g : pJ(S)→ H is a continuous homomorphism. If one can find a finite (countable) set J for
which (1) holds true, we say that f has a finite (countable) type. Most of the results in [6,7]
present different conditions on S and/or H under which f has a countable or even finite
type. Purely algebraic aspects of this study can be found in [8].

In this article we go further and try to decompose a given continuous homomorphism
f : S→ H into a product of ‘coordinate’ homomorphisms, as explained below.

It follows from the Pontryagin–van Kampen duality theory that every continuous
homomorphism of a product D = ∏i∈I Di of compact abelian groups to the circle group
T (called character) has a finite type. Hence, every continuous character of D is a linear
combination of finitely many continuous characters, each of which depends on exactly one
coordinate. This fact remains valid in a considerably more general situation presented by
S. Kaplan in [9]:

Proposition 1. Let χ be a continuous character of a product Π = ∏i∈I Gi of (reflexive) topological
abelian groups. Then one can find pairwise distinct indices i1, . . . , in ∈ I and continuous characters
χ1, . . . , χn of the respective groups Gi1 , . . . , Gin such that the equality
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χ(x) =
n

∏
k=1

χk(xik ) (2)

holds for each x ∈ Π.

An examination of the argument offered in [9] demonstrates that the ‘reflexive’ can be
omitted from the assumptions of Proposition 1. Thus, we may reformulate the conclusion
of Proposition 1 by asserting that the dual group Π∧ is algebraically isomorphic to the
direct sum of the factors’ duals,

⊕
i∈I D∧i . Our objective is to extend the conclusion of

Proposition 1 to a much broader class of objects, such as subgroups or submonoids of
Cartesian products of monoids or paratopological groups (see Theorem 2, Corollary 1, and
Theorems 4–6).

An important property of the torus T is that it is an NSS group, which means that
there exists an open neighborhood of the identity in T containing no nontrivial subgroups.
Every Lie group is an NSS group. According to ([7], Theorem 3.11), every continuous
homomorphism of an arbitrary subgroup of a product of topological monoids to a Lie
group has a finite type. This is an essential ingredient in several arguments presented in
Section 2.

In Section 3 we complement several results from ([7], Section 2) about the continuous
character of a dense submonoid S of the P-modification of a product D = ∏i∈I Di of topolo-
gized monoids. We show in Proposition 3 and Example 3 that if ϕ : S→ H is a nontrivial
continuous homomorphism of S to a topologized monoid of countable pseudocharacter,
then the family J (χ) of the subsets J of the index set I such that ϕ depend on J is often a
filter on I, and this filter can have an empty intersection, even if S = D and the product
D = Z(2)ω is a compact metrizable topological group (hence the P-modification of D is a
discrete group).

Notation and Auxiliary Results

Let C be the field of complex numbers with the usual Euclidean topology. The torus T
is identified with the multiplicative subgroup {z ∈ C : |z| = 1} of C.

A semigroup is a nonempty set S with a binary associative operation (called mul-
tiplication). A semigroup with an identity is called a monoid. Clearly a monoid has a
unique identity.

A semigroup S with some topology is said to be a semitopological semigroup if multi-
plication in S is separately continuous. This is equivalent to saying that the left and right
shifts in S are continuous. If multiplication in S is jointly continuous, we say that S is a
topological semigroup. The concept of topological monoid is defined similarly.

Assume that G is a semigroup (monoid, group) with a topology. If the left shifts in
G are continuous, then G is called a left topological semigroup (monoid, group). If both
left and right shifts in G are continuous, then G is said to be a semitopological semigroup
(monoid, group). Further, if G is a group and multiplication in G is jointly continuous, we
say that G is a paratopological group. A paratopological group with continuous inversions
is a topological group.

A topologized monoid (group) is a monoid (group) with an arbitrary topology that may
have no relation to multiplication in the monoid (group). We say that a left topological
monoid G has open left shifts if for every x ∈ G, the left shift λx of G defined by y 7→ x · y
for each y ∈ G is an open mapping of G to itself.

The character of an arbitrary monoid G is a (not necessarily continuous) homomorphism
of G to the torusT. The continuity of a character, if it applies, will always be specified explicitly.

In the sequel we follow the notation of Proposition 1. For every i ∈ I, let pi be the
projection of Π onto the factor Gi. Then the conclusion of the proposition is equivalent
to saying that χ = ∏n

k=1 χk ◦ pik . It is worth noting that the projections pi are continuous
open homomorphisms, so the characters χ1, . . . , χn are ‘automatically’ continuous. This
assertion follows from the next simple result, which shows that for finitely many factors,
the conclusion of Proposition 1 remains valid, even if the factors are topologized monoids.
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Lemma 1. Let G = G1 × · · · × Gn be a product of topologized monoids and χ be a contin-
uous homomorphism of G to a topologized semigroup K. Then there exist homomorphisms
χ1, . . . , χn of the respective monoids G1, . . . , Gn to K such that χ(x) = χ1(x1) · · · χn(xn), for
each x = (x1, . . . , xn) ∈ G. This representation of χ is unique and the homomorphisms χ1, . . . , χn
are continuous.

Proof. For every k = 1, . . . , n, let ek be the identity of Gk and pk be the projection of G onto
the factor Gk. We define a homomorphism χk of Gk to K by χk(y) = χ(e1, . . . , y, . . . , en) for
every y ∈ Gk, where y stands at the kth position in (e1, . . . , y, . . . , en). A direct verification
shows that χ(x) = χ1(x1) · · · χn(xn), for each x = (x1, . . . , xn) ∈ G.

Let ψ1, . . . , ψn be homomorphisms of G1, . . . , Gn, respectively, to K, satisfying χ(x) =
ψ1(x1) · · ·ψn(xn), for each x ∈ G. We fix an integer k with 1 ≤ k ≤ n, and for every y ∈ Gk,
consider the element ŷ = (e1, . . . , y, . . . , en) ∈ G, where y stands at the kth position in ŷ.
Then χk(y) = χ(ŷ) = ψk(y), so ψk = χk for each k ≤ n, and hence, the representation
χ(x) = χ1(x1) · · · χn(xn) is unique.

It follows from the continuity of the homomorphism χ and the equalities χk(y) =
χ(e1, . . . , y, . . . , en), where 1 ≤ k ≤ n and y ∈ Gk, that χ1, . . . , χn are continuous.

Let X = ∏i∈I Xi be the Tychonoff product of a family {Xi : i ∈ I} of spaces and a ∈ X
be an arbitrary point. For every i ∈ I, the projection of X to the factor Xi is denoted by pi.
In addition, for every x ∈ X, we make

diff(x, a) = {i ∈ I : pi(x) 6= pi(a)}.

Then
ΣX(a) = {x ∈ X : |diff(x, a)| ≤ ω}

and
σX(a) = {x ∈ X : |diff(x, a)| < ω}

are dense subspaces of X which are called, respectively, the Σ-product and σ-product of
the family {Xi : i ∈ I} with centers at a. If every Xi is a monoid (group), we will always
choose a to be the identity e of X. In the latter case, ΣX(e) and σX(e) are dense submonoids
(subgroups) of the product monoid (group) X and we shorten ΣX(e) and σX(e) to ΣX and
σX, respectively.

Assume that Z is a nonempty subset of the product X = ∏i∈I Xi of a family {Xi :
i ∈ I} of sets and f : Z → Y is an arbitrary mapping. We say that f depends on J, for
some J ⊂ I, if the equality f (x) = f (y) holds for all x, y ∈ Z with pJ(x) = pJ(y), where
pJ : X → ∏i∈J Xi is the projection. It is clear that if f depends on J, then there exists a
mapping g of pJ(Z) to Y satisfying f = g ◦ pJ �Z. Conversely, if there exists such a mapping
g of pJ(Z) to Y, then f depends on J.

Definition 1. Assume that Di is a monoid with identity ei, where i ∈ I. For a nonempty subset J
of I, we define a retraction rJ of D = ∏i∈I Di by letting

rJ(x)i =

{
xi if i ∈ J;
ei if i ∈ I \ J,

for each element x ∈ D. A subset S of D is said to be retractable if rJ(S) ⊂ S, for each J ⊂ I. If
the inclusion rJ(S) ⊂ S holds for each finite set J ⊂ I, we call S finitely retractable.

The concept of finite retractability is used in Theorem 5.

Given a space X, we denote by PX the underlying set X with the topology whose
base consists of all nonempty Gδ-sets in X. The space PX is usually referred to as the
P-modification of X. If X is a (left) topological group (monoid), then PX with the same
multiplication is also a (left) topological group (monoid).
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The family of countable subsets of a given set I is denoted by [I]≤ω.

2. Factoring Continuous Characters

In this section, we deal with not necessarily Hausdorff objects of topological algebra.
Since a major proportion of the research articles and books on this subject treat the Haus-
dorffian case exclusively, we need to extend several well-known facts to non-Hausdorffian
monoids and groups. We start with the following result that, informally, goes back to
Graev’s article ([10], pp. 52–53).

Lemma 2. Let G be a topological group with identity e, N be the closure of the singleton {e}
in G, and π : G → G/N be the quotient homomorphism. For every continuous homomorphism
f : G → H to a Hausdorff topological group H, there exists a unique homomorphism g : G/N → H
satisfying f = g ◦ π, and g is automatically continuous.

Proof. Notice that N is a closed invariant subgroup of G, so the quotient topological group
G/N is a T1-space. Hence G/N is a Hausdorff. Denote by K the kernel of f . Since H
is a Hausdorff, K is a closed subgroup of G. Hence, ker π = N ⊂ K = ker f . It now
follows from ([11], Proposition 1.5.10) that there exists a homomorphism g : G/N → H
satisfying f = g ◦ π. Assume that a homomorphism g̃ : G/N → H also satisfies f = g̃ ◦ π.
If y ∈ G/N, we take an element x ∈ G with π(x) = y. Then g(y) = g(π(x)) = f (x), and
similarly, g̃(y) = g̃(π(x)) = f (x). Hence g̃(y) = g(y) for each y ∈ G/N, so g̃ = g. As π is
open and continuous, we conclude that g is continuous.

The pair (G/N, π) in Lemma 2 is called the Hausdorff reflection of G. Abusing termi-
nology, we usually refer to G/N as the Hausdorff reflection of G, thereby omitting the
quotient homomorphism π. We also denote G/N by T2(G).

Informally speaking, the following lemma states that the functor of the Hausdorff
reflection in the category of topological groups and continuous homomorphisms describes
arbitrary subgroups.

Lemma 3. Let G be a topological group with identity e, N be the closure of the singleton {e} in
G, and π : G → G/N be the quotient homomorphism. Let S be an arbitrary subgroup of G and
NS = S ∩ N. Then the quotient group T2(S) = S/NS is topologically isomorphic to the subgroup
π(S) of T2(G) = G/N and the restriction of π to S is an open continuous homomorphism of S
onto π(S).

Proof. It follows from the definition of π that every closed subset C of G satisfies C =
π−1π(C). Therefore, if the subgroup S is closed in G then N ⊂ S, S = π−1π(S), and the re-
striction of π to S is an open continuous homomorphism of S onto the subgroup π(S) of G/N.
By the first isomorphism theorem, the groups π(S) and S/N are topologically isomorphic.

In the general case, let K be the closure of S in G. Then K is a closed subgroup of
G, N ⊂ K, and by the above argument, the groups T2(K) = K/N and π(K) ⊂ T2(G) are
topologically isomorphic. Hence it suffices to verify that the group T2(S) is topologically
isomorphic in relation to the subgroup π(S) of K/N. To this end we show that the
restriction of π to S is an open homomorphism onto the subgroup π(S) of K/N. Let U
be a nonempty open set in K and V = U ∩ S. Since K = π−1π(K) and N ⊂ K, the set U
satisfies the equality U = π−1π(U). Hence the set π(U) ∩ π(S) = π(U ∩ S) = π(V) is
open in π(S). Thus, π�S is an open homomorphism of S onto π(S) whose kernel is S ∩ N,
so the groups T2(S) and π(S) are topologically isomorphic.

Let us recall that the precompact Hausdorff reflection of a given topological group G is a
pair (H, ϕG), where H is a precompact Hausdorff topological group and ϕG : G → H is a
continuous homomorphism, such that for every continuous homomorphism g : G → K to
a Hausdorff precompact topological group K, there exists a continuous homomorphism
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h : H → K satisfying g = h ◦ ϕG. Every topological group G has a precompact Haus-
dorff reflection and this reflection is unique up to topological isomorphism [12]. The
homomorphism ϕG is referred to as universal for G.

Lemma 4. Let S be a dense subgroup of a topological group G and (H, ϕG) be the precompact
Hausdorff reflection of G. Let T = ϕG(S) and ψ = ϕG�S. Then (T, ψ) is the precompact Hausdorff
reflection of the group S.

Proof. Since H is a precompact Hausdorff topological group, so is its dense subgroup
T. Therefore it suffices to verify that the continuous onto homomorphism ψ : S → T is
universal for S. Let g : S→ K be a continuous homomorphism to a precompact Hausdorff
group K. The completion of K, say, $K, is a compact Hausdorff topological group. Hence
the group $K is complete. Since S is dense in G, g extends to a continuous homomorphism
g∗ : G → $K. By the universality of ϕG, there exists a continuous homomorphism h∗ : H →
$K such that g∗ = h∗ ◦ ϕG. Let h be the restriction of h∗ to T. Then g = g∗� S = h∗ ◦ ϕG�S =
h∗ ◦ ψ = h ◦ ψ. This proves the universality of ψ for S.

A subgroup S of a topological abelian group G is said to be dually embedded in G if
every continuous character of S extends to a continuous character of G. The next lemma is
well known in the special case of Hausdorff topological groups ([13], Lemma 2.2).

Lemma 5. Every subgroup S of a precompact topological abelian group G is dually embedded in G.

Proof. Let e be the identity of G and N be the closure of the singleton {e} in G. Additionally,
let p : G → G/N be the quotient homomorphism. Since G is precompact, the pair (G/N, p)
is the precompact Hausdorff reflection of G. Let S be a subgroup of G. Denote by K the
closure of S in G. It follows from the definition of N that N ⊂ K and K = p−1 p(K), so
K/N ∼= p(K) and (p(K), q) is the precompact Hausdorff reflection of K, where q = p�K.
Since S is dense in K, Lemma 4 implies that (q(S), q�S) = (p(S), p�S) is the precompact
Hausdorff reflection of S.

Let χ be a continuous character of S. There exists a continuous character λ of the
subgroup T = p(S) of the precompact Hausdorff group G/N such that χ = λ ◦ p�S. By
([13], Lemma 2.2), T is dually embedded in the Hausdorff precompact abelian group G/N,
so λ extends to a continuous character λ∗ of G/N. Hence χ∗ = λ∗ ◦ p is an extension of χ
to a continuous character of G and S is dually embedded in the group G.

The following fact complements Lemma 5 in the non-abelian case.

Lemma 6. Every dense subgroup S of an arbitrary topological group G is dually embedded in G.

Proof. Let (H, ϕG) be the precompact Hausdorff reflection of the group G. We put T =
ϕG(S) and ψ = ϕG�S. By Lemma 4, the pair (T, ψ) is the precompact Hausdorff reflection
of S.

Let χ be a continuous character of S. Then there exists a continuous character χT of
T such that χ = χT ◦ ψ. Since the group H is precompact and Hausdorffian, it follows
from ([13], Lemma 2.2) that T is dually embedded in H. Hence, χT extends to a continuous
character λ of H. Thus, χ∗ = λ ◦ ϕG is a continuous character of G which extends χ.

Lemma 6 is not valid for closed subgroups of Hausdorff topological groups. In fact,
even a compact subgroup of a separable metrizable topological abelian group can fail to be
dually embedded ([11], Example 9.9.61).

According to Proposition 3.6.12 of [11], a continuous homomorphism of a dense
subgroup S of a Hausdorff topological group G to a complete Hausdorffian topological
group H extends to a continuous homomorphism of G to H. Below we generalize this
fact by showing that it remains valid for dense subgroups of arbitrary paratopological
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groups. Our argument makes use of the topological group reflection of a paratopological
group (see [14]).

Theorem 1. Let S be a dense subgroup of a paratopological group G and f : S→ H be a continuous
homomorphism of S to a complete Hausdorff topological group H. Then f extends to a continuous
homomorphism g : G → H.

Proof. Let iG : G → G∗ be the identity mapping of G onto the topological group reflection
G∗ of G. It follows from ([14], Theorem 12) that the subgroup T = iG(S) of G∗ is topologi-
cally isomorphic to the topological group reflection S∗ of S, so we can identify the groups
T and S∗ algebraically and topologically.

Since H is a topological group, there exists a continuous homomorphism f∗ : T → H
satisfying f = f∗ ◦ iG�S. It follows from the continuity of iG that T is a dense subgroup of
G∗. However, the groups G∗ and T may fail to be Hausdorffian.

To reduce our further argument to the case of Hausdorff groups, we denote by N the
closure of the singleton {eG} in G∗ and consider the quotient homomorphism π : G∗ →
G∗/N. Then the quotient group G∗/N is the Hausdorff reflection of G∗. By Lemma 3,
the subgroup π(T) of G∗/N is the Hausdorff reflection of T and the homomorphism
ϕ = π� T of T onto π(T) is open and continuous. Since the group H is Hausdorffian,
Lemma 2 implies the existence of a continuous homomorphism f ∗ : π(T)→ H satisfying
the equality f∗ = f ∗ ◦ ϕ. Notice that T is dense in G∗ and π(T) is dense in G∗/N. Therefore,
by ([11], Corollary 3.6.17), f∗ extends to a continuous homomorphism g∗ : G∗/N → H (we
use the completeness of H here).

G
iG //

g

��

G∗
π

##
S

iG //

f
��

idS

OO

T

idT

OO

ϕ //

f∗

��

G∗/N
g∗

vvH π(T)
f ∗oo

idπ(T)

OO

Then g = g∗ ◦ π ◦ iG is a continuous homomorphism of G to H which extends f . This
proves the theorem.

We complement Theorem 1 in Proposition 2 by considering continuous homomor-
phisms defined on dense submonoids of topological monoids.

Example 1. Closed subgroups of completely regular paratopological groups need not be
dually embedded. Hence Theorem 1 does not extend to closed subgroups of paratopologi-
cal groups.

Proof. Let S be the Sorgenfrey line endowed with the usual topology and addition. Clearly
S is a regular (even hereditarily normal) paratopological group. Additionally, let ∆ =
{(x,−x) : x ∈ S} be the second diagonal of S× S. It is well known and easy to verify that
the subgroup ∆ is discrete and closed. Hence every character of ∆ is continuous and ∆ can
be identified with the real line Rd endowed with the discrete topology. On the one hand,
an easy calculation shows that the family of characters of ∆ has the cardinality cc = 2c,
where c = 2ω. On the other hand, the groups S and S× S are separable, so there are at
most cω = c continuous characters of S× S. Therefore, not every character of ∆ extends to
a continuous character of S× S. In other words, ∆ fails to be dually embedded in S× S. It
is also clear that not every character of ∆ admits the representation described in Lemma 1
(or in Theorem 2 that follows).

The next result is a considerable generalization of Proposition 1.
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Theorem 2. Let D = ∏i∈I Di be a product of paratopological groups and S be a subgroup of D.
Assume that for every finite set F ⊂ I, the subgroup pF(S) of DF = ∏i∈F Di is dually embedded in
DF, where pF : D → DF is the projection. Then for every continuous character χ of S, one can find a
finite set E ⊂ I and continuous characters χi of pi(S), for i ∈ E, such that χ =

(
∏i∈E χi ◦ pi

)
�S.

Proof. By Corollary 3.12 in [7], one can find a finite set E ⊂ I and a continuous character
χE of pE(S) such that χ = χE ◦ pE�S, where pE : D → ∏i∈E Di is the projection. By the
assumptions of the theorem, T = pE(S) is a dually embedded subgroup of DE = ∏i∈E Di.
Hence χE extends to a continuous character ψ of DE. According to Lemma 1, for every i ∈ E,
there exists a continuous character ψi of Gi such that ψ = ∏i∈E ψi ◦ qi, where qi : DE → Di
is the projection. Let pi : D → Di be the projection, for each i ∈ E. Since pi = qi ◦ pE and
χ = ψ ◦ pE�S, we conclude that the required equality χ =

(
∏i∈E χi ◦ pi

)
�S is valid.

Example 1 explains why in Theorem 2, we require the projections of a subgroup S ⊂ D
to finite subproducts to be dually embedded, though this does not exclude the possibility
that the theorem be valid for arbitrary subgroups of products of (para)topological groups.
Later, in Example 2, we will show that such a generalization of Theorem 2 is impossible,
even if the factors of the product D = ∏i∈I Di are topological groups.

By Theorem 1, a dense subgroup of a paratopological group is dually embedded.
Hence the next corollary is immediate from Theorem 2.

Corollary 1. Let D = ∏i∈I Di be a product of paratopological groups, S be a dense subgroup of D,
and χ be a continuous character of S. Then one can find a finite set E ⊂ I and continuous characters
χi of Di, for i ∈ E, such that χ =

(
∏i∈E χi ◦ pi

)
�S, where pi : D → Di is the projection.

The next example shows that the conditions on S for ‘dual embedding’ in Theorem 2
and ‘dense’ in Corollary 1 are essential.

Example 2. There exist countably infinite, metrizable topological abelian groups G1 and G2, and a
closed discrete subgroup ∆ of the product Π = G1 × G2 such that p1(∆) = G1, p2(∆) = G2, and
the only continuous character of the group Π is the trivial one. Here p1 and p2 are projections of Π
onto G1 and G2, respectively. In particular, the trivial character of ∆ is the only one representable
in the form described in Corollary 1.

Proof. Let G be a countable, infinite Boolean group. Then G is the direct sum of countable
copies of the group Z(2) = {0, 1}, so G is as in item (2) of Lemma 0 in [15]. Therefore,
Theorem′ on page 22 of [15] implies that G admits a metrizable topological group topology
τ1 such that the only continuous character of G1 = (G, τ1) is the trivial one.

Our first observation is that the group G1 is not precompact — otherwise continuous
characters of G1 would separate elements of G1. Since every non-zero element of the
countable group G1 has order 2, one can apply ([16], Theorem 5.28) to find an open
neighborhood U of zero e1 in G1 and a (necessarily discontinuous) automorphism f of the
group G1 such that f (U) ∩U = {e1}. In other words, the group G1 is self-transversal.

Let τ2 = { f (V) : V ∈ τ1} be the image of the topology τ1 under the automorphism
f and G2 = (G, τ2). Then f is a topological isomorphism of G1 onto G2 and the only
continuous character of G2 is the trivial one. By Lemma 1 the product group Π = G1 × G2
has the same property. Denote by ∆ the subgroup {(x, x) : x ∈ G} of the group Π. It
is clear that p1(∆) = G1 and p2(∆) = G2. The set O = U × f (U) is open in Π and it
follows from our choice of the set U that the intersection O ∩ ∆ contains only the identity
element of G1 × G2. Hence the subgroup ∆ of Π is discrete and closed. It is clear that every
character of ∆ is continuous, and that the only character of ∆ that can be expressed in the
form presented in Corollary 1 is the trivial one.

Since the subgroup ∆ of the group G1 × G2 in Example 2 is discrete, we see that
Corollary 1 is not valid for locally compact subgroups of products of topological groups.
However, it is valid for precompact abelian subgroups of product groups.
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First, we present a well-known result from [17] often called the Comfort–Ross duality
for precompact topological abelian groups. We denote the family of all characters of an
abstract group G to the torus T by Hom(G,T). Clearly, the pointwise multiplication of
characters in Hom(G,T), (χ1 · χ2)(x) = χ1(x) · χ2(x), makes it an abelian group.

Theorem 3. For every abelian group G, there exists a natural (i.e., functorial) monotone bijection
between the family of precompact topological group topologies on G and the subgroups of the group
Hom(G,T).

‘Monotone’ in Theorem 3 means that a finer precompact topological group topology on
G corresponds to a bigger subgroup of Hom(G,T). For more details on this correspondence,
see [17].

In the following theorem we do not impose any separation restrictions on the
factors Di:

Theorem 4. Let C be a precompact abelian subgroup of a product D = ∏i∈I Di of topological
groups and χ be a continuous character of C. Then one can find a finite set E ⊂ I and continuous
characters χi of pi(C), for i ∈ E, such that χ =

(
∏i∈E χi ◦ pi

)
�C, where pi : D → Di is

the projection.

Proof. The projection pi(C) is a precompact abelian subgroup of the group Di, for each
i ∈ I. We can assume, therefore, that each factor Di = pi(C) is a precompact abelian group.
Then D is also a precompact topological abelian group. For every i ∈ I, let D∧i be group
of continuous characters of Di. By ([17], Theorem 1.2), the topology of Di is initial with
respect to D∧i . Consider the family

A = {χ ◦ pi : i ∈ I, χ ∈ D∧i }.

Then each element of A is a continuous character of D, so A ⊂ D∧. Let H be the
subgroup of D∧ generated by A. Every element χ of H has the form

χ =
n

∏
k=1

χk ◦ pik , (3)

where i1, . . . , in are pairwise distinct elements of I and χk ∈ D∧ik for each k = 1, . . . , n. It is
clear that the topology of D is initial with respect to H. Since C is a topological subgroup
of D, the family of restrictions HC = {χ�C : χ ∈ H} generates the topology of C. Notice
that HC is a subgroup of C∧ ∩ Hom(C,T), so Theorem 3 implies that HC = C∧. The latter
equality, together with (3), implies the required conclusion.

Problem 1. Does Theorem 4 extend to precompact subgroups of products of paratopological
abelian groups?

The main difficulty in solving Problem 1 is the fact that the topological group reflection
of a subgroup C of a paratopological abelian group D can have a strictly finer topology
than the topology of C inherited from D∗. In other words, Lemma 4 cannot be extended to
paratopological groups. Even the very special case of Problem 1, where C is a precompact
subgroup of the product of two (precompact) paratopological groups, is not clear.

The following result extends a well-known property of continuous homomorphisms
of topological groups to a more general case when the domain of a homomorphism is a
dense submonoid of a topological monoid with open shifts. First we recall the notions of
Roelcke uniformity and Roelcke completeness in topological groups.
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Let G be a topological group and N (e) be the family of open neighborhoods of the
identity e in G. For every U ∈ N (e), the set

OU = {UxU : x ∈ G}

is an open entourage of the diagonal in G× G and the family {OU : U ∈ N (e)} constitutes
a base for a compatible uniformity on G, say, VG, which is called the Roelcke uniformity of G
(see [11], Section 1.8). If the uniform space (G,VG) is complete, we say that the group G is
Roelcke-complete.

Proposition 2. Let S be a dense submonoid of a topological monoid D with open shifts. Then every
continuous homomorphism f : S→ K to a Roelcke-complete Hausdorff topological group K extends
to a continuous homomorphism f ∗ : D → K.

Proof. Let N (e) be the family of open neighborhoods of the identity e in D. We denote by
Q the quasi-Roelcke uniformity of D whose base consists of the sets

QV = {(x, y) ∈ D× D : Vx ∩ yV 6= ∅ 6= Vy ∩ xV},

where V ∈ N (e) (see [18]). It is easy to see that the topology of D generated byQ is weaker
than the original topology of D. Additionally, let VK be the Roelcke uniformity of the
group K.

Consider a continuous homomorphism f : S→ K to a Roelcke-complete Hausdorff
topological group K with identity eK. We claim that f is uniformly continuous considered
as a mapping of (S,Q�S) to (K,VK). To this end, take an arbitrary symmetric element
U ∈ N (eK) and choose an element W ∈ N (eK) such that W2 ⊂ U. Then W ⊂ U. By
the continuity of f , we can find an element V ∈ N (e) satisfying f (V ∩ S) ⊂ W. We
are yet to verify that ( f (x), f (y)) ∈ OU whenever (x, y) ∈ QV ∩ S2, or equivalently,
( f × f )(QV ∩ S2) ⊂ OU .

Let (x, y) ∈ QV ∩ S2. Then Vx ∩ yV 6= ∅ and Vy ∩ xV 6= ∅. Since S is dense in D and
the sets Vx and yV are open in D, we can choose a point z ∈ S ∩Vx ∩ yV. It follows from
the continuity of shifts in D and the density of S ∩V in V that for z ∈ Vx ⊂ (S ∩V) · x, the
closure is taken in D. As z ∈ S, we see that z is in the closure of (S ∩ V) · x in S. Hence
f (z) ∈ f (V ∩ S) · f (x) = f (V ∩ S) · f (x), by the continuity of f ; the closure is taken in
K. Since f (V ∩ S) ⊂ W ⊂ U, the latter implies that f (z) ∈ U f (x). A similar argument,
starting with z ∈ yV, shows that f (z) ∈ f (y)U. Thus f (z) ∈ U f (x) ∩ f (y)U 6= ∅, whence
f (y) ∈ U f (x)U−1 = U f (x)U. This implies that ( f (x), f (y)) ∈ OU and proves the uniform
continuity of f as a mapping of (S,Q�S) to (K,VK).

Since the space (K,VK) is complete, f extends to a uniformly continuous mapping
f ∗ : (D,Q) → (K,VK). It follows from the density of S in D and the Hausdorffness of K
that f ∗ is a homomorphism.

Corollary 2. Let S be a dense submonoid of a topological monoid D with open shifts. Then every
continuous homomorphism f : S → K to a locally compact topological group K extends to a
continuous homomorphism f ∗ : D → K.

Proof. According to Proposition 2 it suffices to verify that every locally compact topolog-
ical group K is Roelcke-complete. The latter fact is immediate since for every compact
neighborhood U of the identity in K, every Cauchy filter ξ in the uniform space (K,VK) has
an element contained in the compact set UxU, for some x ∈ K. Hence ξ converges to an
element of K and (K,VK) is complete, where VK is the Roelcke uniformity of K.

Now we apply Proposition 2 in a less obvious way.

Theorem 5. Let S be a dense submonoid of a product D = ∏i∈I Di of topological monoids with
open shifts and f : S→ K be a continuous homomorphism to a Lie group K. If S is either finitely
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retractable or open in D, then f extends to a continuous homomorphism f ∗ : D → K. Hence, one
can find a finite set E ⊂ I and continuous homomorphisms χi : Di → K for i ∈ E, such that
f ∗(x) = ∏i∈E χi(xi) for each x = (xi)i∈I ∈ D.

Proof. Depending on whether S is finitely retractable or open, we apply, respectively,
Theorem 2.12 or Theorem 3.8(b) of [7] to conclude that f depends on a finite set E ⊂ I. In
either case, there exists a continuous homomorphism g : pE(S)→ K satisfying f = g ◦ pE�S,
where pE is the projection of D to DE = ∏i∈E Di. Then pE(S) is a dense submonoid
of DE and DE is a topological monoid with open shifts, by ([7], Lemma 3.5). Hence
we are entitled to apply Proposition 2 to the homomorphism g. Hence, there exists a
continuous homomorphism g∗ : DE → K extending g. According to Lemma 1 we can find
continuous homomorphisms χi : Di → K for i ∈ E such that g(y) = ∏i∈E χi(yi), for each
y = (yi)i∈E. Then f ∗ = g∗ ◦ pE is a continuous homomorphism of D to K extending f and
satisfying f ∗(x) = ∏i∈E χi(xi), for each x ∈ D. This implies the required equality for the
homomorphism f .

According to ([7], Theorem 5), every continuous homomorphism f : S → K of an
arbitrary subgroup S of a product D of topological monoids to a Lie group K has a finite type,
i.e., can be represented as the composition of the projection pE of S to a finite subproduct
DE of D and a continuous homomorphism of pE(S) to K. Therefore, by arguing as in the
proof of Theorem 5 and applying Proposition 2 we deduce the following:

Theorem 6. Let D = ∏i∈I Di be a product of topological monoids with open shifts, S be a dense
subgroup of D, and f : S→ K be a continuous homomorphism to a Lie group K. Then f extends
to a continuous homomorphism f ∗ : D → K, so one can find a finite set E ⊂ I and continuous
homomorphisms χi : Di → K, for i ∈ E, such that f ∗(x) = ∏i∈E χi(xi) for each x = (xi)i∈I ∈ D.

3. More on Continuous Homomorphisms of P-Modifications of Products and Their
Dense Submonoids

First we introduce notation which is used in this section and clarifies our aim.
Let X = ∏i∈I Xi be the product of a family {Xi : i ∈ I} of sets, Z be a subset of X, and

f : Z → Y be a mapping. Denote by J ( f ) the family of all sets J ⊂ I such that f depends
on J. Our main concern is to determine the properties of the family J ( f ). For example, one
can ask whether J ( f ) is a filter or whether it has minimal, by inclusion, elements, or even
the smallest element. It has been shown by W. Comfort and I. Gotchev in [19–21] that the
family J ( f ) can have quite a complicated set-theoretic structure, even if X is a Cartesian
product of topological spaces and f is a continuous mapping to a space Y. It is worth
mentioning that the thorough study of the family J ( f ) was motivated by a somewhat
simpler question on whether J ( f ) had a countable element J ⊂ I. The reader can find an
extensive bibliography related to this question in the aforementioned articles and in the
earlier survey article [22] by M. Hušek.

It turns out that the intersection of the family J ( f ), denoted by J f , admits a clear
description in terms of f . We say that an index i ∈ I is f -essential if there exist points
x, y ∈ Z such that diff(x, y) = {i} and f (x) 6= f (y). Let E f be the set of all f -essential
indices in I. By Proposition 2.2 in [23], J f = E f =

⋂J ( f ). In particular, the set J f is empty
if and only if no index i ∈ I is f -essential.

Below we present a useful fact which is not valid for arbitrary dense subgroups of
the topological group PD, the P-modifications of the product D = ∏i∈I Di of topologized
monoids Di, not even if the factors Di are finite discrete groups (see [6], Example 1).

Proposition 3. Let D = ∏i∈I Di be a Cartesian product of topologized monoids, S be a submonoid
of D with ΣD ⊂ S, and ϕ : PS → H be a nontrivial continuous homomorphism of the P-
modification of S to a topologized monoid H of countable pseudocharacter. Then the family

J (ϕ) = {J ⊂ I : ϕ depends on J}
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is a filter on the index set I.

Proof. Since the subspace PS of PD is a P-space, the homomorphism ϕ : PS→ PH remains
continuous (see, e.g., [6], Lemma 6). Notice that PH is a discrete space. Therefore, we can
assume that H carries the discrete topology. By applying ([6], Proposition 2), we find a
countable subset E of I and a continuous homomorphism ϕE of pE(S) ⊂ PDE to H such
that ϕ = ϕE ◦ pE�S, where pE : D → DE = ∏i∈E Di is the projection. It follows from
ΣD ⊂ S that pE(S) = DE. Hence ϕ̄ = ϕE ◦ pE is a continuous homomorphism of PD to H.
It follows from the definition of ϕ̄ that this homomorphism depends on E. Furthermore, if
ϕ̄ depends on F, for some F ⊂ I, then so does ϕ. It is now clear that J (ϕ̄) = J (ϕ).

Therefore, we can assume without loss of generality that ϕ is a continuous character
of PD = S. Assume that J1 ⊂ J2 ⊂ I and J1 ∈ J (ϕ). Then there exists a mapping
g : DJ1 = ∏i∈J1

Di → H satisfying ϕ = g ◦ pJ1 , where pJ1 : PD → PDJ1 is the projection.
Clearly g is a homomorphism. Since the projection pJ1 is open, the homomorphism g is
continuous. Therefore, g is a continuous homomorphism of PDJ1 to H. Let pJ2

J1
be the

projection of DJ2 to DJ1 . Then ϕ = g ◦ pJ1 = g ◦ pJ2
J1
◦ pJ2 = f ◦ pJ2 , where f = g ◦ pJ2

J1
is a

continuous homomorphism of PDJ2 . Hence, ϕ depends on J2 and J2 ∈ J (ϕ).
Let J1 and J2 be arbitrary elements of J (ϕ). It is easy to see that ker pJ1 ⊂ ker ϕ and

ker pJ2 ⊂ ker ϕ. Put J = J1 ∩ J2. Then

ker pJ = ker pJ1 · ker pJ2 ⊂ ker ϕ 6= D.

In particular, J 6= ∅ (we identify p∅ with the constant mapping of D to the identity eD of D).
It follows from the inclusion ker pJ ⊂ ker ϕ that there exists a homomorphism h : DJ → H
satisfying ϕ = h ◦ pJ (see [24], Theorem 1.48 or [6], Lemma 2). We conclude that J ∈ J (ϕ).

To sum up, the family J (ϕ) is a filter.

The reader can find several results about continuous homomorphisms or charac-
ters defined on dense submonoids and subgroups of Cartesian (equivalently, Tychonoff )
products in [6,7]. On many occasions, the conclusions there are stronger than the one in
Proposition 3.

It is natural to ask whether the filter J (ϕ) in Proposition 3 contains a minimal by
inclusion element. The next example answers this question in the negative, even if S is the
P-modification of the compact metrizable group Z(2)ω (so S is discrete). Notice that the
continuous characters of the compact group Z(2)ω are described in Proposition 1.

Example 3. Let the group G = Z(2)ω carry the discrete topology. There exist a non-trivial
character χ of G and a decreasing sequence {Jn : n ∈ ω} of infinite subsets of ω with empty
intersection such that χ depends on Jn, for each n ∈ ω. Hence the filter J (χ) does not have
minimal elements.

Proof. Let Jn = ω \ {0, 1, . . . , n}, for each n ∈ ω. Denote by 1 the point of Z(2)ω all
coordinates of which are equal to 1. Additionally, let

Hn = {x ∈ Z(2)ω : x(i) = 0 for each i ∈ Jn}.

Clearly, Hn is a subgroup of G and Hn ⊂ Hn+1, for each n ∈ ω. Hence H =
⋃∞

n=0 Hn is also
a subgroup of G. Since 1 /∈ H, there exists a character χ of G such that χ(H) = {1} and
χ(1) = −1. It is immediate from the definition that χ depends on Jn, for each n ∈ ω. Since⋂∞

n=0 Jn = ∅, the family J (χ) has no smallest element. Taking into account that J (χ) is a
filter (see Proposition 3), we infer that it does not contain minimal elements either.

Since the subgroup H of G in the proof of Example 3 is dense in G = Z(2)ω provided
the latter group is endowed with the usual Tychonoff product topology, the above character
χ is discontinuous on the compact group Z(2)ω . It turns out that considering the Tychonoff
product topology improves the situation greatly — the family J (χ) always has a finite
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minimal (by inclusion) element, for each continuous character χ of an arbitrary subgroup G
of a product of left topological groups. This conclusion can be recovered using techniques
from [9] in the special case where G itself is a product of topological groups, but the reader
can find a direct argument in the more general Proposition 2.1 of [7].
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