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Abstract: This paper investigates the problem of the global directed dynamic behaviors of a Lotka-
Volterra competition-diffusion-advection system between two organisms in heterogeneous environ-
ments. The two organisms not only compete for different basic resources, but also the advection and
diffusion strategies follow the dispersal towards a positive distribution. By virtue of the principal
eigenvalue theory, the linear stability of the co-existing steady state is established. Furthermore, the
classification of dynamical behaviors is shown by utilizing the monotone dynamical system theory.
This work can be seen as a further development of a competition-diffusion system.

Keywords: competition-diffusion-advection; principal eigenvalue; dynamic behaviors; global asymp-
totic stability
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1. Introduction

In the past few decades, the dynamic behaviors of competition-diffusion systems
(see [1]) in homogeneous or heterogeneous environments have been extensively studied.
Until 2017, He and Ni [2,3] studied the dynamics of two organisms by changing their
random diffusion coefficients, resource carrying capacity and competitiveness, and they
also described the global dynamics of two organisms. Their research has made outstanding
contributions to the competition-diffusion systems. For the competition model of two
organisms, either both organisms survive or win with the extinction of the other organ-
isms (see [4–6]). In 2019, Du et al. [7,8] studied a Lotka-Volterra competition system with
periodic habitat advection. From a biological point of view, this pulsating travel front
provided a way for two competing species to interact in heterogeneous habitats. Based on
the assumption that the resource function in spatial variables is decreasing, Lou et al. [9]
described the competition between two aquatic organisms with different diffusion strate-
gies for the same resource in the Lotka-Volterra reaction-diffusion-advection system in
2019. Md. Kamrujjaman [10] studied the impact of diffusion strategies on the outcome
of competition between two populations while the species are distributed according to
their respective carrying capacities in competition-diffusion systems. However, in the
competition-diffusion-advection systems, the study of different species with different dis-
tribution functions will be more complex. Tang and Chen [11] and Xu et al. [12] studied the
population dynamics of competition between two organisms from the perspective of river
ecology in 2020. One interesting feature of their system was that the boundary conditions
at the upstream end and downstream end can represent the net loss of individuals. In some
cases, both organisms leave the site of competition, neither coexisting nor becoming extinct.
Such an environment is important enough to demonstrate how organisms change their
density and survival time in competition (see [13]). In 2021, Ma and Guo [14] described the
feature of the coincidence of bifurcating coexistence steady-state solution branches and the
effect of advection on the stability of the bifurcating solution. However, it is worthwhile
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to point out that all the aforementioned works focus on the global dynamic behaviors of
competition-diffusion systems (see [10,15,16]) or advection systems (see [17,18]), in which
the diffusion rates and spatial carrying capacity are changed, or the periodic habitat of
advection systems is studied, or the upstream and downstream boundary conditions
are changed.

Motivated by the effort of the aforementioned studies, we investigate the problem
of the global directed dynamic behaviors of a Lotka-Volterra advection system between
two organisms in heterogeneous environments, where two organisms are competing
for different fundamental resources, their advection and diffusion strategies follow the
dispersal towards a positive distribution, and the functions of inter-specific competition
ability are variable.

Hence, we discuss the following global dynamics of the advection system:

Ut =∇· [κ1(x)∇( U
Q(x) )− µ1(x) U

Q(x)∇ω1(x)] + U[r1(x)−U − ρ2(x)V],

in Ω×R+,
Vt =∇· [κ2(x)∇( V

Q(x) )− µ2(x) V
Q(x)∇ω2(x)] + V[r2(x)− ρ1(x)U− V],

in Ω×R+,

κ1(x) ∂
∂n (

U
Q )− µ1(x)U

Q
∂ω1(x)

∂n = 0, on ∂Ω×R+,

κ2(x) ∂
∂n (

V
Q )− µ2(x)V

Q
∂ω2(x)

∂n = 0, on ∂Ω×R+,

U(x, 0) = U0(x) ≥, 6≡ 0, in Ω,
V(x, 0) = V0(x) ≥, 6≡ 0, in Ω,

(1)

where U(x, t) and V(x, t) are the population densities of biological organisms, location
x in Ω and time t > 0, which are supposed to be nonnegative; κ1(x), κ2(x) > 0 correspond
to the dispersal rates of two competing organisms U and V, respectively. ∇ is the gradient
operator. µ1(x), µ2(x) > 0 correspond to the advection rates of two competing organisms
U and V, and ω1(x), ω2(x) ∈ C2(Ω) are the nonconstant functions and represent the
advective direction. The intrinsic growth rates of the two competing organisms are bounded
functions r1(x) and r2(x), respectively, two positive distributions are Q(x). ρ1(x), ρ2(x)
> 0 show the inter-specific competition ability. The habitat Ω is a bounded smooth domain
in RN , 1 ≤ N ∈ Z; n denotes the outward unit normal vector on the boundary ∂Ω. For the
sake of simplicity, we can suppose the initial data U0 and V0 not identically zero. The
system (1) satisfies no-flux boundary conditions.

When κ1(x) = κ1, κ2(x) = κ2, µ1(x) = µ1, µ2(x) = µ2, Q(x) ≡ 1, ρ1(x) = ρ1, ρ2(x) =
ρ2, ω1(x) = ω2(x), the system (1) becomes the advection system studied by Zhou and
Xiao [19]:

Ut = κ1∆U − µ1∇ · [U∇ω(x)] + U[r1(x)−U − ρ2V], in Ω×R+,
Vt = κ2∆V − µ2∇ · [V∇ω(x)] + V[r2(x)− ρ1U −V], in Ω×R+,

κ1
∂U
∂n − µ1U ∂ω(x)

∂n = 0, on ∂Ω×R+,

κ2
∂V
∂n − µ2V ∂ω(x)

∂n = 0, on ∂Ω×R+,
U(x, 0) = U0(x) ≥, 6≡ 0, in Ω,
V(x, 0) = V0(x) ≥, 6≡ 0, in Ω,

(2)

where κ1, κ2, µ1, µ2, ρ1 and ρ2 are positive constants. ∆ = ∑N
i=1

∂2

∂x2
i

is the usual Laplace

operator. If µ1, µ2 > 0, readers can take a look at the relevant literature [20] and for the case
µ1 > 0 = µ2, please see the references [21–25].

If µ1 = µ2 = 0, the system (2) becomes a diffusion model (see [2,3,5,26]):
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
Ut = κ1∆U + U[r1(x)−U −V], in Ω×R+,
Vt = κ2∆V + V[r2(x)−U −V], in Ω×R+,
∂U
∂n = ∂V

∂n = 0, on ∂Ω×R+,
U(x, 0) = U0(x) ≥, 6≡ 0, V(x, 0) = V0(x) ≥, 6≡ 0, in Ω.

(3)

According to the research of the above models, the purpose of our paper is to deal with
a more broader model (1) in a high spatial dimensions. In this system, we consider that
the diffusion and advection strategies follow the dispersal towards a positive distribution,
growth rates and competitiveness of the two organisms are different. Thus, we have the
following basic assumptions in this paper.

(A1)
µ1(x)
κ1(x) ω1(x)− µ2(x)

κ2(x) ω2(x) := ζ1ω1(x)− ζ2ω2(x) ≥ 0, Λ := min
x∈Ω

eζ2ω2(x)−ζ1ω1(x), ζ1

and ζ2 are positive constants;
(A2) (ρ1(x), ρ2(x)) ∈ ΠΛ := {(ρ1(x), ρ2(x)) : ρ1(x), ρ2(x) > 0, ρ1(x)ρ2(x) ≤ Λ};
(A3) r1(x) > 0, r2(x) > 0 in L∞(Ω);

(A4) Q(x) > 0 is nonconstant, and Q(x)
r1(x) , Q(x)

r2(x) are also nonconstant.

Conditions (A3)− (A4) ensure that the distribution of resources is heterogeneous for
two species and the positivity is imposed here to guarantee the existence of two semi-trivial
steady states for later discussion convenience. Under the conditions of (A1)− (A4), we
show a complete classification of the global dynamics of the system (1). The rest of this
paper is arranged as follows. In Section 2, we mainly do some preparatory work. Some
related properties of the system (1) are deduced from the properties of a single organisms
model (4). Besides, some lemmas are proved. In Section 3, we investigate our main results.
By using principal eigenvalue theory, we obtain the linear stability of coexisting steady
states (see Theorem 2). Then, the most important thing is that in virtue of the monotone
dynamical system theory (see [4]), we show the classification of global dynamic behaviors
(see Theorem 3). A discussion on the main results and problems that deserve future
investigation is presented in Section 4.

2. Preliminaries

In order to describe our main results, we show a competition-diffusion-advection
system for a single organisms as follows:

Ut = ∇ · [κ(x)∇( U
Q(x) )− µ(x) U

Q(x)∇ω(x)] + U[r(x)−U], in Ω×R+,

κ(x) ∂
∂n (

U
Q )− µ(x)U

Q
∂ω(x)

∂n = 0, on ∂Ω×R+,

U(x, 0) = U0(x) ≥, 6≡ 0, in Ω,

(4)

where κ(x) > 0, µ(x) > 0, Q(x) > 0 and r(x) > 0, r(x) is bounded. According to the
relevant description in [27] and the case that r(x) > 0, there is a unique positive steady state
θd,Q,µ,r in the system (4). If we apply this result to the system (1) and the conditions (A3)−
(A4), there are two semi-trivial steady states (θκ1,Q,µ1,r1 , 0) and (0, θκ2,Q,µ2,r2), respectively.

Lemma 1. Assume that κ(x) > 0, µ(x) > 0, Q(x) > 0 and r(x) > 0, r(x) is bounded.
The elliptic boundary value Problem:{

∇ ·
[
κ(x)∇( θ

Q(x) )− µ(x) θ
Q(x)∇ω(x)

]
+ θ[r(x)− θ] = 0, in Ω,

κ(x) ∂
∂n (

θ
Q )− µ(x) θ

Q
∂ω(x)

∂n = 0, on ∂Ω,
(5)

has a unique positive solution denoted by θ.



Axioms 2021, 10, 195 4 of 17

Proof. It is known in [27] that the problem (5) admits a solution and the solution is positive,
denoted by θ, owning to the positivity of κ(x), µ(x), Q(x), r(x). Next, assume that θ1, θ2
are any two positive solutions of (5) and 0 < θ1 ≤ θ2. It is not difficult to see that

κ∇( θ

Q
)− µ

θ

Q
∇ω = κe

µ
κ ω
[
∇(e−

µ
κ ω θ

Q
)
]
.

Then ∫
∇ ·

{
κe

µ
κ ω
[
∇(e−

µ
κ ω θ1

Q
)
]}

(e−
µ
κ ω θ2

Q
)dx

=−
∫

κe
µ
κ ω
[
∇(e−

µ
κ ω θ1

Q
)
][
∇(e−

µ
κ ω θ2

Q
)
]

dx

=−
∫
[r− θ1]e−

µ
κ ω θ1θ2

Q
dx

=−
∫
[r− θ2]e−

µ
κ ω θ1θ2

Q
dx. (6)

We deduce ∫
[θ1 − θ2]e−

µ
κ ω θ1θ2

Q
dx = 0.

Therefore, θ1 = θ2.

To give a complete classification of the global dynamic system (1), we define

(κ1, κ2, µ1, µ2) ∈ Γ := R+ ×R+ ×R+ ×R+.

Based on the approach in [2], we define

ΣU := {(κ1, κ2, µ1, µ2) ∈ Γ : (θκ1,Q,µ1,r1 , 0) is linearly stable};
ΣV := {(κ1, κ2, µ1, µ2) ∈ Γ : (0, θκ2,Q,µ2,r2) is linearly stable};
Σ− := {(κ1, κ2, µ1, µ2) ∈ Γ : (θκ1,Q,µ1,r1 , 0) and(0, θκ2,Q,µ2,r2) are linearly unstable}. (7)

We first recall the well-known Krein-Rutman Theorem:

Theorem 1 (Krein-Rutman Theorem [28]). Let X be a Banach space, K ⊂ X a total cone and
T : X → X a compact linear operator that is positive (i.e., T(K) ⊂ K) with positive spectral
radius r(T). Then r(T) is an eigenvalue with an eigenvector u ∈ K \ 0 : Tu = r(T)u. Moreover,
r(T∗) = r(T) is an eigenvalue of T∗ with an eigenvector u∗ ∈ K∗.

In order to better describe the linear stability of semi-trivial steady states, we give the
definition of elliptic eigenvalue problem:{

∇ · [κ(x)∇( φ
Q )− µ(x) φ

Q∇ω(x)] + h(x)φ + σφ = 0, in Ω,

κ(x) ∂
∂n (

φ
Q )− µ(x) φ

Q
∂ω(x)

∂n = 0, on ∂Ω,
(8)

where κ(x) > 0, µ(x) > 0, Q(x) > 0 and h(x) ∈ L∞(Ω). Let

Aφ = ∇ · [κ(x)∇( φ

Q
)− µ(x)

φ

Q
∇ω(x)] + h(x)φ.

Since A is uniformly strongly elliptic operator, we declare that the operator A satisfies
the conditions in Theorem 1. An eigenvalue σ1 of the problem (8) is called a principal
eigenvalue if σ1 ∈ R and for any eigenvalue σ with σ 6= σ1, we have Re σ > σ1. Hence,
the problem (8) has a principal eigenvalue, denoted by σ1(κ, Q, µ, h), and its corresponding
eigenfuntion φ(κ, Q, µ, h) > 0 in Ω. The principal eigenvalue is expressed as
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σ1(κ, Q, µ, h) = inf
0 6=φ∈H1(Ω)

∫
κe

µ
κ ω [∇(e−

µ
κ ω φ

Q )]2 dx−
∫

h · e−
µ
κ ω φ2

Q dx∫
e−

µ
d ω φ2

Q dx
. (9)

Next, we give a useful lemma related to eigenvalue comparison results, which is used
for Lemma 3 and Theorem 3.

Lemma 2 ([5]). If h1(x) ≤ h2(x) within Ω, then σ1(κ, Q, µ, h1) ≥ σ1(κ, Q, µ, h2) and the
equality holds if and only if h1(x) ≡ h2(x) in Ω.

According to the description of theory of monotone semi-flow in the literature [6],
let X denote the standard Banach space consisting of all continuous functions from Ω to
R, i.e., X := C(Ω), and X+ be the set of all non-negative continuous functions from Ω to
R+ ∪ 0. Define K := X+ × (−X+) as the usual cone for the study of competitive systems
with nonempty interior. Then we define the notion of linear stability of a given steady state
(U, V). Linearizing the steady state problem of (1) at (U, V), we obtain

∇ · [κ1(x)∇( ϕ
Q(x) )− µ1(x) ϕ

Q(x)∇ω1(x)] + [r1(x)−U − ρ2(x)V]ϕ

−U[ϕ + ρ2(x)ψ] + λϕ = 0, in Ω,
∇ · [κ2(x)∇( ψ

Q(x) )− µ2(x) ψ
Q(x)∇ω2(x)] + [r2(x)− ρ1(x)U −V]ψ

−V[ρ1(x)ϕ + ψ] + λψ = 0, in Ω,

κ1(x) ∂
∂n (

ϕ
Q )− µ1(x) ϕ

Q
∂ω1(x)

∂n = 0, on ∂Ω,

κ2(x) ∂
∂n (

ψ
Q )− µ2(x) ψ

Q
∂ω2(x)

∂n = 0, on ∂Ω.

(10)

Similar to the scalar problem (8), we can define the principal eigenvalue for the
system (10), that is, an eigenvalue λ1 of the problem (10) is called a principal eigenvalue if
λ1 ∈ R and for any eigenvalue λ with λ 6= λ1, we have Re λ > λ1. Based on the approach
in [6], by using Theorem 1, the problem (10) has a principal eigenvalue λ1 ∈ R. In fact,
we can select the corresponding eigenfunction (ϕ1, ψ1), which satisfies ϕ1 > 0 > ψ1 in Ω.
Here, for the convenience of readers to better understand the problem (10), we provide a
simple illustration. Let us do this simple transformation

Φ = e−
µ1
κ1

ω1 ϕ and Ψ = −e−
µ2
κ2

ω2 ψ,

then the problem (10) can be changed to

∇[κ1(x)∇( Φ
Q(x) )] + µ1(x)∇ω1(x) · ∇[ Φ

Q(x) ] + [r1(x)− 2U − ρ2(x)V]Φ

+ρ2(x)Ue(ζ2ω2(x)−ζ1ω1(x))Ψ + λΦ = 0, in Ω,
∇[κ2(x)∇( Ψ

Q(x) )] + µ2(x)∇ω2(x) · ∇[ Ψ
Q(x) ] + ρ1(x)Ve(ζ1ω1(x)−ζ2ω2(x))Φ

+[r2(x)− ρ1(x)U − 2V]Ψ + λΨ = 0, in Ω,
∂

∂n (
Φ
Q ) = ∂

∂n (
Ψ
Q ) = 0, on ∂Ω,

(11)

which is a linear cooperative elliptic system. Suppose now L is the elliptic operator, let

LΦ =∇[κ1(x)∇( Φ

Q(x)
)] + µ1(x)∇ω1(x) · ∇[ Φ

Q(x)
] + [r1(x)− 2U − ρ2(x)V]Φ,

LΨ =∇[κ2(x)∇( Ψ
Q(x)

)] + µ2(x)∇ω2(x) · ∇[ Ψ
Q(x)

] + [r2(x)− ρ1(x)U − 2V]Ψ.

According to [28,29], the problem (11) has Cα(Ω) coefficients and is strictly uniformly
elliptic in the bounded domain Ω which has C2,α boundary. Let K be the positive cone
in X := C1,α

0 (Ω) consisting of nonnegative functions. For any Φ1, Ψ1 ∈ X, then we can
deduce that T : X → X defined by T(Φ1, Ψ1) = (Φ, Ψ) is a positive compact linear
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operator. By applying Theorem 1 for positive compact linear operators and the Neumann
type boundary condition, the problem (11) admits a principal eigenvalue λ1 ∈ R, and the
corresponding eigenfunction (Φ, Ψ) can be chosen to satisfy Φ ≥ 0 and Ψ ≥ 0 in Ω.
Notice that (Φ, Ψ) is the solution of the problem (11). Moreover, since the off-diagonal
elements ρ2(x)Ue(ζ2ω2(x)−ζ1ω1(x)) and ρ1(x)Ve(ζ1ω1(x)−ζ2ω2(x)) are strictly positive in Ω, it
can be further concluded that λ1 is simple and it is the unique eigenvalue corresponding
to a pair of strictly positive eigenfunctions, i.e., Φ > 0 and Ψ > 0 in Ω. In fact, we have
Φ > 0 and Ψ > 0 in Ω due to Hopf boundary lemma, which in turn allows us to choose
ϕ > 0 > ψ in Ω. See [30] using semi-group theory and [31] using maximum principle, [1,6]
for detailed explanation. For the principal eigenvalue theory of general linear cooperative
elliptic systems, we refer the interested readers to [29]. If λ 6= λ1 is an eigenvalue of (10)
and the boundary condition is Neumann type, then Re λ > λ1 in the coexistence case.

Based on [26], (Corollary 2.10), the following lemma is about the linear stability of
(θκ1,Q,µ1,r1 , 0) and (0, θκ2,Q,µ2,r2).

Lemma 3. The linear stability of (θκ1,Q,µ1,r1 , 0), (0, θκ2,Q,µ2,r2) and (0, 0) in the system (1) are de-
termined by the sign of min

{
σ1(κ1, Q, µ1, r1), σ1(κ2, Q, µ2, r2)

}
, σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1)

and σ1(κ1, Q, µ1, r1 − ρ2θκ2,Q,µ2,r2).

Proof. For the linear stability of (θκ1,Q,µ1,r1 , 0), when (U, V) = (θκ1,Q,µ1,r1 , 0) in (10), we have

∇ · [κ1(x)∇( ϕ
Q(x) )− µ1(x) ϕ

Q(x)∇ω1(x)] + [r1(x)− 2θκ1,Q,µ1,r1 ]ϕ

+λϕ = θκ1,Q,µ1,r1 ρ2(x)ψ, in Ω,
∇ · [κ2(x)∇( ψ

Q(x) )− µ2(x) ψ
Q(x)∇ω2(x)] + [r2(x)− ρ1(x)θκ1,Q,µ1,r1 ]ψ

+λψ = 0, in Ω,

κ1(x) ∂
∂n (

ϕ
Q )− µ1(x) ϕ

Q
∂ω1(x)

∂n = 0, on ∂Ω,

κ2(x) ∂
∂n (

ψ
Q )− µ2(x) ψ

Q
∂ω2(x)

∂n = 0, on ∂Ω.

(12)

Let λ be an principal eigenvalue of (12) with the eigenfunction (ϕ, ψ). We get

λ = min
{

σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1), σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1)
}

. (13)

If ψ 6= 0, then λ belonging to an eigenvalue of the second equation in (12), is real and
the inequality λ ≥ σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1) holds. Perhaps, if ψ = 0, then ϕ 6= 0 and
λ is an eigenvalue of the first equation, we get{

∇ · [κ1(x)∇( ϕ
Q(x) )− µ1(x) ϕ

Q(x)∇ω1(x)] + [r1(x)− 2θκ1,Q,µ1,r1 ]ϕ + λϕ = 0, in Ω,

κ1(x) ∂
∂n (

ϕ
Q )− µ1(x) ϕ

Q
∂ω1(x)

∂n = 0, on ∂Ω.
(14)

Due to the fact that λ is real and satisfies λ ≥ σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1). It follows

λ ≥ min
{

σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1), σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1)
}

.

If now σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1) ≤ σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1), letting ϕ be the
first eigenfunction corresponding to σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1), then σ1(κ1, Q, µ1, r1 −
2θκ1,Q,µ1,r1) is an eigenvalue of (12) with the eigenfunction (ϕ1, 0), which deduces λ =
σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1).

Suppose that σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1) > σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1). Let ψ be
the first eigenfunction corresponding to σ1(κ2, Q, µ2, r2−ρ1θκ1,Q,µ1,r1), then σ1(κ2, Q, µ2, r2−
ρ1θκ1,Q,µ1,r1) is an eigenvalue of (12) with the eigenfunction (ϕ, ψ) = (ϕ∗, ψ), that means
λ = σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1). Here ϕ∗ satisfies
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
∇ · [κ1(x)∇( ϕ∗

Q(x) )−µ1(x) ϕ∗

Q(x)∇ω1(x)] + [r1(x)− 2θκ1,Q,µ1,r1 ]ϕ
∗

+σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1)ϕ∗ = θκ1,Q,µ1,r1 ρ2(x)ψ, in Ω,

κ1(x) ∂
∂n (

ϕ∗

Q )− µ1(x) ϕ∗

Q
∂ω1(x)

∂n = 0, on ∂Ω.

(15)

The existence of ϕ∗ is inferred from

σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1 + σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1))

=σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1)− σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1) > 0.

So our claim is right. Owing to (6) and (9), it is inferred that σ1(κ1, Q, µ1, r1 −
θκ1,Q,µ1,r1) = 0. Hence, according to Lemma 2, we gain

σ1(κ1, Q, µ1, r1 − 2θκ1,Q,µ1,r1) > σ1(κ1, Q, µ1, r1 − θκ1,Q,µ1,r1) = 0,

then λ has the same sign as the first eigenvalue σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1). Applying
the definition of λ and linear stability, we deduce that the linear stability of (θκ1,Q,µ1,r1 , 0) is
determined by the sign of σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1).

Through completely similar arguments, we demonstrate that the stability of (0, 0) and
(0, θκ2,Q,µ2,r2), is determined by min

{
σ1(κ1, Q, µ1, r1), σ1(κ2, Q, µ2, r2)

}
, σ1(κ1, Q, µ1, r1 − ρ2

θκ2,Q,µ2,r2) respectively.

Remark 1. From the variational characteristics of the first eigenvalue, we can see that (0, 0) is
linearly unstable for any κ1(x), κ2(x), µ1(x), µ2(x), ρ2(x), ρ1(x) > 0.

Therefore, we give equivalent descriptions of (7) below:

ΣU :={(κ1, κ2, µ1, µ2) ∈ Γ : σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1) > 0};
ΣV :={(κ1, κ2, µ1, µ2) ∈ Γ : σ1(κ1, Q, µ1, r1 − ρ2θκ2,Q,µ2,r2) > 0};
Σ− :={(κ1, κ2, µ1, µ2) ∈ Γ : σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1) < 0 and

σ1(κ1, Q, µ1, r1 − ρ2θκ2,Q,µ2,r2) < 0}.

The neutrally stable case is defined as follows

ΣU,0 :={(κ1, κ2, µ1, µ2) ∈ Γ : σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1) = 0};
ΣV,0 :={(κ1, κ2, µ1, µ2) ∈ Γ : σ1(κ1, Q, µ1, r1 − ρ2θκ2,Q,µ2,r2) = 0};
Σ0,0 :={(κ1, κ2, µ1, µ2) ∈ Γ : σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1)

= σ1(κ1, Q, µ1, r1 − ρ2θκ2,Q,µ2,r2) = 0}.

By the definition, it is easy to see Σ0,0 =ΣU,0 ∩ ΣV,0.
In the following, “g.a.s” is used to mean that the steady state is globally asymptotically

stable among all non-negative and not identically zero initial conditions.

Lemma 4 ([5]). For any κ1, κ2, µ1, µ2 > 0, assume that (A1)− (A4) hold and every coexistence
steady state of the system (1), if it exists, is asymptotically stable. Then one of the following
alternatives holds:

(i) There exists a unique coexistence steady state of (1) that is g.a.s.
(ii) The system (1) has no coexistence steady state and either one of (θκ1,Q,µ1,r1 , 0) or (0, θκ2,Q,µ2,r2) is

g.a.s, while the other is unstable.
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3. Main Results

In this section, we present the results which are related to the co-existence steady state
and the classification of global dynamic behaviors of the system (1).

Theorem 2. Suppose that (A1) − (A4) hold. For any (κ1, κ2, µ1, µ2) ∈ Γ \ Σ0,0, then every
co-existence steady state of the system (1), if exists, is linearly stable, i.e., λ1 > 0.

Theorem 3. Suppose that (A1)− (A4) hold. Then we have the mutually disjoint decomposition
of Γ:

Γ = (ΣU ∪ ΣU,0 \ Σ0,0) ∪ (ΣV ∪ ΣV,0 \ Σ0,0) ∪ Σ− ∪ Σ0,0. (16)

Moreover, the following statements hold for the system (1):

(i) For all (κ1, κ2, µ1, µ2) ∈ (ΣU ∪ ΣU,0 \ Σ0,0), (θκ1,Q,µ1,r1 , 0) is g.a.s;
(ii) For all (κ1, κ2, µ1, µ2) ∈ (ΣV ∪ ΣV,0 \ Σ0,0), (0, θκ2,Q,µ2,r2) is g.a.s;
(iii) For all (κ1, κ2, µ1, µ2) ∈ Σ−, the system (1) has a unique coexistence steady state that is g.a.s;
(iv) For all (κ1, κ2, µ1, µ2) ∈ Σ0,0, θκ1,Q,µ1,r1 ≡ ρ2(x)θκ2,Q,µ2,r2 in Ω and the system (1) has a

compact global attractor consisting of a continuum of steady states

{
(
η(x)θκ1,Q,µ1,r1 , (1− η(x))

θκ1,Q,µ1,r1

ρ2(x)
)

: η(x) ∈ [0, 1]}

connecting with two semi-trivial steady states.

3.1. Co-Existence Steady State

In order to prove Theorem 2, we assume that (U, V) is the co-existence steady state of
the following system (1):
∇ · [κ1(x)∇( U

Q(x) )− µ1(x) U
Q(x)∇ω1(x)] + U[r1(x)−U − ρ2(x)V] = 0, in Ω,

∇ · [κ2(x)∇( V
Q(x) )− µ2(x) V

Q(x)∇ω2(x)] + V[r2(x)− ρ1(x)U −V] = 0, in Ω,

κ1(x) ∂
∂n (

U
Q )− µ1(x)U

Q
∂ω1(x)

∂n = 0, on ∂Ω,

κ2(x) ∂
∂n (

V
Q )− µ2(x)V

Q
∂ω2(x)

∂n = 0, on ∂Ω.

(17)

Similar to the problem (10), then we get the linear eigenvalue model by linearize
system (1) at (U, V),

∇ · [κ1(x)∇( ϕ
Q(x) )− µ1(x) ϕ

Q(x)∇ω1(x)] + [r1(x)−U − ρ2(x)V]ϕ

−U[ϕ + ρ2(x)ψ] + λϕ = 0, in Ω,
∇ · [κ2(x)∇( ψ

Q(x) )− µ2(x) ψ
Q(x)∇ω2(x)] + [r2(x)− ρ1(x)U −V]ψ

−V[ρ1(x)ϕ + ψ] + λψ = 0, in Ω,

κ1(x) ∂
∂n (

ϕ
Q )− µ1(x) ϕ

Q
∂ω1(x)

∂n = 0, on ∂Ω,

κ2(x) ∂
∂n (

ψ
Q )− µ2(x) ψ

Q
∂ω2(x)

∂n = 0, on ∂Ω.

(18)

According to the problem (8) and using Theorem 1, we can deduce that the problem
(18) has a principal eigenvalue λ1. Moreover, we can choose the corresponding eigenfunc-
tion (ϕ, ψ), it satisfies ϕ > 0 > ψ in Ω.

Now, we are ready to discuss Theorem 2.
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Proof of Theorem 2. Obviously, as long as we can obtain λ1 > 0 when (κ1, κ2, µ1, µ2) ∈
Γ \ Σ0,0. Multiplying the first equation in (18) and (17) by U

Q(x) and ϕ
Q(x) , respectively,

and subtracting the obtained equations, we obtain

[
∇
(
κ1∇(

ϕ

Q
)− µ1

ϕ
Q∇ω1

)]U
Q −

[
∇
(
κ1∇(

U
Q
)− µ1

U
Q∇ω1

)] ϕ
Q

−U2

Q [ϕ + ρ2(x)ψ] = − λ1Uϕ
Q . (19)

In the similar way, it can be derived from the second equation in (17) and (18) that

[
∇
(
κ2∇(

ψ

Q
)− µ2

ψ
Q∇ω2

)]V
Q −

[
∇
(
κ2∇(

V
Q
)− µ2

V
Q∇ω2

)] ψ
Q

−V2

Q [ρ1(x)ϕ + ψ] = − λ1Vψ
Q . (20)

Furthermore, multiplying (19) by e−
µ1
κ1

ω1 · ϕ2

U2 , then we integrate over Ω and deduce
(for simplicity, we replace

∫
Ω with

∫
)

λ1

∫
e−

µ1
κ1

ω1 ϕ3

UQ
dx

=−
∫ [
∇
(
κ1∇(

ϕ

Q
)− µ1

ϕ

Q
∇ω1

)]
e−

µ1
κ1

ω1 ϕ2

UQ
dx

+
∫ [
∇
(
κ1∇(

U
Q
)− µ1

U
Q
∇ω1

)]
e−

µ1
κ1

ω1 ϕ3

U2Q
dx

+
∫

e−
µ1
κ1

ω1 ϕ2

Q
[ϕ + ρ2(x)ψ]dx

=
∫ [

κ1∇(
ϕ

Q
)− µ1

ϕ

Q
∇ω1

][
∇ · (e−

µ1
κ1

ω1 ϕ2

UQ
)
]

dx

−
∫ [

κ1∇(
U
Q
)− µ1

U
Q
∇ω1

][
∇ · (e−

µ1
κ1

ω1 ϕ3

U2Q
)
]

dx

+
∫

e−
µ1
κ1

ω1 ϕ2

Q
[ϕ + ρ2(x)ψ]dx

:=I1 − I2 + I3.

(21)

By using the similarly method for the Equation (20), we get

λ1

∫
e−

µ2
κ2

ω2 ψ3

VQ
dx

=−
∫ [
∇
(
κ2∇(

ψ

Q
)− µ2

ψ

Q
∇ω2

)]
e−

µ2
κ2

ω2 ψ2

VQ
dx

+
∫ [
∇
(
κ2∇(

V
Q
)− µ2

V
Q
∇ω2

)]
e−

µ2
κ2

ω2 ψ3

V2Q
dx

+
∫

e−
µ2
κ2

ω2 ψ2

Q
[ρ1(x)ϕ + ψ]dx

=
∫ [

κ2∇(
ψ

Q
)− µ2

ψ

Q
∇ω2

][
∇ · (e−

µ2
κ2

ω2 ψ2

VQ
)
]

dx

(22)

−
∫ [

κ2∇(
V
Q
)− µ2

V
Q
∇ω2

][
∇ · (e−

µ2
κ2

ω2 ψ3

V2Q
)
]

dx

+
∫

e−
µ2
κ2

ω2 ψ2

Q
[ρ1(x)ϕ + ψ]dx

:=J1 − J2 + J3.
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We now simplify the formulas I1, I2, J1 and J2. Then we find

I1 :=
∫ [

κ1∇(
ϕ

Q
)− µ1

ϕ

Q
∇ω1

][
∇ · (e−

µ1
κ1

ω1 ϕ2

UQ
)
]

dx

=
∫

e−
µ1
κ1

ω1 [κ1∇(
ϕ

Q
)− µ1

ϕ

Q
∇ω1][

2ϕU∇ϕ− ϕ2∇U
U2Q

]dx

−
∫

µ1

κ1

ϕ2

UQ
e−

µ1
κ1

ω1 [κ1∇(
ϕ

Q
)− µ1

ϕ

Q
∇ω1] · [∇ω1]dx

−
∫

ϕ2

UQ2 e−
µ1
κ1

ω1 [κ1∇(
ϕ

Q
)− µ1

ϕ

Q
∇ω1][∇Q]dx

=
∫

e−
µ1
κ1

ω1 ϕ3

UQ2 [κ1∇(
ϕ

Q
)

Q
ϕ
− µ1∇ω1][2

∇ϕ

ϕ
− ∇U

U
]dx

−
∫

µ1

κ1

ϕ3

UQ2 e−
µ1
κ1

ω1 [κ1∇(
ϕ

Q
)

Q
ϕ
− µ1∇ω1] · [∇ω1]dx

−
∫

ϕ3

UQ3 e−
µ1
κ1

ω1 [κ1∇(
ϕ

Q
)

Q
ϕ
− µ1∇ω1][∇Q]dx

:=∆1 − ∆2 − ∆3,

and

I2 :=
∫ [

κ1∇(
U
Q
)− µ1

U
Q
∇ω1

][
∇ · (e−

µ1
κ1

ω1 ϕ3

U2Q
)
]

dx

=
∫

e−
µ1
κ1

ω1 [κ1∇(
U
Q
)− µ1

U
Q
∇ω1][

3ϕ2U2∇ϕ− ϕ32U∇U
U4Q

]dx

−
∫

µ1

κ1

ϕ3

U2Q
e−

µ1
κ1

ω1 [κ1∇(
U
Q
)− µ1

U
Q
∇ω1] · [∇ω1]dx

−
∫

ϕ3

U2Q2 e−
µ1
κ1

ω1 [κ1∇(
U
Q
)− µ1

U
Q
∇ω1][∇Q]dx

=
∫

e−
µ1
κ1

ω1 ϕ3

UQ2 [κ1∇(
U
Q
)

Q
U
− µ1∇ω1][3

∇ϕ

ϕ
− 2
∇U
U

]dx

−
∫

µ1

κ1

ϕ3

UQ2 e−
µ1
κ1

ω1 [κ1∇(
U
Q
)

Q
U
− µ1∇ω1] · [∇ω1]dx

−
∫

ϕ3

UQ3 e−
µ1
κ1

ω1 [κ1∇(
U
Q
)

Q
U
− µ1∇ω1][∇Q]dx

:=∆4 − ∆5 − ∆6.
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Next, we have

∆1 − ∆4

=
∫

e−
µ1
κ1

ω1 ϕ3

UQ2 [κ1∇(
ϕ

Q
)

Q
ϕ
− µ1∇ω1][2

∇ϕ

ϕ
− ∇U

U
]dx

−
∫

e−
µ1
κ1

ω1 ϕ3

UQ2 [κ1∇(
U
Q
)

Q
U
− µ1∇ω1][3

∇ϕ

ϕ
− 2
∇U
U

]dx

=
∫

κ1e−
µ1
κ1

ω1 ϕ3

UQ2 {[∇(
ϕ

Q
)

Q
ϕ
][2
∇ϕ

ϕ
− ∇U

U
]− [∇(U

Q
)

Q
U
][3
∇ϕ

ϕ
− 2
∇U
U

]}dx

+
∫

e−
µ1
κ1

ω1 ϕ3

UQ2 [µ1∇ω1][
∇ϕ

ϕ
− ∇U

U
]dx

=
∫

κ1e−
µ1
κ1

ω1 ϕ3

UQ2 {[
∇ϕ

Q
− ϕ∇ϕ

Q2 ]
Q
ϕ
[2
∇ϕ

ϕ
− ∇U

U
]− [
∇U
Q
− U∇Q

Q2 ]
Q
U
[3
∇ϕ

ϕ

− 2
∇U
U

]}dx +
∫

e−
µ1
κ1

ω1 ϕ3

UQ2 [µ1∇ω1][
∇ϕ

ϕ
− ∇U

U
]dx

=
∫

2κ1e−
µ1
κ1

ω1 ϕ3

UQ2 (
∇ϕ

ϕ
− ∇U

U
)2 dx

+
∫

κ1e−
µ1
κ1

ω1 ϕ3

UQ3 [
∇ϕ

ϕ
− ∇U

U
][∇Q]dx

+
∫

e−
µ1
κ1

ω1 ϕ3

UQ2 [µ1∇ω1][
∇ϕ

ϕ
− ∇U

U
]dx.

(23)

By the similar method, we deduce that

∆2 − ∆5 =
∫

e−
µ1
κ1

ω1 ϕ3

UQ2 [µ1∇ω1][
∇ϕ

ϕ
− ∇U

U
]dx, (24)

and

∆3 − ∆6 =
∫

κ1e−
µ1
κ1

ω1 ϕ3

UQ3 [
∇ϕ

ϕ
− ∇U

U
][∇Q]dx. (25)

Thus

I1 − I2 =[∆1 − ∆4]− [∆2 − ∆5]− [∆3 − ∆6]

=
∫

2κ1e−
µ1
κ1

ω1 ϕ3

UQ2 (
∇ϕ

ϕ
− ∇U

U
)2 dx.

(26)

By a similar method, one obtains

J1 − J2 =
∫

2κ2e−
µ2
κ2

ω2 ψ3

VQ2 (
∇ψ

ψ
− ∇V

V
)2 dx. (27)

Replace (21) and (22) with (26) and (27), respectively. Multiplying (22) by ρ2(x)3 and
subtracting it from (21), we can obtain
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λ1

∫
[e−

µ1
κ1

ω1 ϕ3

UQ
− e−

µ2
κ2

ω2 ρ2(x)3ψ3

VQ
]dx

=
∫

2κ1e−
µ1
κ1

ω1 ϕ3

UQ2 (
∇ϕ

ϕ
− ∇U

U
)2 dx +

∫
e−

µ1
κ1

ω1 ϕ2

Q
[ϕ + ρ2(x)ψ]dx

−
∫

2κ2e−
µ2
κ2

ω2 ρ2(x)3ψ3

VQ2 (
∇ψ

ψ
− ∇V

V
)2dx

−
∫

e−
µ2
κ2

ω2 ρ2(x)2ψ2

Q
[ρ1(x)ρ2(x)ϕ + ρ2(x)ψ]dx

≥
∫

e−
µ1
κ1

ω1 ϕ2

Q
[ϕ + ρ2(x)ψ]dx−

∫
e−

µ2
κ2

ω2 ρ2(x)3ψ3

Q
dx

−
∫

e−
µ1
κ1

ω1 ρ2(x)2ψ2 ϕ

Q
[ρ1(x)ρ2(x)e(

µ1
κ1

ω1−
µ2
κ2

ω2)]dx

≥
∫

e−
µ1
κ1

ω1 ϕ2

Q
[ϕ + ρ2(x)ψ]dx−

∫
e−

µ1
κ1

ω1 ρ2(x)3ψ3

Q
dx

−
∫

e−
µ1
κ1

ω1 ρ2(x)2ψ2 ϕ

Q
dx

=
∫

e−
µ1
κ1

ω1 1
Q
[ϕ + ρ2(x)ψ]2[ϕ− ρ2(x)ψ]dx ≥ 0,

(28)

where we use the facts (A1), (A2) and ϕ > 0 > ψ in Ω. So, λ1 > 0.
Next, we will prove that λ1 = 0 can not happen. According to (28), we infer that

λ1 = 0 if and only if

ρ1(x)ρ2(x) = 1,
µ1

κ1
ω1 =

µ2

κ2
ω2,
∇ϕ

ϕ
=
∇U
U

,
∇ψ

ψ
=
∇V
V

, ϕ = −ρ2(x)ψ, (29)

which means that

∇U
U

=
∇V
V

,

i.e.,

∇[lnU] = ∇[lnV].

Then, one obtains

U = dV for some constant d > 0. (30)

In addition, by applying (30) to (17), and the uniqueness of the positive steady state of
the system (4), it can be concluded that

(1 +
ρ2(x)

d
)U = θκ1,Q,µ1,r1 and (ρ1(x)d + 1)V = θκ2,Q,µ2,r2 .

Noting that ρ1(x)ρ2(x) = 1, we deduce

θκ1,Q,µ1,r1

θκ2,Q,µ2,r2

=
(1 + ρ2(x)

d )U
(ρ1(x)d + 1)V

=
U + ρ2(x)V
ρ1(x)U + V

= ρ2(x) =
1

ρ1(x)
. (31)

Based on (31), one can easily check

σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1) = σ1(κ2, Q, µ2, r2 − θκ2,Q,µ2,r2) = 0,

and
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σ1(κ1, Q, µ1, r1 − θκ1,Q,µ1,r1) = σ1(κ1, Q, µ1, r1 − ρ2θκ2,Q,µ2,r2) = 0.

According to the assumption (κ1, κ2, µ1, µ2) /∈ Σ0,0, we get λ1 6= 0. Therefore,
λ1 > 0.

3.2. Classification of the Global Dynamics

In this subsection, we are ready to discuss the complete global dynamic behaviors of
the system (1).

Proof of Theorem 3. According to the proof procedure (see [2,5]), this proof can be divided
into two steps.

Step 1. On the proof of the disjoint decomposition in (16).
Obviously, we can get the decomposition in (16). According to the relevant conclusion

and definitions, we only need to prove

(ΣU ∪ ΣU,0 \ Σ0,0) ∩ (ΣV ∪ ΣV,0 \ Σ0,0) = ∅. (32)

By Lemma 3, the linear stability of (θκ1,Q,µ1,r1 , 0), (0, θκ2,Q,µ2,r2) can be determined by
the sign of σ1(κ2, Q, µ2, r2− ρ1θκ1,Q,µ1,r1), σ1(κ1, Q, µ1, r1− ρ2θκ2,Q,µ2,r2) respectively. For the
sake of convenience of in writing, let

θκ1,Q,µ1,r1 := θ1, σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1) := σ1(θ
∗
1 ),

θκ2,Q,µ2,r2 := θ2, σ1(κ1, Q, µ1, r1 − ρ2θκ2,Q,µ2,r2) := σ1(θ
∗
2 ).

According to the properties of the variational characterization and (6), we obtain

σ1(θ
∗
2 ) = inf

0 6=φ∈H1(Ω)

∫
κ1e

µ1
κ1

ω1 [∇(e−
µ1
κ1

ω1 φ
Q )]2 dx−

∫
[r1 − ρ2(x)θ2]e

− µ1
κ1

ω1 φ2

Q dx∫
e−

µ1
κ1

ω1 φ2

Q dx

≤
∫

κ1e
µ1
κ1

ω1 [∇(e−
µ1
κ1

ω1 θ1
Q )]2 dx−

∫
[r1 − ρ2(x)θ2]e

− µ1
κ1

ω1 θ2
1

Q dx∫
e−

µ1
κ1

ω1 θ1
2

Q dx

=

∫
e−

µ1
κ1

ω1 θ2
1

Q [ρ2(x)θ2 − θ1]dx∫
e−

µ1
κ1

ω1 θ2
1

Q dx
,

(33)

and

σ1(θ
∗
1 ) = inf

0 6=φ∈H1(Ω)

∫
κ2e

µ2
κ2

ω2 [∇(e−
µ2
κ2

ω2 φ
Q )]2 dx−

∫
[r2 − ρ1(x)θ1]e

− µ2
κ2

ω2 φ2

Q dx∫
e−

µ2
κ2

ω2 φ2

Q dx

≤
∫

κ2e
µ2
κ2

ω2 [∇(e−
µ2
κ2

ω2 θ2
Q )]2 dx−

∫
[r2 − ρ1(x)θ1]e

− µ2
κ2

ω2 θ2
2

Q dx∫
e−

µ2
κ2

ω2 θ2
2

Q dx

=

∫
e−

µ2
κ2

ω2 θ2
2

Q [ρ1(x)θ1 − θ2]dx∫
e−

µ2
κ2

ω2 θ2
2

Q dx
.

(34)

Since 0 < ρ1(x)ρ2(x) ≤ 1, combining with (33) and (34) together, we have
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σ1(θ
∗
2 ) ·

∫
e−

µ1
κ1

ω1 θ2
1

Q
dx + σ1(θ

∗
1 ) ·

∫
e−

µ2
κ2

ω2 ρ2(x)3θ2
2

Q
dx

≤
∫

e−
µ1
κ1

ω1 θ2
1

Q
[ρ2(x)θ2 − θ1]dx−

∫
e−

µ2
κ2

ω2 ρ2(x)3θ3
2

Q
dx

+
∫

e−
µ1
κ1

ω1 ρ2(x)2θ2
2θ1

Q
[ρ1(x)ρ2(x)e(

µ1
κ1

ω1−
µ2
κ2

ω2)]dx

≤
∫

e−
µ1
κ1

ω1 θ2
1

Q
[ρ2(x)θ2 − θ1]dx−

∫
e−

µ1
κ1

ω1 ρ2(x)3θ3
2

Q
dx

+
∫

e−
µ1
κ1

ω1 ρ2(x)2θ2
2θ1

Q
dx

=−
∫

e−
µ1
κ1

ω1 1
Q
[ρ2(x)θ2 − θ1]

2[θ1 + ρ2(x)θ2]dx

≤0,

(35)

where all the inequalities become equalities if and only if

ρ1(x)ρ2(x) = 1,
µ1

κ1
ω1 =

µ2

κ2
ω2 and θκ1,Q,µ1,r1 ≡ ρ2(x)θκ2,Q,µ2,r2 in Ω.

It follows from (35) that the conclusion (32) holds.
Step 2. On the proof of the statements (i)− (iv).
Firstly, we will prove the statements (i) − (iii) hold. In consideration of (16) in

Theorem 3 and (35) in step 1, we see that for any (κ1, κ2, µ1, µ2) ∈ (Γ \ Σ0,0), there are five
possibilities as follows:

(b1) (κ1, κ2, µ1, µ2) ∈ ΣU, i.e., (θκ1,Q,µ1,r1 , 0) is linearly stable, (0, θκ2,Q,µ2,r2) is linearly unstable;

(b2) (κ1, κ2, µ1, µ2) ∈ ΣV , i.e., (θκ1,Q,µ1,r1 , 0) is linearly unstable, (0, θκ2,Q,µ2,r2) is linearly
stable;

(b3) (κ1, κ2, µ1, µ2) ∈ Σ−, i.e., both (θκ1,Q,µ1,r1 , 0) and (0, θκ2,Q,µ2,r2) are linearly unstable;

(b4) (κ1, κ2, µ1, µ2) ∈ ΣU,0 \ Σ0,0, i.e., (θκ1,Q,µ1,r1 , 0) is neutrally stable, (0, θκ2,Q,µ2,r2) is lin-
early unstable;

(b5) (κ1, κ2, µ1, µ2) ∈ ΣV,0 \ Σ0,0, i.e., (0, θκ2,Q,µ2,r2) is neutrally stable, (θκ1,Q,µ1,r1 , 0) is
linearly unstable.

By Lemma 4, we immediately deduce the following conclusion:
(θκ1,Q,µ1,r1 , 0) and (0, θκ2,Q,µ2,r2) are g.a.s based on the assumptions (b1) and (b2), re-

spectively, and there is a unique co-existence steady state under the condition (b3).
We now claim that there is no coexistence steady state under the condition (b4) or the

condition (b5). Then we can infer that (θκ1,Q,µ1,r1 , 0) and (0, θκ2,Q,µ2,r2) are also g.a.s based
on the assumptions (b4) and (b5), respectively, from Lemma 4.

We only need to verify the above statement for the case (b4). Indeed, if the system (1)
has a co-existence steady state (Ũ, Ṽ) for some (κ1, κ2, µ1, µ2) = (κ̃1, κ̃2, µ̃1, µ̃2) ∈ ΣU,0 \Σ0,0
and (Ũ, Ṽ) satisfies
∇ · [κ̃1(x)∇( Ũ

Q̃(x)
)− µ̃1(x) Ũ

Q̃(x)
∇ω1(x)] + Ũ[r1(x)− Ũ − ρ2(x)Ṽ] = 0, in Ω,

∇ · [κ̃2(x)∇( Ṽ
Q̃(x)

)− µ̃2(x) Ṽ
Q̃(x)
∇ω2(x)] + Ṽ[r2(x)− ρ1(x)Ũ − Ṽ] = 0, in Ω,

[κ̃1(x) ∂
∂n (

Ũ
Q̃
)− µ̃1(x) Ũ

Q̃
∂ω1(x)

∂n ] |∂Ω= [κ̃2(x) ∂
∂n (

Ṽ
Q̃
)− µ̃2(x) Ṽ

Q̃
∂ω2(x)

∂n ] |∂Ω= 0.

(36)

We have

σ1(κ̃2, Q̃, µ̃2, r2 − ρ1θκ̃1,Q̃,µ̃1,r1
) = 0 and σ1(κ̃1, Q̃, µ̃1, r1 − ρ2θκ̃2,Q̃,µ̃2,r2

) < 0. (37)
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Define the operator G : R+ ×R+ ×M1 ×M1 →M2 ×M2

G : ($1, $2, w1, w2) 7−→
(

κ̃1∆(w1
Q )− µ̃1∇ · [w1

Q ∇ω1] + w1[r1 − w1 − $2w2]

κ̃2∆(w2
Q )− µ̃2∇ · [w2

Q ∇ω2] + w2[r2 − $1w1 − w2]

)
,

with

M1 := {ϕ ∈W2,p(Ω) : [κ̃1
∂

∂n
(

ϕ

Q
)− µ̃1(

ϕ

Q
)

∂ω1

Q
] |∂Ω= 0}, M2 := Lp(Ω), p > N.

From (36), G(ρ1(x), ρ2(x), Ũ, Ṽ) = 0 and Theorem 2, it yields that

∂G($1, $2, w1, w2)

∂(w1, w2)
|($1,$2,w1,w2)=(ρ1(x),ρ2(x),Ũ,Ṽ) is invertible.

Applying implicit function theorem, one gets ($1, $2) is closed to (ρ1(x), ρ2(x)). We
have a positive solution (Ũ, Ṽ) to the equation G($1, $2, w1, w2) = 0. Let us choose ($1, $2),
which implies (the solution corresponding to ($1, $2) is denoted by (U, V))

$1 > ρ1(x), 0 < $2 < ρ2(x) and $1 · $2 ≤ Λ. (38)

Let us see the following auxiliary problem
Ut = ∇ · [κ̃1(x)∇(U

Q )− µ̃1(x)U
Q∇ω1(x)] + U[r1(x)−U − $2V] = 0, in Ω×R+,

Vt = ∇ · [κ̃2(x)∇(V
Q )− µ̃2(x)V

Q∇ω2(x)] + V[r2(x)− $1U −V] = 0, in Ω×R+,

[κ̃1(x) ∂
∂n (

U
Q )− µ̃1(x)U

Q
∂ω1(x)

∂n ] |∂Ω= 0,

[κ̃2(x) ∂
∂n (

V
Q )− µ̃2(x)V

Q
∂ω2(x)

∂n ] |∂Ω= 0,

(39)

which has the same semi-trivial steady states (θκ̃1,Q̃,µ̃1,r1
, 0) and (0, θκ̃2,Q̃,µ̃2,r2

). From (37),
(38) and Lemma 2, it then follows that

σ1(κ̃2, Q̃, µ̃2, r2 − $1θκ̃1,Q̃,µ̃1,r1
) > 0 and σ1(κ̃1, Q̃, µ̃1, r1 − $2θκ̃2,Q̃,µ̃2,r2

) < 0. (40)

According to the case (b1), (θκ1,Q,µ1,r1 , 0) is also g.a.s in the system (39) which contra-
dicts with the existence of (U, V). Therefore, there is no coexistence steady state under the
condition (b4). Similarly, we can get the conclusion that there is also no coexistence steady
state under the condition (b5). The above descriptions of the cases (b1)− (b5) represent
the expected results described in the statements (i)− (iii).

Secondly, we prove the statement (iv). We will show

Σ0,0 = Σ∼:={(κ1, κ2, µ1, µ2) ∈ Γ : ρ1(x)ρ2(x)=1, θκ1,Q,µ1,r1 ≡ ρ2(x)θκ2,Q,µ2,r2 in Ω}. (41)

It makes the same description of Σ0,0, which means the expected result in the state-
ment (iv).

Let (κ1, κ2, µ1, µ2) ∈ Σ∼, then

ρ1(x)ρ2(x) = 1 and θκ1,Q,µ1,r1 ≡ ρ2(x)θκ2,Q,µ2,r2 in Ω.

Based on the proof of Theorem 2, we get

σ1(κ2, Q, µ2, r2 − ρ1θκ1,Q,µ1,r1) = σ1(κ1, Q, µ1, r1 − ρ2θκ2,Q,µ2,r2) = 0, (42)

which implies Σ∼ ⊂ Σ0,0. When (42) holds, the last three inequalities in (35) become
equalities, we have
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ρ1(x)ρ2(x) = 1, θκ1,Q,µ1,r1 ≡ ρ2(x)θκ2,Q,µ2,r2 in Ω,

which shows Σ0,0 ⊂ Σ∼. Hence, the equality (41) is confirmed.
Let (κ1, κ2, µ1, µ2) ∈ Σ0,0 and (U, V) be the corresponding coexistence steady state

of (1). We claim that U
V ≡ constant. Let λ1 be a principal eigenvalue for (U, V). Moreover,

we choose the corresponding eigenfunction (ϕ, ψ), which satisfies ϕ > 0 > ψ in Ω and
‖ϕ‖2

2 + ‖ψ‖2
2 = 1. In order to prove it, it is enough to show that (29) holds. Suppose that

(29) is not true. Then (28) means λ1 > 0. Similar to the proof of the case (b4), we get (29)
holds, i.e., U

V ≡ constant. This yields that

(U, V) =
(
η(x)θκ1,Q,µ1,r1 , (1− η(x))

θκ1,Q,µ1,r1

ρ2(x)
)

: η(x) ∈ [0, 1].

Therefore, we conclude that for any (κ1, κ2, µ1, µ2) ∈ Σ0,0, the set of equilibria of (1) is

{(0, 0)} ∪ {
(
η(x)θκ1,Q,µ1,r1 , (1− η(x))

θκ1,Q,µ1,r1

ρ2(x)
)

: η(x) ∈ [0, 1]},

where (0, 0) is a repeller by Remark 1. Then each solution of (1) converges to a single

equilibrium {
(
η(x)θκ1,Q,µ1,r1 , (1− η(x))

θκ1,Q,µ1,r1
ρ2(x)

)
: η(x) ∈ [0, 1]}.

4. Discussion

In this paper, by using principal eigenvalue theory and monotone dynamical system
theory, we mainly analyzed the global directed dynamic behaviors of a Lotka-Volterra
competition-diffusion-advection system between two organisms in heterogeneous environ-
ments. The two organisms compete for different fundamental resources, their advection
and diffusion strategies follow a positive diffusion distribution, the functions of inter-
specific competition ability are variable. Our work can be seen as a further development
of Wang [5] for the competition-diffusion system, where we bring new ingredients in the
arguments to overcome the difficulty caused by the involvement of advection.

In the future, exploring the global directed dynamic behaviors under the condition of cross-
diffusion may be an interesting research point. We leave this challenge to future investigations.
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