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Abstract: In this paper, the notion of θ∗-weak contraction is introduced, which is utilized to prove
some fixed point results. These results are helpful to give a positive response to certain open question
raised by Kannan and Rhoades on the existence of contractive definition which does not force the
mapping to be continuous at the fixed point. Some illustrative examples are also given to support
our results. As applications of our result, we investigate the existence and uniqueness of a solution of
non-linear matrix equations and integral equations of Volterra type as well.
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1. Introduction and Preliminaries

In order to study the existence of fixed point for discontinuous mappings, Kannan [1]
introduced a weaker contraction condition and proved the following theorem:

Every self-mapping S defined on a complete metric space (M, d) satisfying the condi-
tion

d(Sz, Sw) ≤ β[d(z, Sz) + d(w, Sw)], where β ∈
[
0,

1
2

)
, (1)

∀z, w ∈ M, has a unique fixed point. We refer such a mappings as Kannan type mappings.
Reader can find a lot of literature in this conntext. One such type of result can be seen in [2].

In his paper, [3], Rhoades presented 250 contractive definitions (including (1)) and
compared them. He found that though most of them do not force the mapping to be
continuous in the entire domain but under these definitions, all the mapping are continuous
at the fixed point. Rhoades [4] constructed a very fascinating open problem:

Open Question 1. Does there exist a contractive definition which is strong enough to ensure the
existence and uniqueness of a fixed point but does not force the mapping to be continuous at the
underlying fixed point?

After more than a decade, Pant [5] was the first to give an answer to this Open
Question 1.

In other direction, Jleli and Samet [6] introduced another class of mappings and by
using it, they defined θ-contractions.

Definition 1 ([6–8]). Let θ : (0, ∞)→ (1, ∞) be a mapping satisfying the following conditions:

Θ1 : θ is non-decreasing;
Θ2 : for each sequence {βk} ⊂ (0, ∞), limk→∞ θ(βk) = 1 ⇐⇒ limk→∞ βk = 0;
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Θ3 : ∃ r ∈ (0, 1) and l ∈ (0, ∞] such that

lim
β→0+

θ(β)− 1
βr = l;

Θ4 : θ is continuous.

We consider the following class of mappings:
Θ1,2,3: the class of mappings satisfying Θ1–Θ3.
Θ1,2,4: the class of mappings satisfying Θ1, Θ2 and Θ4.
Θ2,3: the class of mappings satisfying Θ2 and Θ3.
Θ2,4: the class of mappings satisfying Θ2 and Θ4.

Jleli and Samet [6] used the class of functions Θ1,2,3 and proved the following result.

Theorem 1 ([6]). Let (M, d) be a complete generalized metric space and S : M → M a given
mapping. Suppose that there exist θ ∈ Θ1,2,3 and k ∈ (0, 1) such that

d(Sz, Sw) > 0 =⇒ θ(d(Sz, Sw)) ≤ [θ(d(z, w))]k, (2)

∀z, w ∈ M. Then S has a unique fixed point.

Later on, this contraction condition was modified by many authors. In this direc-
tion, Ahmad et al. [9] proved the same result by using class of functions Θ1,2,4. It was
already remarked that the monotonicity of θ implies just the continuity of the mapping S,
but continuity of S can also be obtained by Θ2, without using Θ1.

Let S be a self-mapping defined on a metric space (M, d) satisfying condition Θ2.
If z, w ∈ M such that d(z, w) tends to 0, then condition Θ2 implies that θ(d(z, w)) tends to
1 and (2) yields that θ(d(Sz, Sw)) tends to 1. Again, condition Θ2 implies that d(Sz, Sw)
tends to 0. Hence, S is continuous mapping. Imdad et al. [10] observed that continuity of
S still holds even if Θ1 is removed. So they used θ ∈ Θ2,3 (or θ ∈ Θ2,4) and established
that Theorem 1 still held true by considering these class of mappings, i.e., Theorem 1 can
survive without Θ1.

In the sequel, it is substantial to state the following lemma.

Lemma 1 ([11]). Let {zn} be a sequence in a metric space (M, d). If {zn} is not a Cauchy sequence,
then there exist an ε > 0 and two subsequences {zn(k)} and {zm(k)} of {zn} such that

k ≤ m(k) < n(k), d(zm(k), zn(k)) ≥ ε and d(zm(k), zn(k)−1) < ε, ∀ k ∈ N.
Furthermore, limk→∞ d(zm(k), zn(k)) = ε, provided limn→∞ d(zn, zn+1) = 0.

The aim of this paper is five-fold narrated as follows:

1. To introduce the concept of θ∗-weak contractions.
2. To prove some new fixed point results.
3. To provide a new answer to the Open Question 1 using θ∗-weak contractions.
4. To investigate the existence and uniqueness of a solution of non-linear matrix equation.
5. To investigate the existence and uniqueness of a solution of integral equation of

Volterra type.

In the sequel, R and N denote the set of real and natural numbers, respectively, and
N0 stands for N∪ {0}. The set of all fixed points of a self-mapping S is denoted by Fix(S).

2. Main Results

Let Θ′ be the set of all functions θ : (0, ∞)→ (1, ∞) satisfying the following condition:
Θ2′ : for every sequence {βk} ⊂ (0, ∞), limk→∞ θ(βk) = 1⇒ limk→∞ βk = 0.
Obviously, Θ1,2,3 ⊂ Θ′. However, the converse inclusion is not true in general as

substantiated by the following examples:
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Example 1 ([10]). Let θ : (0, ∞)→ (1, ∞) be given by: θ(α) = e
α
2 +sin α. It is clear that θ satisfies

Θ2 and Θ4. However, it dose not satisfy Θ1.

Example 2. Let θ : (0, ∞) → (1, ∞) be given by: θ(α) = eecos α− 1
α . It is clear that θ satisfies

Θ2 and Θ4. However, it dose not satisfy Θ1 and Θ3.

Example 3. Let θ : (0, ∞)→ (1, ∞) be given by: θ(α) = ecos α−(1+α). It is clear that θ satisfies
Θ2 and Θ4. However, it dose not satisfy Θ1 and Θ3.

Example 4. Let θ : (0, ∞)→ (1, ∞) be given by: θ(α) = earctan α−sin α. It is clear that θ satisfies
Θ2 and Θ4. However, it dose not satisfy Θ1 and Θ3.

Now, we are ready to define the notion of θ∗-weak contractions as follows.

Definition 2. Let (M, d) be a metric space. A self-mapping S on M is said to be a θ∗-weak
contraction if there exist k ∈ (0, 1) and θ ∈ Θ′ such that

d(Sz, Sw) > 0⇒ θ(d(Sz, Sw)) ≤ [θ(m(z, w))]k, (3)

where m(z, w) = max{d(z, w), d(z, Sz), d(w, Sw)}.

Now, we state and prove our main results as follows:

Theorem 2. Let (M, d) be a complete metric space and S : M→ M a θ∗-weak contraction. If θ is
continuous, then

(a) S has a unique fixed point (say z∗ ∈ M),
(b) limn→∞ Snz = z∗, ∀z ∈ M.

Moreover, S is continuous at z∗ if and only if limz→z∗ m(z, z∗) = 0.

Proof. Let z0 ∈ M be an arbitrary point. Define a Picard sequence {zn} ⊆ M based at z0,
i.e., zn+1 = Szn, ∀n ∈ N0. If there exists some n0 ∈ N0 such that zn0 = Szn0 , then we are
done. Assume that zn+1 6= zn, ∀n ∈ N0. On using (3), we have (∀n ∈ N0)

θ(d(zn+1, zn)) ≤ [θ(m(zn, zn−1))]
k,

where

m(zn, zn−1) = max{d(zn, zn−1), d(zn, zn+1), d(zn, zn−1)}.

Now, m(zn, zn−1) 6= d(zn, zn+1), otherwise θ(d(zn, zn+1)) ≤ [θ(d(zn, zn+1))]
k a contra-

diction. Hence, m(zn, zn−1) = d(zn, zn−1). Thus, we have

θ(d(zn+1, zn)) ≤ [θ(d(zn, zn−1))]
k ≤ [θ(d(zn−1, zn−2))]

k2 ≤ ... ≤ [θ(d(z1, z0))]
kn

.

On letting n→ ∞, we obtain

1 ≤ lim
n→∞

θ(d(zn+1, zn)) ≤ lim
n→∞

[θ(d(z1, z0))]
kn

= 1,

i.e., limn→∞ θ(d(zn+1, zn)) = 1 which by Θ2′ yields that

lim
n→∞

d(zn+1, zn) = 0. (4)



Axioms 2021, 10, 209 4 of 13

Now, we show that {zn} is a Cauchy sequence employing a contradiction. Suppose on
contrary that it is not so, then (in view of Lemma 1) there exist ε0 > 0 and two subsequences
{zn(k)} and {zm(k)} of {zn} such that

k ≤ m(k) < n(k), d(zn(k)−1, zm(k)) < ε0 ≤ d(zn(k), zm(k)), ∀k ∈ N0.

We observe that

ε0 ≤ d(zn(k), zm(k)) ≤ d(zn(k), zn(k)−1) + d(zn(k)−1, zm(k)) < d(zn(k), zn(k)−1) + ε0

so that
lim
k→∞

d(zn(k), zm(k)) = lim
k→∞

d(zn(k)−1, zm(k)) = ε0. (5)

Furthermore, we have

ε0 ≤ d(zn(k), zm(k))

≤ d(zn(k), zm(k)−1) + d(zm(k)−1, zm(k))

≤ d(zn(k), zn(k)−1) + d(zn(k)−1, zm(k)−1) + d(zm(k)−1, zm(k))

≤ d(zn(k), zn(k)−1) + d(zn(k)−1, zm(k)) + 2d(zm(k)−1, zm(k))

so that
lim
k→∞

d(zn(k), zm(k)−1) = lim
k→∞

d(zn(k)−1, zm(k)−1) = ε0. (6)

Thus, there exists N ∈ N0 such that d(zn(k)−1, zm(k)−1) > 0, ∀k ≥ N so that on
applying (3) with z = zn(k)−1 and w = zm(k)−1, we have

Θ(d(zn(k), zm(k))) ≤ [θ(m(zn(k)−1, zm(k)−1))]
k, (7)

where

m(zn(k)−1, zm(k)−1) = max
{

d(zn(k)−1, zm(k)−1), d(zn(k)−1, zn(k)), d(zm(k)−1, zm(k))
}

.

On taking k→ ∞ in the above relation and making use of (4) and (6), we get

lim
k→∞

m(zn(k)−1, zm(k)−1) = ε0. (8)

Next, on taking k→ ∞ in (7) and using (5) and (8), using the continuity of θ, we obtain
θ(ε0) ≤ [θ(ε0)]

k, which is a contradiction. Hence, {zn} is a Cauchy sequence in (M, d).
As M is complete, so there exists z∗ ∈ M such that {zn} → z∗.

The next step is to prove the point z∗ to be a fixed point of S. For this, we consider a
set, say Q = {n ∈ N0 : zn = Sz∗}. Then, two cases come into existence depending on Q.
The first one is, if Q is an infinite set. Then there exists a subsequence {zn(k)} ⊆ {zn}which
converges to Sz∗. By the property of uniqueness of limit, we arrive at the conclusion that
Sz∗ = z∗. The second is, if Q is a finite set. Then d(zn, Sz∗) > 0 for infinitely many n ∈ N0.
Hence, there exists a subsequence {zn(k)} ⊆ {zn} such that d(zn(k), Sz∗) > 0, ∀k ∈ N0.
Making use of (3), we obtain (∀k ∈ N0)

θ(d(zn(k), Sz∗)) ≤ [θ(m(zn(k)−1, z∗))]k, (9)

where
m(zn(k)−1, z∗) = max

{
d(zn(k)−1, z∗), d(zn(k)−1, zn(k)), d(z∗, Sz∗)

}
.

Now, if d(Sz∗, z∗) > 0, then limk→∞ m(zn(k)−1, z∗) = d(Sz∗, z∗). Taking k → ∞
in (9), it yields θ(d(z∗, Sz∗)) ≤ [θ(d(z∗, Sz∗))]k, which is a contradiction. Therefore, our
supposition is wrong and d(Sz∗, z∗) = 0 and hence Sz∗ = z∗.
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Now we come to prove the uniqueness of this fixed point. For the same, assume
that z∗∗ is one more fixed point of S. Then, (3) yields θ(d(z∗, z∗∗)) ≤ [θ(d(z∗, z∗∗))]k, a
contradiction. Hence, the fixed point of S is unique.

Now we come to prove the last part of this theorem. Assume that S is continuous
at its fixed point z∗ and a sequence {wn} → z∗. Then, we obtain {Swn} → Sz∗ = z∗ and
limn→∞ d(wn, Swn) = 0. Thus, we have limn→∞ m(wn, z∗) = 0.

To establish the converse part, let {wn} → z∗. If we assume that limn→∞ m(wn, z∗) = 0,
then limn→∞ d(wn, Swn) = 0. This implies that limn→∞ Swn = limn→∞ wn = z∗ = Sz∗ so
that S is continuous at z∗.

Next, we deduce the following results, which are new for the existing literature by
combining Theorem 2 with Examples 1–4:

Corollary 1. Let (M, d) be a complete metric space and S : M → M. If there exists k ∈ (0, 1)
such that

d(Sz, Sw) > 0⇒ e2 sin(d(Sz,Sw))+d(Sz,Sw) ≤ ek(2 sin(m(z,w))+m(z,w)),

for all z, w ∈ M, then S has a unique fixed point (say z∗ ∈ M) and limn→∞ Snz = z∗, ∀z ∈ M.
Moreover, S is continuous at z∗ if and only if limz→z∗ m(z, z∗) = 0.

Corollary 2. Let (M, d) be a complete metric space and S : M → M. If there exists k ∈ (0, 1)
such that

d(Sz, Sw) > 0⇒ ee
cos(d(Sz,Sw))− 1

d(Sz,Sw) ≤ eke

(
cos(m(z,w))− 1

m(z,w)

)
,

for all z, w ∈ M, then S has a unique fixed point (say z∗ ∈ M) and limn→∞ Snz = z∗, ∀z ∈ M.
Moreover, S is continuous at z∗ if and only if limz→z∗ m(z, z∗) = 0.

Corollary 3. Let (M, d) be a complete metric space and S : M → M. If there exists k ∈ (0, 1)
such that

d(Sz, Sw) > 0⇒ ecos(d(Sz,Sw))−d(Sz,Sw) ≤ ek
(

cos(m(z,w))−m(z,w)−1+ 1
k

)
,

for all z, w ∈ M, then S has a unique fixed point (say z∗ ∈ M) and limn→∞ Snz = z∗, ∀z ∈ M.
Moreover, S is continuous at z if and only if limz→z∗ m(z, z∗) = 0.

Corollary 4. Let (M, d) be a complete metric space and S : M → M. If there exists k ∈ (0, 1)
such that

d(Sz, Sw) > 0⇒ earctan(d(Sz,Sw))−sin(d(Sz,Sw)) ≤ ek(arctan(m(Sz,Sw))−sin(m(Sz,Sw))),

for all z, w ∈ M, then S has a unique fixed point (say z∗ ∈ M) and limn→∞ Snz = z∗, ∀z ∈ M.
Moreover, S is continuous at z∗ if and only if limz→z∗ m(z, z∗) = 0.

The following example demonstrates Theorem 2.

Example 5. Let M = [0, 1] endowed with the usual metric. Define S : M→ M by

Sz =

{
1
3 , for z ∈ [0, 1),
1
6 , for z = 1.

Now,
d(Sz, Sw) > 0 ⇐⇒ z ∈ [0, 1) and w = 1 (and vice versa),

so we get d(Sz, S1) = d( 1
3 , 1

6 ) = 1
6 and m(z, 1) ≥ d(1, S1) = 5

6 . Consider θ as given in
Example 2 and k = 3

10 , then we easily show that (3) holds for such θ and k. Thus, S is θ∗-weak



Axioms 2021, 10, 209 6 of 13

contraction. Hence, Theorem 2 (Corollary 2) shows that S has a unique fixed point (namely z∗ = 1
3 ).

Furthermore, limz→ 1
3

m(z, 1
3 ) = 0 and S is continuous at 1

3 , though it is discontinuous on [0, 1].

Now, we deduce an integral-type result via Theorem 2.

Theorem 3. Let (M, d) be a complete metric space and S : M→ M a self mapping satisfying the
following: ∀z, w ∈ M, there exists k ∈

(
0, 1

2
)

and θ ∈ Θ′ such that

∫ d(Sz,Sw)

0
φ(t)dt > 0 =⇒ θ

( ∫ d(Sz,Sw)

0
φ(t)dt

)
≤
[
θ
( ∫ m(z,w)

0
φ(t)dt

)]k
,

where φ : [0, ∞) → [0, ∞) is a Lebesgue integrable mapping satisfying
∫ ε

0 φ(t)dt > 0, ∀ε > 0.
Then S has a unique fixed point.

In next lines, we prove a result analogous to Theorem 2 avoiding the continuity of θ.

Theorem 4. Let (M, d) be a complete metric space and S : M → M a θ∗-weak contraction.
Assume that S2 is continuous and there exists z0 ∈ M such that {Snz0} is bounded, then

(a) S has a unique fixed point (say z∗ ∈ M),
(b) limn→∞ Snz = z∗, ∀z ∈ M, provided S is bounded.

Moreover, S is continuous at z∗ if and only if limz→z∗ m(z, z∗) = 0.

Proof. Assume that z0 ∈ M such that the sequence {Snz0} is bounded. On the same steps
of proof of Theorem 2, we arrive at the following:

θ(d(zn+1, zn)) ≤ [θ(d(zn, zn−1))]
k, ∀n ∈ N0

so that, ∀n, l ≥ 1, we have

θ(d(zn+l , zn)) ≤ [θ(d(zn+l−1, zn−1))]
k ≤ [θ(d(zn+l−2, zn−2))]

k2 ≤ ...

≤ [θ(d(zl , z0))]
kn ≤ [θ(C)]k

n → 1, as n→ ∞,

where C = supl≥1 d(z0, Slz0). Now, making use of Θ2′, we obtain

lim
n→∞

d(zn+l , zn) = 0.

Hence, {zn} is a Cauchy sequence. As M is a complete metric space, this fact implies
that there exists z∗ ∈ M such that {zn} converges to z∗. As S2 is continuous, so {S2zn =
zn+2} → S2z∗. Owing to the uniqueness of the limit, we have S2z∗ = z∗. Next, we claim
that Sz∗ = z∗. Assume on contrary that Sz∗ 6= z∗. Then, we have m(z∗, Sz∗) = d(z∗, Sz∗)
and hence,

θ(d(z∗, Sz∗)) = θ(d(S2z∗, Sz∗)) ≤ [θ(m(z∗, Sz∗))]k = [θ(d(z∗, Sz∗))]k,

a contradiction. Thus, Sz∗ = z∗. Observe that if S is bounded, then z0 chosen in the
beginning may be any arbitrary point of M and hence, part (b) is established. The rest of
the proof is followed on the lines of the proof of Theorem 2.

In the following example, we furnish a mapping which is discontinuous at its fixed
point exhibiting the utility of Theorem 4.

Example 6. Let M = [0, 1] endowed with the usual metric. Define S : M→ M by

Sz =

{
1
2 , for z ∈ [0, 1

2 ],
0, for z ∈ ( 1

2 , 1].
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We see that that S is bounded and S2 is continuous as well. Next, define θ : (0, ∞)→ (1, ∞)
by

θ(α) =

{
eecosα− 1

α , for α ∈ (0, 1
2 ],

e
α
2 +sinα, for α ∈ ( 1

2 , ∞).

Clearly, θ ∈ Θ′. Now,

d(Sz, Sw) > 0 ⇐⇒ z ∈
[
0,

1
2

]
and w ∈

(1
2

, 1
]
(or vice versa),

so that d(Sz, Sw) = 1
2 and m(z, w) > 1

2 . It is very easy to show that (3) holds for θ and k = 9
20 by

routine calculation. Thus, all the hypotheses of Theorem 4 are satisfied and hence, S has a unique
fixed point (namely z∗ = 1

2 ). Notice that limz→ 1
2

m(z, 1
2 ) does not exist and S is discontinuous at

z∗ = 1
2 .

Remark 1. Notice that in Example 6, Theorem 1 as well as Theorem 2.1 of [8] is not applicable as
neither θ nor S is continuous.

Remark 2. θ∗-weak contraction is sufficiently providing an answer to the Open Question 1.

Next, we consider Θ′′, the class of mappings θ : (0, ∞) → (1, ∞) satisfying Θ2′ and
Θ3. We recall the following notion before presenting our next result.

Definition 3. Property P: A self-mapping S has property P if

Fix(Sn) = Fix(S), for every n ∈ N.

Theorem 5. Let (M, d) be a complete metric space and S : M → M a continuous mapping.
If there exist k ∈ (0, 1) and θ ∈ Θ′′ such that

d(Sz, S2z) > 0 =⇒ θ(d(Sz, S2z)) ≤ [θ(m(z, Sz))]k, (10)

∀z ∈ M, then S has the property P.

Proof. Let z0 ∈ M be an arbitrary point. Define a Picard sequence {zn} ⊆ M based at z0,
i.e., zn+1 = Szn, ∀n ∈ N0. If there exists some n0 ∈ N0 such that zn0 = zn0+1, then we are
done. Henceforth, assume that zn 6= zn+1, ∀n ∈ N0, i.e., d(Szn−1, S2zn−1) > 0, ∀n ∈ N.
Thus, (10) implies that

θ(d(Szn−1, S2zn−1)) ≤ [θ(m(zn−1, Szn−1))]
k

or
θ(d(zn, zn+1)) ≤ [θ(m(zn−1, zn))]

k, (11)

where

m(zn−1, zn) = max{d(zn−1, zn), d(zn−1, Szn−1), d(zn, Szn)}
= max{d(zn−1, zn), d(zn, zn+1)}.

If m(zn−1, zn) = d(zn, zn+1), then (11) yields that θ(d(zn, zn+1)) ≤ [θ(d(zn, zn+1))]
k,

k ∈ (0, 1), which is a contradiction. Therefore, m(zn−1, zn) = d(zn−1, zn). Now, in view
of (11), we have

θ(d(zn, zn+1)) ≤ [θ(d(zn−1, zn))]
k, ∀n ∈ N and k ∈ (0, 1).
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Hence, we get

1 < θ(d(zn, zn+1)) ≤ [θ(d(zn−1, zn))]
k ≤ [θ(d(zn−2, zn−1))]

k2 ≤ ... ≤ [θ(d(z0, z1))]
kn

. (12)

Taking limit n→ ∞ in (12), we obtain

lim
n→∞

θ(d(zn, zn+1)) = 1,

which by Θ2′ gives
lim

n→∞
d(zn, zn+1) = 0.

Now, Θ3 implies that there exist r ∈ (0, 1) and l ∈ (0, ∞] such that

lim
n→∞

θ(d(zn, zn+1))− 1
[d(zn, zn+1)]r

= l.

Firstly, assume that l < ∞. Let C = l
2 . Then, by the definition of the limit, there exists

N1 ∈ N such that ∣∣∣∣ θ(d(zn, zn+1))− 1
[d(zn, zn+1)]r

− l
∣∣∣∣ ≤ C, ∀n ≥ N1

implying that
θ(d(zn, zn+1))− 1

[d(zn, zn+1)]r
≥ l − C = C, ∀n ≥ N1.

So, we have

n[d(zn, zn+1)]
r ≤ nD[θ(d(zn, zn+1))− 1], ∀n ≥ N1 and D =

1
C

.

Secondly, suppose that l = ∞. Let C > 0 be a given real number. Then from the
definition of the limit, there exists N2 ∈ N such that

θ(d(zn, zn+1))− 1
[d(zn, zn+1)]r

≥ C, ∀n ≥ N2

implying that

n[d(zn, zn+1)]
r ≤ nD[θ(d(zn, zn+1))− 1], ∀n ≥ N2 and D =

1
C

.

Thus, in all, there exist D > 0 and N = max{N1, N2} such that

n[d(zn, zn+1)]
r ≤ nD[θ(d(zn, zn+1))− 1], ∀n ≥ N.

From (12), we have

n[d(zn, zn+1)]
r ≤ nD[[θ(d(z0, z1))]

kn − 1], ∀n ≥ N2 and D =
1
C

.

Taking limit n→ ∞, we obtain

n[d(zn, zn+1)]
r = 0. (13)

Now, (13) ensures the existence of N′ such that

n[d(zn, zn+1)]
r ≤ 1, ∀n ≥ N′,
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which implies that

d(zn, zn+1) ≤
1

n
1
r

, ∀n ≥ N′.

Now, for m > n ≥ N′, we have

d(zn, zm) ≤
m−1

∑
i=n

d(zi, zi+1) ≤
m−1

∑
i=n

1

i
1
r

.

As 0 < r < 1, so
{

∑∞
i=n

1
i

1
r

}
converges and hence,

lim
m,n→∞

d(zn, zm) = 0,

i.e., {zn} is a Cauchy sequence. Now, by the completeness of M, we get the ensurance of
the existence of z∗ ∈ M such that zn → z∗, as n→ ∞.

By the continuity of S, we have

zn+1 = Szn → Sz∗, as n→ ∞.

By the uniqueness of the limit, we have z∗ = Sz∗, i.e., S has a fixed point.
Now, we will show that

Fix(Sn) = Fix(S), ∀n ∈ N.

Suppose on contrary that there exists some z′ ∈ Fix(Sn) such that z′ /∈ Fix(S). Then,
we have

d(z′, Sz′) > 0.

Now, we have

1 < θ(d(z′, Sz′)) =θ(d(S(Sn−1z′), S2(Sn−1z′)) ≤ [θ(m(Sn−1z′, Snz′))]k

=[θ(d(Sn−1z′, Snz′))]k ≤ [θ(d(Sn−2z′, Sn−1z′))]k
2

≤... ≤ [θ(d(z′, Sz′))]k
n
.

Taking limit n→ ∞, we get θ(d(z′, Sz′)) = 1, i.e., d(z′, Sz′) = 0, a contradiction. This
completes the proof.

3. Application to Nonlinear Matrix Equations

Throughout this section, we use the following notations:
M(n) = the set of all n× n complex matrices.
H(n) = the set of all Hermitian matrices inM(n).
P(n) = the set of all positive definite matrices inM(n).
H+(n) = the set of all positive semidefinite matrices inM(n).
For Z ∈ P(n) (resp. Z ∈ H+(n)), we write Z � 0 (resp. Z � 0). The symbol ‖.‖

symbolizes the spectral norm of a matrix A defined by ‖A‖ =
√

λ+(A∗A), where λ+(A∗A)
is the largest eigenvalue of A∗A, where A∗ is the conjugate transpose of A. Furthermore,
‖A‖tr = ∑n

k=1 sk(A) = tr((A∗A)
1
2 ), where sk(A) (1 ≤ k ≤ n) are the singular values of

A ∈ M(n). In case if A is a Hermition matrix, this definition reduces to: ‖A‖tr = tr(A).
Here, (H(n), ‖.‖tr) is complete metric space (for more details see [12–15]).

In this section, we apply our result (viz. Theorem 2) to prove the existence and
uniqueness of a solution of the nonlinear matrix equation

Z = P +
m

∑
k=1

A∗kF (Z)Ak, (14)



Axioms 2021, 10, 209 10 of 13

where P is a Hermitian positive definite matrix and F is a continuous mapping fromH(n)
into P(n) such that Q(0) = 0, Ak are arbitrary n× n matrices and A∗k their conjugates.

In the sequel, we need the following lemmas:

Lemma 2 ([12]). If A � 0 and B � 0 are n× n matrices, then 0 ≤ tr(AB) ≤ ‖A‖tr(B).

Lemma 3 ([16]). If A ∈ H(n) such that A ≺ In, then ‖A‖ < 1.

Theorem 6. Consider the matrix Equation (14). Assume that there exist two positive real numbers
R and M ≥ 1 such that:

(i) ∑m
k=1 Ak A∗k � RIn and

(ii) for every Z, W ∈ H(n) with ∑n
k=1 A∗kF (Z)Ak 6= ∑n

k=1 A∗kF (W)Ak, we have

d(F (Z),F (W)) ≤ e−M

R
m(Z, W),

where M ≥ 1 and m(Z, W) is as defined in Definition 2.

Then the matrix Equation (14) has a unique solution. Moreover, the iteration Zn = P +

∑n
k=1 A∗kF (Zn−1)Ak converges in the sense of trace norm ‖.‖tr to the solution of the matrix

Equation (14), where Z0 ∈ H(n) such that Z0 � ∑m
k=1 A∗kF (Z0)Ak.

Proof. Define a mapping S : H(n)→ H(n) by:

S(Z) = P +
n

∑
k=1

A∗kF (Z)Ak, ∀Z ∈ H(n). (15)

Observe that S is well defined and X is a fixed point of S if and only if it is a solution of
the matrix Equation (14). To accomplish this, we need to show that S is θ∗-weak contraction
wherein the mapping θ : (0, ∞) → (1, ∞) is given by: θ(α) = e

√
α, ∀α ∈ (0, ∞), which is

continuous and belongs to Θ′.
Let Z, W ∈ H(n) be such that S(Z) 6= S(W). Consider

‖S(Z)− S(W)‖tr = tr
(
S(Z)− S(W)

)
= tr

( m

∑
k=1

A∗k
(
F (Z)−F (W)

)
Ak

)
=

m

∑
k=1

tr
(

A∗k
(
F (Z)−F (W)

)
Ak
)

=
m

∑
k=1

tr
(

A∗k Ak
(
F (Z)−F (W)

))
= tr

(( m

∑
k=1

A∗k Ak

)(
F (Z)−F (W)

))
≤

∥∥∥ m

∑
k=1

A∗k Ak

∥∥∥‖F (Z)−F (W)‖tr

≤ e−M

R

∥∥∥ m

∑
k=1

A∗k Ak

∥∥∥m(Z, W)

≤ e−Mm(Z, W),

so that
d(SZ, SW) ≤ e−Mm(Z, W),

which implies that

e
√

d(SZ,SW) ≤ e
√

e−Mm(Z,W), M ≥ 1.
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This yields that

e
√

d(SZ,SW) ≤
[
e
√

m(Z,W)
]k

,

where k =
√

e−M. The supposition that M ≥ 1 implies that k ∈ (0, 1) which shows that S
is a θ∗-weak contraction. Thus, all the hypotheses of Theorem 2 are satisfied. Hence, there
exists a unique Z ∈ H(n) such that SZ = Z, i.e., the matrix Equation (14) has a unique
solution inH(n). This completes the proof.

4. Application to Integral Equations

In this section, we investigate the existence and uniqueness of a solution of a Volterra
type integral equation with the help of Theorem 2. Suppose the integral equation is given
as follows:

z(t) =
∫ t

0
K(t, s, z(s))ds + h(t), t ∈ [0, T], (16)

where T > 0, K : [0, T]× [0, T]×R→ R, h : [0, T]→ R.
Consider the space C([0, T],R) of all continuous functions z : [0, T] → R equipped

with the Bielecki’s norm
‖z‖ = sup

t∈[0,T]
e−αt|z(t)|, α ≥ 1.

Then, the space (C([0, T],R), d) is a complete metric space with

d(z, w) = ‖z− w‖, ∀z, w ∈ C([0, T],R).

One can go through [17–19] for more literature.
Now, by utilizing Theorem 2, we state and prove the following result.

Theorem 7. Assume that there exists α ≥ 1 such that

|K(t, s, z)− K(t, s, w)| ≤ αe−αm∗(z, w),

∀t, s ∈ [0, T] and z, w ∈ C([0, T],R), where

m∗(z, w) = max{|z− w|, |z− Sz|, |w− Sw|}.

Then the integral Equation (16) has a unique solution in C([0, T],R).

Proof. Define the mapping S : C([0, T],R)→ C([0, T],R) by:

Sz(t) =
∫ t

0
K(t, s, z(s))ds + h(t), z ∈ C([0, T],R).

Observe that S is well defined and z is a fixed point of S if and only if it is a solution of
the integral Equation (14). Now, define θ : (0, ∞)→ (1, ∞) by θ(α) = eα, α ∈ (0, ∞). Then
θ is continuous and belongs to Θ′. Now, consider
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|Sz(t)− Sw(t)| =
∣∣∣∣ ∫ t

0
(K(t, s, z(s))− K(t, s, w(s)))ds

∣∣∣∣
≤
∫ t

0
|(K(t, s, z(s))− K(t, s, w(s)))|ds

≤
∫ t

0
αe−αm∗(z, w)ds

=αe−α
∫ t

0
esα max{|z(s)− w(s)|e−sα, |z(s)− Sz(s)|e−sα,

|w(s)− Sw(s)|e−sα}ds

≤αe−α
∫ t

0
esα max{d(z, w), d(z, Sz), d(w, Sw)}ds

=αe−αm(z, w)
∫ t

0
esαds

≤m(z, w)e−α(1−t).

This implies that
|Sz(t)− Sw(t)|e−αt ≤ e−αm(z, w).

Taking supremum over t of both sides, we get

d(Sz, Sw) ≤ e−αm(z, w),

which implies that

ed(Sz,Sw) ≤ ee−αm(z,w) = [em(z,w)]k, ∀z, w ∈ C([0, T],R),

where k = e−α. Since α ≥ 1, so k ∈ (0, 1). Therefore, S is θ∗-weak contraction. By Theorem 2,
S has a unique solution of integral Equation (16). This ends the proof.
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