
axioms

Article

A Method for Visualizing Posterior Probit Model Uncertainty in
the Early Prediction of Fraud for Sustainability Development

Shih-Hsien Tseng 1,* and Tien Son Nguyen 2

����������
�������

Citation: Tseng, S.-H.; Nguyen, T.S.

A Method for Visualizing Posterior

Probit Model Uncertainty in the Early

Prediction of Fraud for Sustainability

Development. Axioms 2021, 10, 178.

https://doi.org/10.3390/

axioms10030178

Academic Editor: Hari

Mohan Srivastava

Received: 20 June 2021

Accepted: 1 August 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Management, National Taiwan University of Science and Technology,
43 Sec. 4 Keelung Road, Daan District, Taipei 106335, Taiwan

2 Institute of Industrial Management, National Central University, 300 Zhongda Road, Zhongli District,
Taoyuan City 32001, Taiwan; tonynfu16@gmail.com

* Correspondence: shtseng@mail.ntust.edu.tw

Abstract: Corporate fraud is not only curtailed investors’ rights and privileges but also disrupts
the overall market economy. For this reason, the formulation of a model that could help detect any
unusual market fluctuations would be essential for investors. Thus, we propose an early warning
system for predicting fraud associated with financial statements based on the Bayesian probit model
while examining historical data from 1999 to 2017 with 327 businesses in Taiwan to create a visual
method to aid in decision making. In this study, we utilize a parametric estimation via the Markov
Chain Monte Carlo (MCMC). The result show that it can reduce over or under-confidence within
the decision-making process when standard logistic regression is utilized. In addition, the Bayesian
probit model in this study is found to offer more accurate calculations and not only represent the
prediction value of the responses but also possible ranges of these responses via a simple plot.

Keywords: financial statement fraud; bayesian probit model; standard logistic regression; Markov
Chain Monte Carlo

MSC: 62F15; 65C40

1. Introduction

In the last few decades, many senior managers have been caught using phony financial
statements to cheat stakeholders or manipulate stock prices in an attempt to funnel profits.
As such, corporate fraud has long been a serious problem, particularly when it involves
financial statements. Ironically, the information contained in these documents has remained
as one of the key indicators that fraud has taken place [1,2]. Fraudulent activities have not
only directly resulted in significant losses for stakeholders and severe punishments for the
accounting institutions involved, but they have also significantly altered trading practices
in the financial market. According to the Association of Certified Fraud Examiners (ACFE)
in 2020, a total of 2504 cases from all over the world with an average loss of 5% revenue
was due to corporate fraud which is equivalent to the loss of Gross World Product (GWP)
about USD 3.6 trillion [3]. Although it is possible to detect corporate fraud, the ACEF still
holds that it is indeed ubiquitous, and that no organization can be completely immune
from this threat. The complex causes of fraud are explained in the agency problem theory,
earning management, fraud triangle, and the GONE theory [4]. According to the fiduciary
norm, managers must act solely in the interests of the principal, neglecting all others [5].
If the principal and agent are at odds, the latter will tend to focus on his or her interests
which has attracted much attention over the years. Moreover, Song, et al. [6] have voiced
concern over the privatization of many state-owned businesses in China, which may be
problematic because, previously, the interests of state-owned companies have aligned with
those of the nation. However, with privatization comes market-oriented goals, meaning
effective performance and profit become the primary objectives for the corporation.
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Although earnings management in and of itself is a legitimate practice, corporate
managers often manipulate it for their benefit. For example, they interfere with financial
reporting when preparing statements to purposely mislead readers [7] and the public about
the performance of specific enterprises [8], which may cause investors to make misinformed
decisions. In this way, unethical earnings management may lead to fraudulent financial
reporting. The fraud triangle theory was firstly proposed by Cressey [9], which effectively
explains various aspects of this crime and has become the foundation of SAS No. 99. Many
scholars have applied this theory in a variety of ways [10]. For instance, Brennan and
McGrath [11] argue that the most common form of this crime is the creation of fraudulent
transaction records to meet expected profit levels. According to Skousen et al. [12], the
rapid growth of company assets, the need for cash, and an increase of external capital
are frequent indicators that fraud is taking place. In a study of 64 British firms accused
of fraud, Hollow [13] discovered that financial pressure plays a critical role in this crime.
Bologna, Lindquist, and Wells [4] proposed the GONE theory, which posits that greed,
opportunity, need, and exposure is closely associated with fraud. From this perspective, it
becomes obvious that greed and need are personal factors while opportunity and exposure
are environmental or systemic. Although all four features must be present for fraud to
occur, they do not need to exist simultaneously.

Altman [14] proposed the following five financial ratios to effectively determine
such difficulties: (1) the ratios of current assets/total assets, (2) retained earnings/total
assets, (3) earnings before interest and taxes (EBIT)/total assets, (4) equity value/total
liabilities, and (5) total sale value/total assets. This model has also been used to predict
the bankruptcy risk of various companies. The lower the company scores, the higher the
possibility of bankruptcy. Likewise, if a company is in grave danger, the manager will be
under extreme financial pressure. According to Cressy’s fraud triangle theory, the stress of
this kind tends to promote corporate fraud. Also, Persons [1] found that financial leverage,
asset turnover rate, asset portfolio, and the size of the company are closely associated
with fraudulent financial reporting. Thus, managers of smaller companies with high
levels of financial leverage and low asset turnover rates will be most likely to commit
financial reporting crimes. The findings from many empirical studies indicate that the
type of corporate governance greatly impacts the behavior of managers and the company’s
overall performance [15–17]. Xie, et al. [18] hold that large boards will be more likely to
be comprised of experts with a variety of backgrounds and areas of specialization, who
will be able to contribute to the effective supervision of managers and, thus, mitigate the
agency problem. According to Beasley [15], if the board has a high percentage of external or
independent directors who have extended terms of office, and the company has a significant
number of external shareholders, the possibility of fraud will be greatly reduced.

The logistic regression model has long been studied for academic studies of fraud,
and it remains the prevailing technique for studying this devastating crime. However,
many scholars have attempted to include various perspectives to improve its flexibility.
Specifically, they included related variables such as conventional financial indicators [1],
audit quality [19,20], corporate governance [15–17], and the principle of stability [21,22] in
the fitted models. Lin [23] integrated the principles of conventional financial indicators,
corporate governance, and stability into the fitted model and showed better performance
than the considered conventional financial indicators and the corporate governance factor
within the model. Ensemble modeling techniques have become increasingly popular to
enhance classification accuracy [24–26]. Recently, Tseng et al. [27] employed these methods
to investigate the impact of bias, multicollinearity, and erroneous input patterns on model
analysis. In other words, if parameter uncertainty in the fitted model is not considered, this
oversight might easily lead to erroneous inferences and flawed estimates of quality. The
purpose of this study is to take this critical element into account for generating multiple
models from the posterior distribution through Bayesian probit modeling via Markov Chain
Monte Carlo (MCMC). We implemented the MCMC method for developing relatively
realistic predictive models largely from the posterior distribution even in the absence of
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closed-form parameters. Also, we show the visual distribution of the prediction values for
better understanding the results under comparison of two models. In addition, we construct
13 indicators of corporate governance and provide a financial overview to improve fraud
detection. This study is motivated by the following questions: (1) How to visualize the
effects of uncertainty bias for better decisions? How to handle the overestimation or
underestimation of statistical models? (3) Which method can enhance the predictive power
and ameliorate the effects of model uncertainty? To answer these questions, we aim to
reduce the bias of parametric estimation based on the Bayesian probit model and compare it
with the standard logistic model through visualization. This study is organized as follows:
the review of related studies, analysis of the causes of fraud, and a description of the
predictive model are shown in Section 2. In Section 3, we present the structure of the model
and define the variables. Section 4 provides an in-depth discussion of the data gathering
process, parametric estimation, and analysis of the results while Section 5 includes the
conclusion and recommendations for future research.

2. Literature Review
2.1. Related Studies of Fraud Detection

Fraud detection has been studied for a long time, with many techniques and models
such as logistic models, decision trees, artificial neural networks [28–30], support vector
machines [31], and random forests [32] or data engineering methods [33] which have
proven to be quite precise. The most famous model is the Z-score, which is commonly used
even nowadays for predicting financial distress and fraud [34]. Summers and Sweeney [35]
used the logit model to study 51 companies that were under investigation by The Wall
Street Journal for financial statement fraud from 1980 to 1987. The researchers matched
the samples from the same number of no-fault companies following the standard industry
classification code (SIC code). They found that company insiders who commit fraud tend to
sell significant numbers of shares in order to reduce the quantity available for others to buy,
which obviously also reduces the percentage of shares held by the company. Imhoff [36]
suggests that substantive change is necessary to improve corporate governance. Problems
with accounting or auditing procedures will not be solved until boards are given sufficient
information to operate independently and are allowed to act on behalf of the shareholders.

In practice, fraudulent financial reporting is associated with managers who can easily
override or change the internal control procedures while appearing to be loyal to the
company [15]. Under these circumstances, managers can easily manipulate earnings and
present falsified financial reports. Desai [37] suggests that many corporate scandals have
been caused by the exaggeration of profits. Managers tend to report gross profits in the
capital market and taxable profits to governmental agencies to avoid paying taxes, which
leads to the creation of fraudulent financial statements. Davidson, et al. [38] studied the
effect of corporate governance on earnings management by analyzing 434 companies listed
in the exchange. They discovered that most non-executive directors on the board and
audit committees would be less likely to manipulate earnings if the board is independent.
Perols and Lougee [39] argue that managers engaged in acts of fraud begin to manipulate
earnings a few years before the crime is detected. The level of adjustment may even
exceed that of predicted growth, or they may exaggerate their revenues to commit financial
statement fraud.

Many researchers also suggest that the quality of audits can be guaranteed [19], and
fraud will much less likely [40] if financial statements are audited by large accounting firms.
Although this theory is not directly observable, Hribar, Kravet, and Wilson [20] who used
accounting fees as a surrogate variable, found that the size of the fees may reflect the level
of reliability of the statements. Kamarudin, Ismail, and Mustapha [22] have a different
perspective on this controversial issue. After analyzing data from 184 companies from
2003 to 2010, they found that most that were guilty of fraud tended to practice “aggressive
accounting” including claiming revenue prematurely or over-optimism and the timely
identification of loss. Although these practices are not against the law, they are considered
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negligent because their presence indicates that financial statements must be compiled a
second time which calls into question the reliability and quality of financial reporting. In
recent years, data mining and machine learning techniques have shown many advantages
to traditional statistical tools in fraud detection, but we are still trying to explain this
“black box” to reduce the bias of models [26]. Perols [28] found that logistic regression
outperforms neural networks and decision trees. Furthermore, the Bayesian Belief Network
model outperforms decision trees and neural network models for identifying fraudulent
financial statements, and it also can utilize ten-fold stratified cross-validation [30]. Also,
many scholars and practitioners prefer the Bayesian methods rather than machine learning
or deep learning models due to the limit of data and lack of interpretability [41]. After
analyzing the development of fraud detection models, it becomes clear that the accuracy of
models depends heavily on gauging financial indicators.

2.2. Comparing the Bayesian Probit Model to the Standard Logistic Model

Over the years, many scholars have performed logistic analysis using the Bayesian
model [42–45] to correct parametric estimation errors and establish a more realistic model.
This method has been extensively applied to various domains of research. Gerlach, et al. [46]
applied the Bayesian probit model to 63 items within financial statements and used step-
wise regression to select appropriate variables to create a logistic model specifically for
forecasting changes in corporate earnings. Lately, the Bayesian probit model, which is
widely used in the domain of statistics, has attracted much attention in the field of so-
cial science [47]. In a similar vein, Rossi, et al. [48] adopted this model to analyze many
marketing problems and help managers make more informed decisions. The difference
between the Bayesian probit model and the standard logistic model is that the estimation of
parameters under the latter is based on the Maximum Likelihood Estimation (MLE). This
iterative method of calculation is necessary for determining non-linear solutions, which
causes the expression of parameters to be in closed-form. After calculating the coefficient,
the chi-square can be used to test its significance. Another common method is the Wald
test, which conforms to the standard normal distribution with a null hypothesis [49].

Although some researchers argue that the most effective sample size for the standard
logistic model is only ten or more [50], the process of mathematical inference requires a
larger sample size that is substantial enough to effectively approximate the chi-square or
normal distribution. However, the prior assertion cannot be ignored. Researchers always
use a sample size of less than 100 for corporate fraud studies due to the prolonged time
it takes to reach verdicts in such cases. For this reason, there are not enough types of
samples to conduct a valid study. These limited sample sizes remain one of the inherent
shortcomings of the standard logistic model. In addition, that model operates through
the paring of samples. The common ratio of pairing companies that have been accused of
fraudulent activities with no-fault companies is 1:1 or 1:2. In reality, it would be difficult
to find two companies of similar size in the same industry. For example, in an oligarchic
market, the size of companies varies significantly. At this point, because it is so difficult
to find companies in good standing to use for analysis, the results of this study would be
somewhat biased. This is yet another shortcoming of the logistic model. Although it is
unnecessary to assume that the independent variables are from the normal distribution,
after model fitting and computing the confidence interval between the independent and
the dependent variable, the standard normal distribution method of the Wald test is
required. Therefore, this model may not be stable enough to detect fraud, which is a third
shortcoming of the standard logistic model. Whether or not the results from this model can
effectively map the relationship between the variables, is another issue to be explored in
the future.

Due to these shortcomings, we adopted the Bayesian probit model in conjunction with
the MCMC for this study to overcome the aforementioned constraints [51]. After utilizing
simulation to redistribute the parameters, we compared the posterior probability to the
prior probability via the Bayesian probit model to create a realistic scenario. This model is
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also more effective and stable than others for determining early signs of fraud. In summary,
this model can help to effectively eliminate the bias of parametric estimation. However, it
has not been popularly applied by researchers in particular of financial statement fraud.
Thus, the objective of this study is an attempt to use the Bayesian probit model to more
effectively analyze financial statement fraud and compare it to the results of the standard
logistic model to provide a more accurate reference and decision-making guide.

3. Methods
3.1. Notations

In the Bayesian probit model, we noted y that represents corporate fraud as 1, while
all others were noted as 0. Therefore, the equation for determining the probability of fraud
is F(xi; β) = P(yi = 1|xi; β), and non-fraud is P(yi = 0|xi; β) = 1− F(xi; β). As such, the
logistic function g(xi) is also referred to as an odds ratio, as expressed in the equation
below:

g(xi) = ln
F(xi|β)

1− F(xi|β)
= β0 +

p

∑
j=1

β jxij + εi (1)

where i = 1, 2, . . . , n. that represents the sample size of the model; j = 1, 2, . . . , p.
symbolizes the individual variables; F(xi; β) is the probability of fraud while εi represents
the residual effects.

For the logistic function, parameter β was calculated via MLE, and the ith term like-
lihood function was determined as li(β) = F (xi|β) yi [ (1− F(xi|β)] 1−yi , which could be
expanded into Equation (2). I assumed that each variable was independent, and that the
likelihood function of the model would be the product of all items, as shown in Equation (3).
According to the Bayesian inference, the posterior probability would be directly propor-
tional to the product of the likelihood function and prior probability, which is shown in
Equation (4).

li(β) =

(
eβ0+β1Xi 1+β2Xi 2+...+βpXi p

1 + eβ0+β1Xi 1+β2Xi 2+...+βpXi p

)yi
(

1− eβ0+β1Xi 1+β2Xi 2+...+βpXi p

1 + eβ0+β1Xi 1+β2Xi 2+...+βpXi p

)(1−yi)

(2)

l(β) =
n

∏
i=1

( eβ0+β1Xi 1+β2Xi 2+...+βpXi p

1 + eβ0+β1Xi 1+β2Xi 2+...+βpXi p

)yi
(

1− eβ0+β1Xi 1+β2Xi 2+...+βpXi p

1 + eβ0+β1Xi 1+β2Xi 2+...+βpXi p

)(1−yi)
 (3)

P(β|Y, X) =
P(Y, X|β)P(β)

P(Y, X)
∝ Likelihood× prior (4)

Furthermore, we summarize the sequence of the proposed method as a flowchart in
Figure 1.

3.2. MCMC Parameter Estimation

There has recently been a resurgence in the use of Bayesian regression methods, in part
due to the popularity of the MCMC approach [48]. In this study, our model was derived
from a combination of the Markov Chain and the Monte Carlo methodologies. Based on
random sampling from the Markov Chain, the Monte Carlo method is used to estimate
the integration of problems that have no analytical solutions or to analyze difficult and
complicated probability distributions.

When employing the Markov Chain, we assumed that if β0, β1, β2, . . . are a se-
ries of random variables, then βt+1 would be generated from the conditional probabil-
ity of P(βt+1

∣∣βt) , and its value would only depend on βt and would not be related to{
β0, β1, β2, . . . , βt, βt−1}. When time t increases, the distribution would become station-

ary and independent from t and β0. However, if the probability could not fit into a standard
distribution, we would need to apply the Monte Carlo method to obtain an accurate esti-
mation. For instance, if β is the random variable of the model parameter, and we assume
that it conforms to the posterior probability distribution π(β), then f (β) would be the



Axioms 2021, 10, 178 6 of 22

expected value of the probability distribution, as shown in Equation (5). Sometimes, if it is
too difficult or even impossible to calculate the integration using Equation (5), we employ
the Monte Carlo integration, which is based on random sampling from π(β) for selecting{

β1, β2, . . . , βm} and can be used to accurately estimate the mean value of the samples to
approximate the expected value of the probability distribution f (β). The process is shown
in Equations (5) and (6):

E[ f (β)] =
∫

f (β)π(β)dβ (5)

E[ f (β)] ≈ 1
m

m

∑
t=1

f (βt) (6)

where βt represents the tth sampling result when t ≥ 0.
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It becomes clear that if the initial value were different, the average estimation result
would also change. Thus, if we could establish that φ() = π(), we could ignore the burn-in
sample of the previous rth test, utilize the sampling result with interval k, and solve the
above problem via Equation (7).

E[ f (β)] = lim
m→∞

1
m− r

m

∑
t = r + 1

f (βt) (7)

In this study, we applied the Gibbs sampling method (an MCMC algorithm), a spe-
cial type of the Metropolis-Hastings algorithm proposed by [52] to obtain the following
observations. According to this method, we determined the result of the ith sampling of
β =

(
β0, β1, . . . , βp

)
from the mth sampling as βi =

(
βi

0, βi
1, . . . , βi

p

)
by following the

three steps shown below.
Step 1: We found the initial value of β0 =

(
β0

0, β0
1, . . . , β0

p

)
of a given parameter and

set the sampling frequency to m.
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Step 2: We conducted an ith + 1 sampling to determine the value of βi+1 =(
βi+1

0 , βi+1
1 , . . . , βi+1

p

)
and updated the value for each instance, as shown in Equation (8).

βi+1
0 ∼ φ0

(
β0

∣∣∣βi
1, βi

2, . . . , βi
p, Y, X)

βi+1
1 ∼ φ1

(
β1

∣∣∣βi+1
0 , βi

2, . . . , βi
p, Y, X)

...
βi+1

p−1 ∼ φp−1

(
βp−1

∣∣∣βi+1
0 , βi+1

1 , . . . , βi
p, Y, X)

βi+1
p ∼ φp

(
βp

∣∣∣βi+1
0 , βi+1

1 , . . . , βi+1
p−1, Y, X)

(8)

Step 3: We used the parametric values from the sampling to repeat step 2 until we
reached the end of the mth sample.

After estimating via the Gibbs sampling, in order to verify that the Markov Chain
reached stationarity, we used the Autocorrelation Function (ACF) to monitor the conver-
gence of the chain [48,53]. Then, we selected the number series {βm : m = 0, 1, 2, . . .} from
the m value of the Markov Chain. When m approximated infinity, βm changed to β. At
this point, β was the random variable from the joint probability distribution, f (β) and we
accomplished our estimation goal.

3.3. Creating the Fraud Detection Model

During the data-gathering phase, n represents the total number of companies and Xi
signifies all the predictive variables of the ith company. These could include continuous or
dispersed variables, such as financial indicators, corporate governance variables, principles
of stability, and the size of the company, which will be explained in detail in Section 3.4. In
the model, if yi = 1, this would indicate that an act of fraud had taken place at ith company.
If yi = 0, this would suggest that employees at ith company were innocent of this crime. In
this study, my analysis was based on the binary probit model language of the R statistical
software for sampling and estimation, as shown in Equation (9).{

yi = 1 i f zt ≥ 0
yi = 0 i f zt < 0

zi = Xiβt + εi, εi ∼ N(0, 1)
∀ i = 1, 2, . . . , n, ∀ t = 0, 1, 2, . . . , p (9)

where Yi = (y1, y2, . . . , yn) is a vector of n× 1 which is used to determine if employees at
the ith company which is engaged in fraud. Zi = (z1, z2, . . . , zn) is also a vector of n× 1
and the aggregate of the continuous potential variables that correspond to Yi. As such, the
model structure that corresponds to the ith company is shown in Equation (10).

Xi,t =


1 x1,1 x1,2 · · · x1,p
1 x2,1 x2,2 · · · x2,p
...

...
...

...
...

1 xn,1 xn,2 · · · xn,p


n×(p+1)

, βt =


β0
β1
...

βp


(p+1)×1

, εi =


ε1
ε2
...

εn


n×1

(10)

In this model, the cutoff point of value in the judgment of {Yi} differs from that in the
logistic model. Thus, before we could begin any analysis, we converted the scope covered
by {Xi} to a range within the closed-form of [−1, 1] [48], as shown in Equation (11).

{Xi} =
original{Xi} −

Max(original{Xi})+Min(original{Xi})
2

Max(original{Xi})−Min(original{Xi})
2

(11)

In the fraudulent financial statement prediction model proposed in this study, the
only observed values were {Xi} and {Yi}. The estimation parameters were the aggregate
of β in the multiple of p + 1 denoted as {βt} = (β0, β1, . . . , βp) while the posterior
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probability {βt} featured the closed-form parameters. As such, I used the Gibbs sampling
of the posterior probability distribution to estimate the joint probability distribution of f (β)
of {βt}.

3.4. Description of Variables

In this study, the fitted model has constructed 14 variables that are similar to Lin [23].
The operational definitions are discussed below:

• Dependent Variables:

We used binary classification to categorize the variables in this equation. The fraudu-
lent company was noted as 1 and the no-fault company was 0.

• Independent Variables:

In this study, there were 13 independent variables from the following categories: the
“five financial ratios,” proposed by Bernstein [54], included profitability, liquidity, growth,
utility, and financial structure (Table 1), corporate governance variables (Table 2), and
conservative accounting variables.

Table 1. Independent Variables from Bernstein and Wild Bernstein [54].

5 Financial Ratios Equation Index Index Equation

Profitability (β1) Revenue growth ratio Revenue growth ratio (Net income of T period–Net income of
T-1 period)/(Net income of T-1 period)

Liquidity (β2) (Current ratio + Working
capital ratio)/2

Current ratio Current assets/Current liabilities

Working capital ratio (current assets—current
liabilities)/Total assets

Growth (β3)
(Ratio of return on assets +

Net profit rate + Net
operating profit ratio)/3

Return on assets ratio Income after taxes/Total assets

Net profit ratio Income after taxes/Sales revenue

Net operating profit ratio Net operating income/Sales revenue

Utility (β4)
(Accounts receivable to total

assets ratio + Sales to total
assets ratio)/2

Accounts receivable to total
assets ratio Accounts receivable/Total assets

Sales to total assets ratio Sales revenue/Total assets

Structure (β5)
Debt ratio + Net liabilities

ratio)/2
Debt ratio Total liabilities/Total assets

Equity Ratio Total liabilities/Shareholders’ equity

Table 2. Independent Variables from Corporate Governance.

Corporate Governance Variable Equation/Explanation

Number of board members (β6) Number of directors

Ratio of external directors (β7) The ratio of the number of external directors to total
director’s seats

The chairman also holds the position of general manager (β8)
Dummy variable, chairman who also holds the position of

general manager is represented by 1. If not, it is represented
by 0.

Percentage of shareholding by directors (β9) The quantity of shares held by the directors/Total outstanding
shares at the end of the period.

Percentage of shareholding by institutional investors (β10) The ratio of institutional investors in the company.

Deviation between one’s voting rights and earnings (β11) Voting rights minus earnings distribution rights
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We adopted Givoly and Hayn [21] hypothesis of stable variables, which states that
the greater the Conservative Accounting (CONACC) value, the more conservative the
accounting policy of the company.

CONACC(β12) = −
1
3

0

∑
t=−2

(Earnings before extraodinary items+
depreciation− cash flow from the operation)

Total assets at the beginning of study timeframe

• Control Variables

Size of the company β13 = ln (Asset Size).

4. Bayesian Modeling
4.1. Sample Data

In this section, we applied the data organization as Lin [23] for adapting the framework
and utilizing the MCMC method to thoroughly analyze. The income is chosen before
extraordinary gain (loss). However, since enterprises in Taiwan have already adopted the
IFRS accounting standards, income (loss) for continuing is more appropriate than before.

TA(β12) = [income (loss) for continuing + depreciation − cash flow from opera-
tions]/average total assets:

CONACC = −1
3

0

∑
t=−2

TA (12)

We analyzed companies that had been convicted of fraud in a court of law for crimes
such as insider trading, stock price manipulation, and fraudulent financial statements
between 1999 and 2017. The reason we used the dataset until 2017 was because most of
the recent investigations could not be completed yet. Of the 327 companies investigated,
109 were found guilty. The 1:2 ratio method was used to match them with 218 companies
that had not engaged in fraud (see Table 3).

Table 3. Description of fraud samples.

Definition of Fraud
According to Statements on Auditing Standards (SAS) No. 43: One or more managers, those in

governance, or employee level personnel have deliberately used deception to obtain improper or
illegal gains.

Fraud Sample
Screening Methods

Announcements by the Securities and Futures Investors Protection Center
Court Judgments

Fraud Sample Years 1999–2017

Fraud Sample Types

Type 1 Stock Price Manipulation 42

Type 2 Falsifying Financial
Statements 32

Type 3 Insider Trading 35

Total 109

Moreover, 109 companies that had engaged in fraud spanned a total of 35 different
industries. Although the crimes covered a wide range of industry categories, they did
not all include special financial statement layout items such as the financial industry,
securities, or insurance industries and were very similar in this way. The selection criteria
used for pairing companies were based on the industry to which the fraudulent company
belonged, and the fact that the asset gaps did not exceed 40% during the same year. The
goal is to match two innocent companies with one guilty company of fraud. Corporate
information data published by the Taiwan Economic Journal (TEJ) was used in the study.
We collected all the data from the year the fraudulent activities took place (T), 1 year prior
to the fraudulent activities (T-1), 2 years prior (T-2), and 3 years prior (T-3). Data from
327 enterprises and a total of 981 data items were used to establish the analysis model. The
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fraud distribution by industry is shown in Table 4. According to Table 4, a large portion of
the fraud detection is from the semiconductor industry with 10.1%, while motherboards
stay behind with 7.3%, compared to 35 different industries. In addition, most of the frauds
were detected from the 2005–2009 period compared to other periods. Besides, around 30%
of industries were detected as fraud with only one company from 1999 to 2017 such as
glass ceramics, communication equipment or foods, and animal feed.

Table 4. Distribution of companies engaged in fraud by industry and year.
19

99

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

To
ta

l

Pe
rc

en
ta

ge

Hardware and Furniture 1 1 2 1.8%

Motherboards 1 2 2 1 2 8 7.3%

Semiconductors 3 2 1 1 1 1 2 11 10.1%

Petrochemicals 1 1 1 3 2.8%

Optoelectronics 1 1 1 1 1 1 1 7 6.4%

Garments 1 1 2 1.8%

Bicycles 1 1 2 1.8%

Automotive Components 1 1 1 3 2.8%

Textiles 1 1 1 1 4 3.7%

Basic Metals 1 1 1 1 4 3.7%

Metal Products 1 1 2 1.8%

Construction 1 1 1 1 1 1 6 5.5%

Glass Ceramics 1 1 0.9%

Ocean Freight 1 1 0.9%

Freight Warehousing 1 1 0.9%

Software Services 1 2 1 4 3.7%

Communication equipment 1 1 0.9%

Weaving 1 1 0.9%

Dairy 1 1 2 1.8%

Information Channels 1 1 1 2 5 4.6%

Electronics Equipment 1 1 1 1 4 3.7%

Electronic Components 3 1 1 2 1 2 1 1 12 11%

Electrical Wires 1 1 0.9%

Electrical Products 1 1 2 1.8%

Network Equipment 1 1 1 3 2.8%

Shoes and Suitcases 1 1 0.9%

Resin 1 1 2 1.8%

Machinery Industry 1 1 1 1 4 3.7%

Medical Supplies 1 1 2 1.8%

Medical Pharmaceuticals 1 1 2 1.8%

Chemical Material Products 2 2 1.8%

Other Electronics 1 1 0.9%

Tourism and Dining 1 1 0.9%

Foods and Animal Feed 1 1 0.9%

Cement Products 1 1 0.9%

Total 1 4 3 2 2 9 13 13 10 9 4 5 4 7 9 5 5 4 109 100%
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4.2. Prior Distributions

The corresponding probability distributions prior to estimation were assigned to all
unknown parameters in the model, including the 14 constant terms. The β prior probability
β in this study was set as the average and the A−1 normal distribution of the variances,
which were calculated using β Equation (13) by A−1 with v0 = 3 [48].

β =


0
0
M
0


14×1

, A = v0SX = v0


s2

1 0 Λ 0
0 s2

2 Λ 0
M M O M
0 0 Λ s2

14


14×14

(13)

where SX = diag
(
s2

1, s2
2, K, s2

14
)

and s2
j =

∑i(xij−xj)
2

n−1 .

4.3. Sampling and Modeling

The parameter of the Bayesian probit model used in the study was estimated according
to the MCMC procedure described in the previous chapter. The number of Gibbs samplings
was set to 1 million (R = 1 million), the sampling interval was 10 (keep = 10), and a total of
100 thousand iterations were obtained. Next, the first 20 thousand sampling results were
discarded (burn-in = 20 thousand) and the remaining 80 thousand were determined as the
joint probability distribution of the parameters, which were used to calculate the detection
capacity and range of the fraud warning model.

K-fold cross-validation was used in this study to establish and analyze the model. The
327 companies were divided into 10 groups according to the three different years using a
ratio of 1:2 between fraudulent and non-fraudulent companies. The first nine groups were
made up of 33 companies, and the last group contained only 10. I used one as a test group,
and the remaining nine were used as training sets. The testing was carried out 10 times,
and a different group was chosen to be the test set each time to most efficiently calculate
the predictive ability of the model. Besides the first-order term, an interaction term (full
second-order) is also added that could represent the analysis results by a particular degree
according to Allen and Tseng [55].

4.4. Prediction Results from the Standard Logistic and Bayesian Probit Models

The results of the first-order model are shown in Figures 2–4. Each graph on the
box-and-whisker plot was drawn according to the prediction results and was estimated
from 80,000 iterations using MCMC. The red dot represents the prediction result of the
general logistic model. According to the Cross-Validation result in Figure 2, only Set 4 and
Set 8 are stable by using the general logistic model, while others are uncertain in the T-1
period. In the T-2 period, most of the logistic model predictions are stable more than in
the T-1 period but the uncertainty seems to increase during the T-3 period. Overall, the
figures show that the single result of the logistic model fell within the 80,000 iterations that
were estimated using MCMC, which indicates that the logistic model results were quite
unstable. However, the MCMC was able to estimate the overall distribution and provided
more abundant information.

4.5. Comparison of the One-Time Model and the Interaction Term Model

Moreover, Figures 5–7 illustrate the results of the first order and the interaction term
models. Each graph on the box-and-whisker plot was also drawn based on the prediction
results from 80,000 iterations that were estimated using the MCMC. The red dot represents
the prediction result of the general logistic model. The figures also indicate that this model’s
results were quite unstable and often produced over- or under-estimations. Furthermore,
the predictive accuracy of the interaction term model was generally higher than that of the
one-time model.
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The results of the comparison are shown in Table 5. The T-test confirmed that there
was a significant difference between the two, and the T-2 and T-3 phases were shown to
have a higher accuracy rate based on the overall average, as seen at the end of Table 5.

Table 5. Model Comparison.

Test Set Period
Summary First Order

Correct Rate (Mean)
Interaction Term

Correct Rate (Mean) T-Test

Set 1
T-1 45.5% 53.3% −146.1 ***
T-2 48.6% 54.9% −121.4 ***
T-3 66.8% 63.6% 84.1 ***

Set 2
T-1 51.4% 52.1% −11.5 ***
T-2 50.2% 68.4% −372.6 ***
T-3 60.7% 64.8% −101.1 ***

Set 3
T-1 54.8% 64.1% −173.4 ***
T-2 47.7% 51.5% −89.0 ***
T-3 59.8% 58.0% 55.3 ***

Set 4
T-1 65.2% 61.0% 160.9 ***
T-2 55.7% 56.5% −17.5 ***
T-3 43.2% 49.2% −118.8 ***

Set 5
T-1 40.1% 46.1% −101.3 ***
T-2 34.6% 62.4% −1068.5 ***
T-3 51.4% 61.8% −252.0 ***

Set 6
T-1 60.4% 48.4% 236.2 ***
T-2 66.6% 55.0% 235.8 ***
T-3 43.7% 50.6% −113.5 ***

Set 7
T-1 50.5% 43.4% 107.4 ***
T-2 48.5% 55.2% −90.0 ***
T-3 66.3% 33.1% 928.0 ***

Set 8
T-1 34.1% 54.6% −361.2 ***
T-2 37.9% 53.4% −246.4 ***
T-3 69.4% 59.2% 253.0 ***

Set 9
T-1 54.2% 55.8% −31.8 ***
T-2 36.6% 52.8% −379.4 ***
T-3 59.8% 61.1% −22.3 ***

Set 10
T-1 42.2% 60.6% −269.5 ***
T-2 38.4% 33.2% 103.9 ***
T-3 69.7% 47.7% 329.4 ***

Total
T-1 49.8% 53.9% −191.4 ***
T-2 46.5% 54.3% −369.4 ***
T-3 59.1% 54.9% 199.1 ***

*** p < 0.001.

Comparisons of the predictive results from the traditional logistic and MCMC models
regarding the 109 fraudulent companies are shown in Table 6. A logistic prediction of “1”
indicates that fraud had occurred while “0” indicates no fraud. Using the MCMC method,
there were 80,000 iterations for each sample, and the ratios in the fields represent the ratios
of the 80,000 iterations predicted to be a fraud. According to Table 6, the MCMC provided
clearly more information than the standard logistic model. For example, the 7th, 58th,
139th, 169th, and 322nd of the logistic model during the T-1 period was predicted to be
normal; however, the MCMC’s predictions revealed fraud with over 76%, as highlighted in
grey. Furthermore, the difference between the MCMC and the logistic model also occurs in
the T-2 period in the 64th, 238th, 250th, and 256th samples. During the T-3 period, eight
samples are predicted as normal, but the MCMC indicates it as fraud—such as the 202nd
sample with 82.9%, or the 322nd sample with 88%.
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Table 6. Fraud sample prediction comparison results.

Test Set Sample
T-1 T-2 T-3

Logistic MCMC Logistic MCMC Logistic MCMC

Set 1

1 1 78.6% 1 53.7% 0 18.0%
4 1 42.1% 1 4.9% 0 5.8%
7 0 80.2% 0 15.9% 0 54.4%

10 0 29.8% 1 99.2% 1 7.0%
13 0 49.5% 1 38.1% 1 8.6%
16 0 30.4% 1 60.1% 1 14.7%
19 1 76.5% 1 40.2% 1 11.7%
22 0 55.7% 1 43.1% 1 23.4%
25 0 38.5% 1 73.5% 1 21.9%
28 0 24.3% 1 71.5% 1 32.8%
31 1 96.7% 1 62.9% 1 32.5%

Set 2

34 0 58.8% 1 61.2% 0 23.5%
37 0 37.0% 1 87.2% 0 77.1%
40 1 78.0% 1 33.3% 0 7.2%
43 1 56.0% 1 24.3% 1 5.7%
46 1 66.8% 1 15.7% 0 0.6%
49 1 43.0% 1 23.3% 0 16.6%
52 1 42.7% 1 10.7% 0 4.5%
55 1 39.4% 1 35.0% 0 11.5%
58 0 90.3% 1 46.2% 0 17.8%
61 0 59.4% 1 9.0% 0 82.3%
64 1 16.1% 0 84.5% 0 54.7%

Set 3

67 0 15.1% 1 40. 7% 0 13.6%
70 0 22.8% 1 82.2% 0 10.3%
73 1 62.8% 1 98. 8% 0 24.6%
76 0 4.6% 1 16.2% 0 25.9%
79 1 85.9% 1 21.7% 0 1.7%
82 0 25.4% 1 74.7% 0 28.7%
85 0 21.1% 1 61.6% 0 79.8%
88 1 68.8% 1 79.3% 0 26.0%
91 0 23.7% 1 63.1% 0 28.8%
94 0 62.1% 1 79.3% 0 13.0%
97 0 42.2% 1 66.1% 0 18.8%

Set 4

100 1 15.8% 1 44.1% 0 71.4%
103 1 5.3% 1 44.1% 0 70.5%
106 1 5.2% 1 41.3% 0 69.3%
109 1 1.6% 1 42.4% 0 62.9%
112 1 4.4% 1 29.7% 0 63.3%
115 1 21.9% 1 43. 5% 1 72.8%
118 1 48.4% 1 85.4% 0 62.9%
121 1 6.6% 1 26. 5% 0 51.5%
124 1 4.1% 1 26.7% 0 36.3%
127 1 12.7% 1 33.1% 0 59.9%
130 1 10.9% 1 45.0% 0 62.5%

Set 5

133 1 69.4% 1 6.7% 0 24.8%
136 1 38.1% 1 4.0% 0 11.4%
139 0 76.3% 1 1.7% 0 13.8%
142 1 19.9% 1 0.8% 0 6.8%
145 1 81.2% 1 19.4% 0 5.8%
148 0 9.0% 1 6.6% 0 17.7%
151 1 69.4% 1 4.9% 1 46.2%
154 1 47.0% 1 22.3% 0 6.0%
157 0 20.6% 1 0.1% 0 8.1%
160 1 48.5% 1 2.1% 0 11.2%
163 1 56.0% 1 28.5% 0 71.1%
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Table 6. Cont.

Test Set Sample
T-1 T-2 T-3

Logistic MCMC Logistic MCMC Logistic MCMC

Set 6

166 1 70.2% 1 59.6% 1 74.3%
169 0 78.2% 1 41.0% 0 42.0%
172 0 50.8% 1 54.8% 0 66.0%
175 0 40.1% 1 17.9% 0 48.2%
178 0 54.1% 1 39.8% 0 58.5%
181 0 16.3% 1 75.4% 1 34.3%
184 0 56.3% 1 24.5% 0 48.3%
187 0 17.0% 1 89.3% 0 58.1%
190 0 54.3% 1 69.6% 0 41.8%
193 0 38.9% 1 38.1% 1 39.2%
196 0 65.9% 1 34.7% 0 46.6%

Set 7

199 1 87.3% 1 13.0% 1 81.3%
202 0 29.7% 0 13.5% 0 82.9%
205 1 67.7% 1 33.3% 1 92.4%
208 1 43.7% 1 15.6% 1 75.5%
211 1 90.5% 1 61.0% 1 97.9%
214 1 60.9% 1 4.1% 0 2.7%
217 1 60.0% 1 44.5% 1 89.5%
220 1 75.4% 1 62.3% 1 95.5%
223 1 54.8% 1 28.3% 1 83.5%
226 1 92.3% 1 43.2% 1 91.9%
229 1 79.7% 1 97.0% 1 99.6%

Set 8

232 1 39.8% 0 45.1% 1 76.5%
235 1 51.9% 0 16.3% 0 38.3%
238 1 47.3% 0 96.1% 1 61.3%
241 1 50.6% 0 19.4% 0 32.0%
244 1 32.4% 1 55.5% 0 30.4%
247 1 72.7% 1 68. 5% 0 22.2%
250 0 53.8% 0 71.5% 1 42.7%
253 1 32.1% 0 30.2% 0 16.5%
256 1 84.2% 0 98.8% 0 37.1%
259 1 33.9% 0 19.0% 0 16.3%
262 1 29.0% 0 9.8% 0 10.3%

Set 9

265 0 56.1% 1 71. 7% 0 31.4%
268 0 19.9% 1 32.4% 0 46.0%
271 0 31.4% 1 87.3% 0 29.5%
274 0 19.4% 1 8.7% 0 59.1%
277 1 50.8% 1 70.1% 0 52.1%
280 1 32.8% 1 33.7% 0 33.4%
283 0 10.8% 1 84.1% 1 37.7%
286 1 51.5% 1 61.4% 0 33.8%
289 1 29.1% 1 52.0% 0 37.9%
292 0 20.5% 1 35.0% 0 21.4%
295 1 16.7% 1 77.7% 0 42.2%

Set 10

298 0 21.5% 1 98. 7% 1 83.4%
301 0 37.7% 1 96.9% 0 67.4%
304 0 35.2% 1 72.2% 0 51.5%
307 1 51.6% 1 38.0% 0 45.8%
310 0 27.1% 1 96.8% 0 43.6%
313 0 22.1% 1 97.4% 0 66.1%
316 0 17.8% 0 31.9% 1 3.4%
319 0 25.7% 1 97.7% 0 48.1%
322 0 88.8% 1 99.4% 0 88.0%
325 0 35.7% 1 95.3% 0 56.2%
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4.6. Model Error Analysis

Concerning the limitations of the models, the percentage of errors in the prediction
results can be divided into false negatives and false positives. The error analysis results
within the interaction models are shown in Figures 8–13. Besides, the box plots are shown
in black, correspond to the sets of errors from the 80,000 iterations via the MCMC method
and the red solid dots represent errors from the logistic model. In this study, I defined a
false positive error as when a company was falsely accused of fraud. The false negatives
occurred when a guilty company was judged to be innocent of fraud.
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Furthermore, Figures 8–10 show the false positive errors in T-1 to T-3 periods. More
than half of the 30 results (26 groups) using the logistic model deviated from the overall
distribution of the 80,000 iterations. Figures 11–13 indicated false negatives in T-1, T-2,
and T-3 periods, and 28 groups of these results from the logistic model deviated from the
overall distribution.

The figures above clearly show that the results of the standard logistic prediction
model also indicate an unstable state (i.e., overestimation or underestimation) regarding
error analysis, meaning that if only the logistic model’s error results were analyzed, it
would most likely result in a miscalculation of the error rate. Both the standard logistic and
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the Bayesian probit model have their strengths and weaknesses. For example, the former
may be too simplistic to handle such complicated data. Despite the complex nature of the
Bayesian probit model, it could be used to correct the parametric estimation errors and
reduce the problem of over- or under-confidence. As always, the best analysis method will
depend on the problem that must be solved. Although the Bayesian probit model often
yields clearer results, it is very complicated and expensive. Therefore, we recommend the
integrated use of these two methods. The standard logistic model can be utilized for a
preliminary analysis of the sample.

The Bayesian probit model will then be used for more precise calculations. Since
over-fitting will interfere with the accuracy of the predictions yielded from the standard
logistic model, it would not be as useful for real-world scenarios. However, as previously
stated, the other model yields more accurate predictive results when the specific fitting
of the correct model and data are used. These elements will be processed through the
Bayesian probit model to take advantage of its more realistic predictive power, and also
provide a visual component to help users better understand the distribution of prediction
values. Above all, if the logistic model is used for prediction, a single result represents
only one prediction point within the distribution space. However, if the MCMC model is
used, multiple iterations may be used to offset the uncertainty of its parameters (dispersion
of the predicted result). Thus, the MCMC model may be more appropriate for helping
researchers understand the complexity of corporate fraud.

5. Conclusions and Recommendations
5.1. Theoretical Implications

In this study, we primarily employed the standard logistic model supplemented
by Bayesian inference to counteract the uncertainty of model parameters. This study
may be the first to use the boxplot to visualize the effects of model uncertainty and help
users to make decisions based on the simulation results of model coefficients. Based
on the proposed method, we also can eliminate the bias of parametric estimation for
regular statistical models. In fact, the standard logistic model better revealed the analytical
results while the Bayesian probit model with parameters via the MCMC showed a stable
convergence. We also found that, unlike the standard logistic model, the distribution
of unknown variables cannot be expressed in closed-form, and must be referred to as a
simulated sample to accurately interpret the exact distribution value of the parameters.

Combining these two models to analyze the data yielded ideal predictive results. We
found that the predictive power of the standard logistic model was stronger than that of
the Bayesian probit model, which was more appropriate for approximating the maximum
value. But the predictive power of the standard logistic model is unstable because the
parametric estimation bias is inherent within the model. In this study, we used the MCMC
model to calculate an unbiased estimation to enhance the predictive power and ameliorate
the effects of model uncertainty.

5.2. Implications for Managers

For the investigation of fraud, the predictive results from the standard logistic model
tended to be overly optimistic. However, the Bayesian probit model will significantly
drive up the cost of analysis. Thus, although the full-range application of this model is
ideal, it is not practical in the real world. For this reason, we suggest the integrated use
of both models for the detection of fraud. In this way, the weakness of over-fitting would
balance the unfitted model and data. After preliminary sorting of the data, the Bayesian
probit model could be used for more precise calculations and would provide not only the
prediction value of the responses but also possible ranges of these responses via a simple
plot. This can help users to make informed decisions. In this way, the strengths of both
models can be retained and utilized to their best advantage. This system would be much
more accurate than applying the logistic model on its own to predict corporate fraud.
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In this study, both models were run independently. The findings from both models
using the same set of data unanimously indicated that the data from two years before
the fraud occurred could most effectively predict this crime. As such, we can infer that
indirect signs of fraud would begin to surface two years before it would become obvious.
Therefore, issues related to corporate fraud, particularly fraudulent financial statements,
not only require impeccable professional ethics and patience to correct the problem, but
also a viable model that will allow for systematic analysis and reduce false accusations
of fraud. Accordingly, companies that have been wrongly accused could be freed from
unnecessary legal trouble, and these resources could be used more efficiently elsewhere.
Most importantly, it could accurately detect companies that are engaged in acts of fraud.
This would also help to protect the rights and privileges of the stakeholders and maintain
stability within the market. Besides, the limitations of the proposed method still exist,
such as the cost of analysis due to computationally expensive posterior distributions in the
MCMC. In addition, the proposed model can be applied to the multinomial probit model
in future studies. Further studies can be explored using other techniques to increase the
efficiency of the MCMC algorithm, such as [56,57].
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