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Abstract: The main purpose of this paper is to study a more general concept of uniform stability
in mean in which the uniform behavior in the classical sense is replaced by a weaker requirement
with respect to some probability measure. This concept includes, as particular cases, the concepts
of uniform exponential stability in mean and uniform polynomial stability in mean. Extending
techniques employed in the deterministic case, we obtain variants of some results for the general
cases of uniform stability in mean for stochastic skew-evolution semiflows in Banach spaces.
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1. Introduction

During the last decades, considerable attention has been devoted to the problem of
asymptotic behaviors of nonautonomous differential equations in Banach spaces. Many
results can be carried out not only for differential equations and evolution operators but
also for skew-evolution semiflows. The notion of skew-evolution semiflow was introduced
in [1] and includes some particular cases of many well-known concepts in dynamical
system theory, such as C0-semigroups, evolution operators and skew-product semiflows.

In this paper, we consider the case of stochastic skew-evolution semiflows studied
in [2]. We note that the stochastic cocycles studied in [3] are particular cases of the con-
cept below.

Several important examples of stochastic evolution semiflows give rise to stochastic
evolution equations, and the reader can refer to the monographs by [4,5].

The main purpose of the present paper is to study a general concept of uniform
asymptotic stability in mean, which we call “uniform h-stability in mean” where
h : R+ → [1, ∞) is a growth rate (i.e., h is nondecreasing and bijective).

In particular cases, we obtain the concepts of uniform exponential stability in mean
and uniform polynomial stability in mean for stochastic skew-evolution semiflows in
Banach spaces.

Our approach is based on the extension of some techniques used in the deterministic
case by many authors, and here, we only mention the papers [6–16].

Thus, we obtain three types of characterizations for each stability in mean concept
considered in our study. Connections between these concepts are given. For some other
approaches to the study of uniform exponential stability in mean and uniform polynomial
stability in mean, we refer to [17–20].

The paper is organized as follows. In Section 2, we review some preliminaries on
stochastic skew-evolution semiflows, which will be used in the paper. A general concept of
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uniform asymptotic stability in mean for stochastic skew-evolution semiflows is defined.
In particular, the results of the concept of uniform exponential stability in mean and
uniform polynomial stability in mean. In Section 3, connections between these concepts are
presented. In Section 4, we state and prove the main results of our paper. Thus, we obtain
three types of characterizations for each stability in mean concept considered in our study.

2. Preliminaries

Let (Ω,B, P) be a probability space. Denote ∆ = {(t, s) : t ≥ s ≥ 0}. We also denote
by X a real or complex Banach space and by B(X) the Banach algebra of all bounded linear
operators on X.

Definition 1. A measurable random field ϕ : ∆×Ω→ Ω is called a stochastic evolution semiflow
on Ω if

• (s1) ϕ(t, t, ω) = ω for all (t, ω) ∈ R+ ×Ω,
• (s2) ϕ(t, s, ϕ(s, t0, ω)) = ϕ(t, t0, ω) for all t ≥ s ≥ t0 ≥ 0 and all ω ∈ Ω.

Definition 2. A map Φ : ∆×Ω→ B(X) is called a stochastic evolution cocycle associated with
a stochastic evolution semiflow ϕ : ∆×Ω→ Ω if

• (c1) Φ(t, t, ω) = I (the identity operator on X) for all (t, ω) ∈ R+ ×Ω,
• (c2) Φ(t, s, ϕ(s, t0, ω))Φ(s, t0, ω) = Φ(t, t0, ω) for all t ≥ s ≥ t0 ≥ 0 and all ω ∈ Ω.

In this case, the pair (Φ, ϕ) is called a stochastic skew-evolution semiflow on X1 = Ω× X

Example 1. If Φ : ∆×Ω→ B(X) is a stochastic evolution cocycle associated with the stochastic
evolution semiflow ϕ : ∆×Ω→ Ω and g : R+ → [1, ∞) is a growth rate, then

ϕh : ∆×Ω→ Ω, ϕh(t, s, ω) = ϕ(h−1(et), h−1(es), ω)

is a stochastic evolution semiflow on Ω and

Φh : ∆×Ω→ B(X), Φh(t, s, ω) = Φ(h−1(et), h−1(es), ω)

is a stochastic evolution cocycle associated with the stochastic evolution semiflow ϕh.

Example 2. If Φ : ∆×Ω→ B(X) is a stochastic evolution cocycle associated with the stochastic
evolution semiflow ϕ : ∆×Ω→ Ω and h : R+ → [1, ∞) is a growth rate, then

ψh : ∆×Ω→ Ω, ψh(t, s, ω) = ϕ(h−1(t + 1), h−1(s + 1), ω)

is a stochastic evolution semiflow on Ω and

Ψh : ∆×Ω→ B(X), Ψh(t, s, ω) = Φ(h−1(t + 1), h−1(s + 1), ω)

is a stochastic evolution cocycle associated with the stochastic evolution semiflow ψh.

Remark 1. Other examples of stochastic skew-evolution semiflows are given in [20].

We denote by L(Ω, X, P) the Banach space of all Bochner measurable functions f :
Ω→ X with ∫

Ω
‖ f (ω)‖dP(ω) < ∞

We also denote Y = R+ ×L(Ω, X, P) and Z = ∆×L(Ω, X, P).

3. Stability Concepts in Mean

Let (Φ, ϕ) be a stochastic skew-evolution semiflow on X1 = Ω× X and h : R+ →
[1, ∞) a growth rate.

The main stability in mean concept studied in this paper is introduced by
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Definition 3. The stochastic skew-evolution semiflow (Φ, ϕ) is uniformly h-stable in mean
(u.h.s.m.) if there exist N > 1 and ν > 0 with

h(t)ν
∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ≤ Nh(s)ν

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z.
As particular cases, we have

• (i) if h(t) = et, we obtain the uniform exponential stability in mean (u.e.s.m.) concept.
• (ii) if h(t) = t + 1, it results in the concept of uniform polynomial stability (u.p.s.m.).

Another concept used is given by

Definition 4. The stochastic skew-evolution semiflow (Φ, ϕ) has uniform h-stable growth in mean
(u.h.g.m.) if there are M > 1 and ω > 0 with

h(s)ω
∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ≤ Mh(t)ω

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s, X) ∈ Z.
As particular cases, we have

• (i) for h(t) = et, we obtain the concept of uniform exponential growth in mean (u.e.g.m.).
• (ii) for h(t) = t + 1, it results in the the concept of uniform polynomial growth in mean

(u.p.s.m.).

Remark 2. The connections between stability and growth in mean concepts are given in the
next diagram

u.h.s.m. ⇒ u.g.s.m.

and

u.e.s.m. ⇒ u.p.s.m.
⇓ ⇓

u.e.g.m. ⇐ u.p.g.m.

The next theorem presents the connection between uniform h-stability in mean and
uniform exponential stability in mean.

Theorem 1. The stochastic skew-evolution semiflow (Φ, ϕ) is uniformly h-stable in mean if and
only if the stochastic skew-evolution semiflow (Φh, ϕh), where

Φh : ∆×Ω→ B(X), Φh(t, s, w)
de f
= Φ(h−1(et), h−1(es), ω)

and
ϕh : ∆×Ω→ B(X), ϕh(t, s, w)

de f
= ϕ(h−1(et), h−1(es), ω)

is uniformly exponentially stable in mean.

Proof. Necessity. If (Φ, ϕ) is uniformly h-stable in mean and (t, s, ω) ∈ ∆×Ω then there
are the constants N > 1 and ν > 0 such that
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eνt
∫

Ω
‖Φh(t, s, ω)x(ω)‖dP(ω) = eνt

∫
Ω
‖Φ(h−1(et), h−1(es), ω)‖dP(ω) ≤

≤ N
(

h(h−1(es))

h(h−1(et))

)ν ∫
Ω
‖x(ω)‖dP(ω) =

= Neνt
∫

Ω
‖x(ω)‖dP(ω).

and hence, (Φh, ϕh) is uniformly exponentially stable in mean.
Sufficiency. If (Φh, ϕh) is uniformly exponentially stable in mean and (t, s, ω) ∈ ∆×Ω

then there are the constants N > 1 and ν > 0 such that

h(t)ν
∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) = h(t)ν

∫
Ω
‖Φ(h−1(h(t)), h−1(h(s)), ω)x(ω)‖dP(ω) =

= h(t)ν
∫

Ω
‖Φ(h−1(eln h(t))), h−1(eln h(s)), ω)x(ω)‖dP(ω) ≤

≤ Nh(t)νe−ν(ln h(t)−ln h(s))
∫

Ω
‖x(ω)‖dP(ω) =

= Nh(s)ν
∫

Ω
‖x(ω)‖dP(ω).

and hence (Φ, ϕ) is uniformly h-stable in mean.

The connection between uniform polynomial stability in mean and uniform exponen-
tial stability in mean is given by

Corollary 1. The stochastic skew-evolution semiflow (Φ, ϕ) is uniformly polynomial stable in
mean if and only if the stochastic skew-evolution semiflow (Φ1, ϕ1), where

Φ1 : ∆×Ω→ B(X), Φ1(t, s, w)
de f
= Φ(et − 1, es − 1, ω)

and
ϕ1 : ∆×Ω→ B(X), ϕ1(t, s, w)

de f
= ϕ(et − 1, es − 1, ω)

is uniformly exponentially stable in mean.

Proof. It yields from Theorem 1 for h(t) = t + 1.

The next theorem presents the connection between uniform h-stability in mean and
uniform polynomial stability in mean.

Theorem 2. The stochastic skew-evolution semiflow (Φ, ϕ) is uniformly h-stable in mean if and
only if the stochastic skew-evolution semiflow (Ψh, ψh), where

Ψh : ∆×Ω→ B(X), Ψh(t, s, w)
de f
= Φ(h−1(t + 1), h−1(s + 1), ω)

and
ψh : ∆×Ω→ B(X), ψh(t, s, w)

de f
= ϕ(h−1(t + 1), h−1(s + 1), ω)

is uniformly polynomially stable in mean.

Proof. It is similar to the proof of Theorem 1.

As a particular case, we obtain
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Corollary 2. The stochastic skew-evolution semiflow (Φ, ϕ) is uniformly exponentially stable in
mean if and only if the stochastic skew-evolution semiflow (Φ2, ϕ2), where

Φ2 : ∆×Ω→ B(X), Φ2(t, s, w)
de f
= Φ(ln(t + 1), ln(s + 1)ω)

and
ϕ2 : ∆×Ω→ B(X), ϕ2(t, s, w)

de f
= ϕ(ln(t + 1), ln(s + 1)ω)

is uniformly polynomially stable in mean.

Proof. It follows from Theorem 2 for h(t) = et.

4. The Main Results

A first characterization of uniform exponential stability in mean is given by

Theorem 3. If the stochastic skew-evolution (Φ, ϕ) has uniform exponential growth in mean, then
(Φ, ϕ) is uniformly exponentially stable in mean if and only if there are r > 1 and c ∈ (0, 1)
such that ∫

Ω
‖Φ(r + s, s, ω)x(ω)‖dP(ω) ≤ c

∫
Ω
‖x(ω)‖dP(ω)

for all (s, x) ∈ Y.

Proof. Necessity. If (Φ, ϕ) is u.e.s.m. then so are the constants N > 1 and ν > 0 with

r
de f
= 1 +

ln N
ν

> 1

We have∫
Ω
‖Φ(r + s, s, ω)x(ω)‖dP(ω) ≤ Ne−νr

∫
Ω
‖x(ω)‖dP(ω) =

= c
∫

Ω
‖x(ω)‖dP(ω)

for all (s, x) ∈ Y where c
de f
= Ne−νr ∈ (0, 1) because eνr > eln N = N

Sufficiency. If (t, s) ∈ ∆, then there exists n ∈ N and r1 ∈ [0, r) such that t = s+ nr+ r1.
Then∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) =

=
∫

Ω
‖Φ(s + nr + r1, s + nr, ϕ(s + nr, s, ω)Φ(s + nr, s, ω)x(ω)‖dP(ω) ≤

≤ Meωr1

∫
Ω
‖Φ(s + nr, s, ω)x(ω)‖dP(ω) ≤

≤ Meωr
∫

Ω
‖Φ(s + nr, s + (n− 1)r, ϕ(s + (n− 1)r, s, ω)Φ(s + (n− 1)r, s, ω)x(ω)‖dP(ω) ≤

≤ Mceωr
∫

Ω
‖Φ(s + (n− 1)r, s, ω)x(ω)‖dP(ω) ≤

≤ . . . ≤ Mcn−1eωr
∫

Ω
‖Φ(s + r, s, ω)x(ω)‖dP(ω) ≤

≤ Meωrcn
∫

Ω
‖x(ω)‖dP(ω)

for all (s, x) ∈ Y. If we denote

ν = − ln c
r

then ν > 0 and cn = e−νrn and∫
Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ≤ Meωre−ν(t−s−r1)
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∫
Ω
‖x(ω)‖dP(ω) ≤ Me(ω+ν)re−ν(t−s)

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z.

Corollary 3. If the stochastic skew-evolution semiflow (Φ, ϕ) has uniform polynomial growth in
mean, then (Φ, ϕ) is uniformly polynomially stable in mean if and only if there exists r > e− 1
and c ∈ (0, 1) with∫

Ω
‖Φ(rs + r + s, s, ω)x(ω)‖dP(ω) ≤ c

∫
Ω
‖x(ω)‖dP(ω)

for all (s, x) ∈ Y.

Proof. Necessity. If (Φ, ϕ) is uniformly polynomially stable in mean, then from Corollary 1,
it yields that (Φ1, ϕ1) is uniformly exponentially stable in mean.

From Theorem 3, it follows that there are u > 1 and c ∈ (0, 1) such that∫
Ω
‖Φ1(u + v, v, ω)x(ω)‖dP(ω) =

∫
Ω
‖Φ(eu+v − 1, ev − 1, ω)x(ω)‖dP(ω) ≤

≤ c
∫

Ω
‖x(ω)‖dP(ω)

for all (v, x) ∈ Y.
Then for v = ln(s + 1) where s ≥ 0 and r = eu − 1 we have that r > e − 1 and

eu+v − 1 = (eu − 1)(ev − 1) + eu − 1 + ev − 1 = rs + r + s. Finally, we have that∫
Ω
‖Φ(rs + r + s, s, ω)x(ω)‖dP(ω) =

∫
Ω
‖Φ(eu+v − 1, ev − 1, ω)x(ω)‖dP(ω) ≤

≤ c
∫

Ω
‖x(ω)‖dP(ω)

for all (s, x) ∈ Y.
Sufficiency. Let u = ln(1 + r) and ν ≥ 0. Then u > 1, s = ev − 1 ≥ 0 and

u + v = ln(1 + r)(1 + s) = ln(1 + r + s + rs)
Thus eu+v − 1 = r + s + rs
Then∫

Ω
‖Φ1(u + v, v, ω)x(ω)‖dP(ω) =

∫
Ω
‖Φ(eu+v − 1, ev − 1, ω)x(ω)‖dP(ω) =

=
∫

Ω
‖Φ(rs + r + s, s, ω)x(ω)‖dP(ω) ≤

≤ c
∫

Ω
‖x(ω)‖dP(ω)

From Theorem 3, it follows that (Φ1, ϕ1) is uniformly exponentially stable in mean.
Finally, according to Corollary 1, we see that (Φ, ϕ) is uniformly polynomially stable
in mean.

Corollary 4. If the stochastic skew-evolution semiflow (Φ, ϕ) has uniform h-growth in mean, then
(Φ, ϕ) is uniformly h-stable in mean if and only if there are r > e and c ∈ (0, 1) such that∫

Ω
‖Φ(h−1(rs), h−1(s), ω)x(ω)‖dP(ω) ≤ c

∫
Ω
‖x(ω)‖dP(ω)

for all (s, x) ∈ Y.

Proof. It follows from Theorems 1 and 3.
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Another characterization of polynomial uniform stability in mean is given by

Theorem 4. If the stochastic skew-evolution semiflow (Φ, ϕ) has uniform polynomial growth in
mean, then (Φ, ϕ) is uniformly polynomially stable in mean if and only if there exist L > 1 with∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ln

t + 1
s + 1

≤ L
∫

Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z.

Proof. Necessity. If (Φ, ϕ) is uniformly polynomially stable in mean, then there are the
constants N > 1 and ν > 0 such that∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ln

t + 1
s + 1

≤ N
ν

(
t + 1
s + 1

)−ν

ln
t + 1
s + 1

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z.
Using the inequality

ln u
u
≤ 1

e
, for every u ≥ 1

it results that ∫
Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ln

t + 1
s + 1

≤ N
νe

< 1 +
N
νe

de f
= L > 1

for all (t, s) ∈ ∆ and all x ∈ L(Ω, X, P).

Sufficiency. For r
de f
= e4L − 1 > e− 1 and c = 1

4 ∈ (0, 1)
We deduce that∫

Ω
‖Φ(rs + r + s, s, ω)x(ω)‖dP(ω) ≤ L

rs+r+s+1
s+1

∫
Ω
‖x(ω)‖dP(ω) =

≤ L
ln(r + 1)

∫
Ω
‖x(ω)‖dP(ω) =

= L
∫

Ω
‖x(ω)‖dP(ω)

for all (s, x) ∈ Y.

From Corollary 3, it follows that (Φ, ϕ) is uniformly polynomially stable in mean.

Corollary 5. If the stochastic skew-evolution semiflow (Φ, ϕ) has uniform h-growth in mean, then
(Φ, ϕ) is uniformly h-stable in mean if and only if there exists L > 1 with∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ln

h(t)
h(s)

≤ L
∫

Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z.

Proof. Necessity. If (Φ, ϕ) is uniformly h-stable in mean, then from Theorem 2 it follows that

Ψh(u, v, ω)
de f
= Φ(h−1(u + 1), h−1(v + 1), ω)

is uniformly polynomially stable in mean.
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From Theorem 4, it results that there exists L > 1 with∫
Ω
‖Φ(h−1(u + 1), h−1(v + 1), ω)x(ω)‖dP(ω) ln

u + 1
v + 1

=

=
∫

Ω
‖Ψh(u, v, ω)x(ω)‖dP(ω) ln

u + 1
v + 1

≤ L
∫

Ω
‖x(ω)‖dP(ω)

for all (u, v, x) ∈ Z.

Let (t, s) ∈ ∆. Then for u
de f
= h(t)− 1 and v

de f
= h(s)− 1 we have (u, v) ∈ ∆ and∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ln

h(t)
h(s)

=

=
∫

Ω
‖Φ(h−1(u + 1), h−1(v + 1), ω)dP(ω) ln

u + 1
v + 1

≤ L
∫

Ω
‖x(ω)‖dP(ω)

Sufficiency. Let s ≥ 1 and r = e4L. Then r ≥ e and from the hypothesis there exists
L > 1 with

∫
Ω
‖Φ(h−1(rs), h−1(s), ω)dP(ω) ≤ L

ln r

∫
Ω
‖x(ω)‖dP(ω) = c

∫
Ω
‖x(ω)‖dP(ω)

From Corollary 4, we have that (Φ, ϕ) is uniformly h-stable in mean.

Corollary 6. If the stochastic skew-evolution semiflow (Φ, ϕ) has uniform exponential growth in
mean, then (Φ, ϕ) is uniformly exponentially stable in mean if and only if there exists L > 1 with

(t− s)
∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ≤ L

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z.

Proof. It follows from Corollary 5, taking h(t) = et.

A majorization criterion for uniform exponential stability in mean is given in the
next theorem.

Theorem 5. If the stochastic skew-evolution semiflow (Φ, ϕ) has uniform exponential growth in
mean, then (Φ, ϕ) is uniformly exponentially stable in mean if and only if there exist M > 1 and a
nondecreasing application g : [1, ∞)→ R+ with lim

t→∞
g(t) = ∞ and

g(t− s)
∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ≤ M

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z

Proof. Necessity. From Corollary 5, for the case h(t) = et, it results that if Φ is uniformly
exponentially stable in mean, then there exists L > 1 with

(t− s)
∫

Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ≤ L

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s) ∈ ∆, thus the condition of the theorem is satisfied for g(t) = t
Sufficiency. From lim

t→∞
g(t) = ∞, we have that there exists δ > 0 with M < g(δ). Then,

for all (t, s) ∈ ∆, there are n ∈ N and r ∈ [0, δ) with t = s + nδ + r.
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Let c = L
g(δ) . Then c ∈ (0, 1) and from uniform exponential growth of (Φ, ϕ) and by

hypothesis we observe that there exist M > 1, ω > 0 such that∫
Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) =

=
∫

Ω
‖Φ(s + nδ + r, s + nδ, ϕ(s + nδ, s, ω))Φ(s + nδ, s, ω)x(ω)‖dP(ω) ≤

≤ Meωr
∫

Ω
‖Φ(s + nδ, s, ω)x(ω)‖dP(ω) ≤

≤ Meωδ
∫

Ω
‖Φ(s + nδ, s + (n− 1)δ, ϕ(s + (n− 1)δ), s, ω)Φ(s + (n− 1)δ, s, ω)x(ω)‖dP(ω) ≤

≤ Mceωδ
∫

Ω
‖Φ(s + (n− 1δ), s, ω)x(ω)‖dP(ω) ≤

≤ ... ≤ Mcn−1eωδ
∫

Ω
‖Φ(s + δ, s, ω)x(ω)‖dP(ω) ≤

≤ Mcneωδ
∫

Ω
‖x(ω)‖dP(ω) = Meωδen ln c

∫
Ω
‖x(ω)‖dP(ω) =

= Meωδe
t−s−r

δ ln c
∫

Ω
‖x(ω)‖dP(ω) ≤ Meωδ

c
e−ν(t−s)

∫
Ω
‖x(ω)‖dP(ω) ≤

≤ Ne−ν(t−s)
∫

Ω
‖x(ω)

for all (t, s, x) ∈ Z where N = Meωδ

c > 1 and ν = − ln c
δ > 0

Finally, it results that (Φ, ϕ) is uniformly exponentially stable in mean.

Corollary 7. If the stochastic skew-evolution semiflow (Φ, ϕ) has uniform polynomial growth in
mean, then (Φ, ϕ) is uniformly polynomially stable in mean if and only if there exists M > 1 and a
nondecreasing application g : [1, ∞)→ R+ with lim

t→∞
g(t) = ∞ and

g
(

t + 1
s + 1

) ∫
Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ≤ M

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z.

Proof. Necessity. It follows from Theorem 4 for g(t) = ln t.
Sufficiency. Let (u, v) ∈ ∆ and t = eu − 1, s = ev − 1. Then from the inequality from

the assumption, it follows that

ϕ2(u− v)
∫

Ω
‖Φ2(u, v, ω)x(ω)‖dP(ω) ≤ M

∫
Ω
‖x(ω)‖dP(ω)

where ϕ2(t) = g(et) and Φ2(u, v, ω) = Φ(ln(u + 1), ln(v + 1), ω).
From Theorem 5, we obtain that (Φ2, ϕ2) is uniformly exponentially stable in mean

and from Corollary 2 it results that (Φ, ϕ) is uniformly polynomially stable in mean.

Corollary 8. If the stochastic skew-evolution semiflow (Φ, ϕ) has uniform h-growth in mean,
then (Φ, ϕ) is uniformly h-stable in mean if and only if there exist M > 1 and a nondecreasing
application g : [1, ∞)→ R+ with lim

t→∞
g(t) = ∞ and

g
(

h(t)
h(s)

) ∫
Ω
‖Φ(t, s, ω)x(ω)‖dP(ω) ≤ M

∫
Ω
‖x(ω)‖dP(ω)

for all (t, s, x) ∈ Z

Proof. Necessity. It follows from Corollary 5 for g(t) = ln t.
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Sufficiency. Let (t, s, x) ∈ Z and u = h−1(t + 1) and v = h−1(s + 1). Then (u, v) ∈ ∆ and

g
(

t + 1
s + 1

) ∫
Ω
‖Ψh(t, s, ω)x(ω)‖dP(ω) =

= g
(

t + 1
s + 1

) ∫
Ω
‖Φ(h−1(t + 1), h−1(s + 1), ω)x(ω)‖dP(ω) ≤

≤ M
∫

Ω
‖x(ω)‖dP(ω)

By assumption, it results that (Ψh, ψh) is uniformly exponentially stable in mean.
From Theorem 2, we observe that (Φ, ϕ) is uniformly h-stable in mean.

5. Conclusions

In this note, we have considered three concepts of uniform stability in mean for
stochastic skew-evolution semiflows. These notions are natural generalizations from the
deterministic context. The established relation between these concepts represents the first
main goal. Thus, the relation between uniform h-stability in mean and uniform exponential
stability in mean is established in Theorem 1, the relation between uniform polynomial
stability in mean and uniform exponential stability in mean is given in Corollary 1, the
relation between uniform h-stability in mean and uniform polynomial stability in mean is
established in Theorem 2, and finally, the connection between uniform exponential stability
in mean and uniform polynomial stability in mean is done in Corollary 2. Then, based on
the present results from this work, characterizations of these concepts are exposed. The
second main goal of the paper is to give three types of characterizations for these concepts
of uniform stability in mean. These results are presented in Section 4. As open problems,
the authors would like to investigate:

- A generalization of the previous results for the case of nonuniform h-stability in mean;
- Applications in control theory;
- Variants for h-dichotomy in mean and h-trichotomy in mean.
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16. Toma, R.B.; Pătraşcu, D.I.B.; Toth, D.M. On uniform stability with growth rates in Banach spaces. In Proceedings of the IEEE 15th

International Symposium on Applied Computational Intelligence and Informatics SACI, Timisoara, Romania, 19–21 May 2021;
pp. 393–396.
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