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There was an error in the original article [1]. In the proof of lemma 5, Equation (19) is incorrect. A correction has been made to the proof of Lemma 5 in Section 2 Vector fields on   M / G   to the fifth, sixth and seventh paragraphs.



The corrected fifth paragraph is:



The module   X   ( B )  H    of H invariant smooth vector fields on B is finitely generated by polynomial vector fields, see [16], and we denote a generating set by    {  X j  }   j = 1  N  . Hence, every H invariant smooth vector field   X B   on B is of the form    X B  =  ∑  j = 1  N   h j   X j    for some    h 1  , … ,  h n  ∈  C ∞   ( B )   . Similarly, every K invariant smooth vector field on   B  ( K )    can be written as    ∑  j = 1  N   f j   X j   , where    f j  ∈  C ∞   (  B  ( K )   )   . Since   B  ( K )    is open and dense in B, a generic   f ∈  C ∞   (  B  ( K )   )    need not extend to a smooth function on B. Therefore a generic vector field on   B  ( K )    need not extend to a smooth vector field on B. On the other hand, the H invariant vector field   X  B  ( K )     on    B  ( K )   ,   is obtained above from a smooth bounded vector field Y on   B / H  . Therefore


   X  B  ( K )     ( x )  =  ∑  j = 1  N   k  j ∣  B  ( K )      ( x )   X j   ( x )  ,  



(19)




for each   x ∈  B  ( K )   ⊆ B ⊆  R n  ,   where every    k j  ∈  C ∞   (  R n  )   , and   k  j ∣  B  ( K )      is the restriction of   k j   to    B  ( K )    .



Since   B  ( K )    is open and dense in B, we may define


  X  ( x )  =       X  B  ( K )     ( x )      if   x ∈  B  ( K )          ∑  i = 1  N   lim  k → ∞    k j   (  x k  )   X j   (  x k  )  ,     where    {  x k  }  ⊆  B  ( K )     and   x =  lim  k → ∞    x k  ∈ B \  B  ( K )   ,       



(20)




provided that    lim  k → ∞    k j   (  x k  )    exists and is unique. Since the vector fields    X j   (  x k  )    are smooth on B,


   lim  k → ∞    k j   (  x k  )   X j   (  x k  )  =  (  lim  k → ∞    k j   (  x k  )  )   X j   (  lim  k → ∞    x k  )     for   every   j = 1 , … , N .   











The corrected sixth paragraph is:



Moreover, since   B  ( K )    is open and dense in   B ,   it is open and dense in   B ¯  , the closure of B. In Equation (19), each function   k  j ∣  B  ( K )      is the restriction to    B  ( K )   ⊆ B ⊆  R n    of a smooth function   k j   on    R n   . Moreover, the choice of polynomial basis    {  X j  }   j = 1  N   ensures that the right-hand side of Equation (19) extends to the closure   B ¯   of B. Hence all the the limits    lim  k → ∞    k j   (  x k  )    in Equation (20) exist, and   X ( x )   is defined for all   x ∈ B  .



The corrected seventh paragraph is:



We need to show that this definition of X on B depends only on   X  B  ( K )    . Since each   k j   is continuous on B and its first partial derivatives are bounded on   B ¯  , it follows that   k j   are uniformly continuous on    B ¯   . In particular, if   c :  [ 0 , 1 ]  →  B ¯    is a smooth curve, such that   c  (  [ 0 , 1 )  )  ⊆  B  ( K )     and   c ( 1 ) ∈ B  , then


   k  j ∣ B    ( c  ( 1 )  )  =  k  j ∣ B    ( c  ( 0 )  )  +  ∫  0  1    ∂  k  j ∣ B     ∂ t    ( c  ( t )  )  d t =  k  j ∣  B  ( K )      ( c  ( 0 )  )  +  ∫  0  1    ∂  k  j ∣  B  ( K )       ∂ t    ( c  ( t )  )  d t .  











Thus, the values of   k j   on B are uniquely determined by   k  j ∣  B  ( K )     . Repeating this argument for all the first-order partial derivatives of   k j  , we deduce that the first-order partial derivatives of   k j   on B are uniquely determined by   k  j ∣  B  ( K )      and its first partial derivatives. Continuing this process for every partial derivative of every order shows that the restriction of   k j   to B is uniquely determined by   k  j ∣  B  ( K )     .



The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original article has been updated.
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